JP2648154B2 - Air gap spinning method - Google Patents

Air gap spinning method

Info

Publication number
JP2648154B2
JP2648154B2 JP62268058A JP26805887A JP2648154B2 JP 2648154 B2 JP2648154 B2 JP 2648154B2 JP 62268058 A JP62268058 A JP 62268058A JP 26805887 A JP26805887 A JP 26805887A JP 2648154 B2 JP2648154 B2 JP 2648154B2
Authority
JP
Japan
Prior art keywords
dope
spinning
flow tube
spinneret
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62268058A
Other languages
Japanese (ja)
Other versions
JPH01111005A (en
Inventor
啓作 長沢
栄二 佐藤
和成 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP62268058A priority Critical patent/JP2648154B2/en
Publication of JPH01111005A publication Critical patent/JPH01111005A/en
Application granted granted Critical
Publication of JP2648154B2 publication Critical patent/JP2648154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、紡糸口金から紡糸ドープ(以下ドープと略
称する)を一旦空気中に吐出し、次いで凝固液中に導い
て紡糸する、謂ゆるエヤギャップ式湿式紡糸に関し、更
に詳しくは、高速度紡糸に適した、紡糸状態が安定し、
且つ紡糸操作の容易なエヤギャップ紡糸に関する。
DETAILED DESCRIPTION OF THE INVENTION [Application Field of the Invention] The present invention relates to a so-called loose gap in which a spinning dope (hereinafter, abbreviated as dope) is once discharged into the air from a spinneret and then guided into a coagulating liquid to spin. More specifically, the wet spinning method is suitable for high-speed spinning, the spinning state is stable,
The present invention also relates to an air gap spinning that is easy to spin.

〔従来の技術〕[Conventional technology]

紡糸口金からドープを一旦空気中又は不活性な非凝固
性雰囲気中に吐出し、その後凝固浴に導びきドープ流を
凝固させる、謂ゆるエヤギャップ式湿式紡糸法(又は、
ドライジェット湿式紡糸法、半乾半湿式紡糸法、乾湿式
紡糸法等とも呼ばれる)は、吐出されたドープ流が凝固
されない空気層中で流動延伸される為にドープ流を細
化、即ち細デニール化しやすいことや、高速引取りしや
すいこと、又、紡糸口金が凝固液に浸漬されない為に、
各々を独立に温度設定できること等の利点を有し、慣用
の湿式紡糸法の一つとして多くの提案(例えば、特公昭
31−8313号公報、特公昭36−12711号公法、特公昭40−2
6212号公報、特公昭42−815号公報他)がある。
The so-called air gap type wet spinning method (or so-called air gap type) in which the dope is once discharged from the spinneret into the air or into an inert non-coagulating atmosphere and then guided into a coagulation bath to solidify the dope stream.
Dry jet wet spinning method, semi-dry semi-wet spinning method, dry-wet spinning method, etc.) is a method in which the discharged dope flow is stretched in a non-coagulated air layer so that the dope flow is thinned, that is, the fine denier is reduced. It is easy to make it easy to take out, it is easy to take off at high speed, and because the spinneret is not immersed in the coagulating liquid,
It has the advantage of being able to set the temperature independently of each other, and has been proposed as one of the conventional wet spinning methods (for example,
No. 31-8313, Japanese Patent Publication No. 36-12711, Japanese Patent Publication No. 40-2
No. 6212, Japanese Patent Publication No. 42-815, etc.).

更に、このエヤギャップ式湿式紡糸(以下エヤギャッ
プ紡糸と略称する)の高速引取り、即ち高速紡糸性を更
に助長する為に、凝固糸条を凝固液と共に紡糸浴に設け
た流管を通じて、紡糸浴から引出す、謂ゆる流管式湿式
紡糸との組合せも、特公昭45−2765号公報、特公昭55−
14170号公報等で提案されている。
Furthermore, in order to further enhance the high-speed take-up of the air gap wet spinning (hereinafter simply referred to as the air gap spinning), that is, the high-speed spinnability, the coagulated yarn is taken out of the spinning bath through a flow tube provided in the spinning bath together with the coagulating liquid. The combination with the so-called loose-flow-type wet spinning is also available in Japanese Patent Publication No. 45-2765 and Japanese Patent Publication No. 55-55.
It is proposed in, for example, Japanese Patent Publication No. 14170.

このエヤギャップ紡糸と流管式湿式紡糸の組合わせ
は、ポリパラフェニレンテレフタルアミドの如き直線的
分子構造のアラミド他の液晶ドープの紡糸や、銅アンモ
ニアレーヨン又はビスコースレーヨンの如く、紡糸浴を
出た後の延伸率が低く、従って紡糸浴からの引取り速度
そのものを速くせざるを得ない場合に多く提案されてお
り、更に凝固液と凝固糸条の走行摩擦抵抗を軽減して、
凝固糸条に加わる損傷を避けんとする提案も多く見られ
る。これらについて例えば、特開昭53−78230号公報、
特開昭53−78231号公報、特開昭56−128312号公報、特
開昭57−121612号公報、特開昭59−157316号公報、特開
昭61−102413号公報、特開昭61−239012号公報等に開示
されている。
This combination of air gap spinning and flow tube wet spinning left spinning baths such as aramid or other liquid crystal doped spins with a linear molecular structure, such as polyparaphenylene terephthalamide, or copper ammonia rayon or viscose rayon. Many drawbacks have been proposed in cases where the subsequent drawing rate is low, and therefore the take-up speed from the spinning bath itself must be increased, and further reduces the running frictional resistance between the coagulating liquid and the coagulated yarn,
Many proposals have been made to avoid damage to the coagulated yarn. For these, for example, JP-A-53-78230,
JP-A-53-78231, JP-A-56-128812, JP-A-57-121612, JP-A-59-157316, JP-A-61-102413, JP-A-61-102413 It is disclosed in JP-A-239012 and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のエヤギャップ紡糸法は高速化等の点で好ましい
ものであるが、その最大の問題点は、紡糸口金から実質
的な凝固能のない空気層のドープが吐出される為に、ド
ープの紡糸口金面からの離れが悪いこと、紡糸口金面に
粘着したドープは単に粘着した部分のみの糸切断に止ま
らず、隣接する紡孔から吐出されるドープ流をも紡糸口
金面に粘着させ、ついには紡糸口金全面に亘って紡糸不
能とするという問題を生じやすい。同様に気体中にドー
プや熔融ポリマーを吐出する乾式紡糸法や熔融紡糸法に
おいても同様の問題を抱える。これらの問題はいずれ
も、気体中でドープが乾燥されたり、熔融ポリマーが冷
却固化される等の点でエヤギャップ紡糸法における困難
の比ではない。
The above-described air gap spinning method is preferable in terms of speeding up and the like, but the biggest problem is that the dope of the air layer having substantially no coagulation ability is discharged from the spinneret, so that the spinneret of the dope is used. The dope sticking to the surface of the spinneret is not limited to cutting the thread only at the sticky part, and the dope flow discharged from the adjacent spinning hole is also adhered to the surface of the spinneret. The problem that spinning is impossible over the entire surface of the die is likely to occur. Similarly, a dry spinning method or a melt spinning method for discharging a dope or a molten polymer into a gas has the same problem. Neither of these problems is a difficult ratio in the air gap spinning method in that the dope is dried in a gas or the molten polymer is cooled and solidified.

更に、エヤギャップ紡糸法の問題点は、空気層に吐出
されたドープ流が、次いで凝固液面を突破して凝固液中
に導かれねばならぬことである。この場合糸立て時や、
糸切れ時に、ドープ流が凝固液面との界面張力により、
液中には沈まずに液面を漂流することが多く、糸立て操
作を複雑にしている他、特に紡糸中に発生した単糸切断
時に、切断したドープ流が液面を漂流し、それが他の糸
と接触することで他の糸まで切断したり、漂流糸を随伴
して流管入口を閉塞したりする。
Furthermore, a problem with the air gap spinning method is that the dope stream discharged into the air layer must then break through the surface of the coagulating liquid and be guided into the coagulating liquid. In this case, at the time of thread stand,
At the time of yarn breakage, dope flow is caused by interfacial tension with the coagulating liquid surface.
Often, the liquid surface drifts without sinking in the liquid, complicating the thread stand operation.In particular, when cutting a single yarn generated during spinning, the cut dope flow drifts on the liquid surface, It cuts to other yarns by contacting with other yarns or closes the inlet of the flow tube with drifting yarns.

これらはいずれもエヤギャップ紡糸を工業的に実施す
る上で、紡糸開始に人手と時間を必要とし、又、紡糸の
中断等、操業度を高める上で問題が大きい。
All of these require a lot of manpower and time to start spinning in the industrial implementation of air gap spinning, and also have a large problem in raising the operation degree such as interruption of spinning.

〔問題点を解決する手段〕[Means to solve the problem]

上記の問題は、エヤギャップ紡糸において、凝固され
た糸条を流管を通じて凝固液と共に紡糸浴から引出し、
該流管の入口を凝固液面から5mm乃至40mmの距離に位置
させ、紡糸口金としてその紡孔軸が流管の中心線上であ
って、凝固液面から流管入口までの距離(L0)の中間点
と、流管入口からL0だけ流管出口方向に離れた点との間
の一点で交差する如く穿孔されたものを用い、更に紡糸
ドープを該紡孔から350m/分以上の吐出線速で吐出する
ことにより解決される。
The above problem is that in the air gap spinning, the coagulated yarn is drawn out of the spinning bath together with the coagulating liquid through a flow tube,
The inlet of the flow tube is positioned at a distance of 5 mm to 40 mm from the surface of the coagulating liquid, and the spinning axis of the spinneret is on the center line of the flow tube, and the distance (L 0 ) from the surface of the coagulating liquid to the inlet of the flow tube an intermediate point of the discharge of more than 350 meters / minute using those as perforated intersect at one point, a further spinning dope from該紡hole between a point away from the flow tube inlet only flow tube exit direction L 0 The problem is solved by discharging at a linear velocity.

以下、本発明の構成につき、実施態様の一例を示す図
を引用しつつ詳細に説明する。
Hereinafter, the configuration of the present invention will be described in detail with reference to the drawings showing an example of the embodiment.

第1図は本発明の実施態様の一例を示すものであり、
ドープはドープ供給管1を経てスピンパック2に供給さ
れ、紡糸口金3を通じて吐出される。紡孔4から吐出さ
れたドープ流は、空気層8を通った後、凝固液面(以下
単に液面と称する)9に突入し、凝固液10中を凝固しつ
つ糸条7として走行した後、流管11を通って糸条14とし
て引出され、変向ガイド15を介して図示されない仕上げ
装置へ送られる。凝固液はノズル13より密閉構造の紡糸
浴12に送り込まれ、この例ではその全量が流管11を通っ
て糸条と共に流出する。
FIG. 1 shows an example of an embodiment of the present invention,
The dope is supplied to the spin pack 2 via the dope supply pipe 1, and is discharged through the spinneret 3. After the dope flow discharged from the spinning hole 4 passes through the air layer 8, it enters a coagulating liquid surface (hereinafter simply referred to as a liquid surface) 9, and travels as a yarn 7 while coagulating in the coagulating liquid 10. The yarn is drawn out as a yarn 14 through the flow tube 11 and sent to a finishing device (not shown) via a deflection guide 15. The coagulation liquid is sent from the nozzle 13 to the spinning bath 12 having a closed structure, and in this example, the entire amount thereof flows out together with the yarn through the flow tube 11.

本発明のエヤギャップ紡糸で最も特徴とするところ
は、紡糸口金3として、紡孔4の紡孔軸5が流管11の中
心線上の一点6で交差する如く傾いて穿孔されているこ
とであり、更にそのように設計された紡孔からドープが
350m/分以上の極めて高い吐出線速で吐出されることで
あり、これらの組合せにより、本発明の問題とする紡糸
口金面でのドープ離れの困難さ、空気層8から凝固液面
9へドープ流が突入するときの界面突破の困難さが解決
できる。
The most characteristic feature of the air gap spinning of the present invention is that, as the spinneret 3, the spinning shaft 5 of the spinning hole 4 is inclined and bored so as to intersect at one point 6 on the center line of the flow tube 11, Furthermore, dope is produced from the spinner designed as such.
The discharge is performed at an extremely high discharge linear velocity of 350 m / min or more. Due to the combination of these, the separation of the dope from the spinneret surface, which is a problem of the present invention, is difficult. The difficulty of breaking through the interface when the flow enters can be solved.

即ち、吐出線速度が350m/分未満では、吐出されたド
ープが紡糸口金面に粘着しやすく避けられるべきであ
り、更に、吐出されたドープ流の運動エネルギーも小さ
い為、空気層8を走行して凝固液面9に衝突した時に、
界面張力に打勝って、自動的に凝固液10中にドープ流が
侵入しない。従って吐出線速は大なる程本発明の効果が
顕著となるが、大略350m/分以上であればよく、更に好
ましくは450m/分以上に選ばれればよい。吐出線速の上
限は特に制限されるものではなく、安定したドープの吐
出が保たれる範囲であれば、目的とするデニールや引取
り速度等から任意に選定されてよい。
That is, when the discharge linear velocity is less than 350 m / min, the discharged dope is likely to adhere to the surface of the spinneret and should be avoided. When it collides with the solidification liquid surface 9
Overcoming the interfacial tension, the dope flow does not automatically enter the coagulating liquid 10. Therefore, the effect of the present invention becomes more remarkable as the discharge linear velocity increases, but it may be approximately 350 m / min or more, more preferably 450 m / min or more. The upper limit of the discharge linear velocity is not particularly limited, and may be arbitrarily selected from the desired denier, take-up speed, and the like as long as stable dope discharge is maintained.

又、本発明の特徴とする紡孔軸5が流管中心線上の特
定の点6で交差するように設計された紡孔群から、上記
の条件でドープを吐出することが肝要で、このような傾
いた紡孔軸5の紡孔4から上記の如く高い吐出線速で吐
出されたドープは、該紡糸軸5に沿ってドープ流を形成
して空気中を走行し、凝固液面に傾いた角度で衝突し、
ドープ流の液面突破を助長する。更に凝固液中に侵入し
たドープ流は液中で拡散することなく自動的に流管入口
に達し、流管中凝固液と共に流出する。
In addition, it is important to discharge the dope from the spinning group designed so that the spinning shaft 5 which is a feature of the present invention intersects at a specific point 6 on the center line of the flow tube under the above conditions. The dope discharged at a high discharge linear speed from the spinning hole 4 of the slightly inclined spinning shaft 5 forms a dope flow along the spinning shaft 5 and travels in the air, and tilts toward the coagulation liquid surface. Collision at an angle
Promotes breakthrough of the dope flow. Further, the dope flow that has entered the coagulation liquid automatically reaches the inlet of the flow tube without diffusing in the liquid, and flows out together with the coagulation liquid in the flow tube.

紡孔軸5の交差点6の位置も勿論重量であり、液面9
と流管11の入口との中間点よりも液面9に近いときは、
糸立て時に各ドープ流が一本に合流し易く、引出し力が
加わっても液面9の界面張力によってドープ流が集束さ
れ、ドープ流を容易に分離できない問題を生じる為、好
ましくない。又、該交差点6が液面9からあまりにも遠
くなると従来の紡糸口金を用いたと同様になって本発明
の効果が得られず、大略、流管入口から流管出口に向っ
てL0だけ入った点以内に止めるべきである。
The position of the intersection 6 of the spinning shaft 5 is of course also a weight,
Is closer to the liquid level 9 than the midpoint between the
At the time of the yarn standing, the dope streams are easily merged into one, and even if a drawing force is applied, the dope flows are converged due to the interfacial tension of the liquid surface 9 and a problem that the dope flows cannot be easily separated occurs, which is not preferable. Further, the intersection 6 can not obtain the effect of the present invention becomes similar to that using the conventional spinneret If too further from the liquid surface 9, generally, contains only L 0 toward the flow tube inlet flow tube outlet Should stop within that point.

尚、該交差点6は、現実には工作精度の点から完全に
一点で交差せぬことがあることは十分理解されるべきで
あり、大略紡糸口金面と流管入口の距離L0の10%以内又
は2〜3mm以内であれば、本発明の目標は達成される。
It should be understood that the intersection 6 may not actually intersect at one point from the point of machining accuracy in practice, and it is generally 10% of the distance L 0 between the spinneret surface and the inlet of the flow tube. Within this range or within 2-3 mm, the goal of the present invention is achieved.

本発明の実施に用いる紡糸口金の好適な例は、第1図
の如く、紡糸口金を凹面とし、紡孔を大略該凹面に垂直
に穿孔したものである。このような場合、ドープ流は大
略紡糸口金面に垂直に吐出され、紡糸口金面への粘着の
発生が生じにくい点でより好ましい実施態様を与える。
但し、紡孔軸は工作精度等の事情で完全に紡糸口金面に
垂直にならぬことがあることは理解されるべきであり、
大略10゜好ましくは5゜以内の誤差に入っていれば目的
を達する。
As shown in FIG. 1, a preferred example of the spinneret used in the practice of the present invention is a spinneret having a concave surface and a spinning hole formed substantially perpendicular to the concave surface. In such a case, the dope stream is discharged almost perpendicularly to the spinneret surface, giving a more preferable embodiment in that the occurrence of sticking to the spinneret surface hardly occurs.
However, it should be understood that the spinning axis may not be completely perpendicular to the spinneret surface due to circumstances such as machining accuracy.
The objective is achieved if the error is within approximately 10 °, preferably within 5 °.

本発明の特徴とする上記の傾いた紡孔軸を持つ紡孔群
の効果がどのような原理に基ずくものであるかは十分解
明されるに至っていないが、一つには傾いた角度で液面
にドープ流が衝突することが界面張力の作用を弱めてい
るものと想像される。又、現象的には、各ドープ流が液
面に傾いて、それも流管の中心に集束する方向に傾いて
衝突する為に、液面を突破できずに液面を漂流するドー
プ流が発生した時でも、その漂流方向はドープ流群の中
心に向うものであり、且つ大きなドープ流れの運動エネ
ルギーがそのまゝ漂流速度となって漂流するドープ流が
一点に集束し、その流れの合流により液面を突破する場
合もある。同様に紡糸中に事故により部分的な糸条切断
が生じた際にも、たとえドープ流が液面を突破できずに
漂流したとしても、その漂流ドープは他の切断せず走行
しているドープ流の方向に急速に流れるもので、走行ド
ープ流に瞬時に合流し液面を突破してそのまゝ液中に導
かれるのである。
It has not been fully elucidated what principle the effect of the spinning group having the above-mentioned inclined spinning axis which is a feature of the present invention is based on. It is supposed that the collision of the dope flow with the liquid surface weakens the effect of the interfacial tension. Also, in terms of phenomena, each dope stream is inclined to the liquid surface, which also collides in the direction of converging at the center of the flow tube, so that the dope flow that can not break through the liquid surface and drifts on the liquid surface Even when generated, the drift direction is directed to the center of the dope flow group, and the kinetic energy of the large dope flow remains at the drift speed, and the dope flow drifting converges to one point, and the flows merge. May break through the liquid surface. Similarly, when a partial yarn break occurs due to an accident during spinning, even if the dope stream drifts without being able to break through the liquid surface, the drifting dope is not cut by another running dope. It flows rapidly in the direction of flow, instantaneously merges with the running dope flow, breaks through the liquid surface, and is then guided into the liquid.

尚、ドープ流が凝固液10の中で凝固しつつ走行し、流
管11を通じて凝固糸条14として引取られるに至ったとき
には、空気層8を走行するドープ流はもはや紡孔軸方向
を外れ、凝固液中を走行する糸条7とほゞ同一線上を、
紡孔から直線的に流管に向って走行することが多い。
Incidentally, when the dope flow runs while solidifying in the coagulating liquid 10 and is taken up as the coagulated yarn 14 through the flow tube 11, the dope flow traveling in the air layer 8 is no longer in the spinning axis direction, On the same line as the yarn 7 running in the coagulating liquid,
It often runs straight from the spinning hole toward the flow tube.

本発明を実施する上で、紡孔の大きさや形状は制限さ
れるものでないが、紡孔の直径は、少なくとも0.04mm以
上が好ましく、それ以下では、高速のドープ吐出により
孔詰りを生じやすく、又、孔の工作上も穿孔精度が悪く
問題が多い。又、紡孔経が大きすぎると、一孔当りのド
ープ吐出量が大きすぎ、高吐出線速に対応した高速引取
りにも限界がある為、単糸当りのデニールが過大とな
り、自ずと限界がある。通常は大略0.20mm以下、更に好
ましくは0.10mm程度以下に選定されることが多い。
In practicing the present invention, the size and shape of the spinning are not limited, but the diameter of the spinning is preferably at least 0.04 mm or more, and below that, hole clogging is likely to occur due to high-speed dope discharge, Also, there are many problems in drilling accuracy due to poor drilling accuracy. On the other hand, if the spinning diameter is too large, the dope discharge amount per hole is too large, and there is a limit in high-speed take-up corresponding to a high discharge linear speed, so the denier per single yarn becomes excessive, and the limit naturally occurs. is there. Usually, it is often selected to be about 0.20 mm or less, more preferably about 0.10 mm or less.

本発明に用いる紡糸口金は当然、上記吐出線速による
背圧に耐える強度設定が考慮されればよく、その他の材
質や形状等については何ら制限するものではない。紡孔
の形状も特に制限するものではなく、謂ゆる異形断面糸
を紡糸する為に円形以外の形状であってもよい。
Naturally, the spinneret used in the present invention only needs to consider the strength setting that can withstand the back pressure due to the above-mentioned discharge linear velocity, and other materials and shapes are not limited at all. The shape of the spinning hole is not particularly limited, and may be a shape other than a circle for spinning a so-called irregularly shaped yarn.

本発明を実施する上で、適用できる紡孔群を形成する
紡孔の数や、群の形や広さとしては、L0や、流管の口径
や形状、凝固液の流管への流入速度等により異なり、特
に制限されるものではない。しかし紡孔群の面積が過大
であれば、紡孔軸の交差角度が大きくなりすぎ、紡糸口
金の加工面で問題となる為、円周上に紡孔を配列する場
合には、最外周の紡孔配列円の径としては、紡糸口金面
から流管入口までの距離L0の3倍以下、好ましくはL0
2倍以下、さらに好ましくはL0以下、孔数としては1000
孔以下、好ましくは150孔以下に選ばれる。特別な場合
として、流管をスリット状にし、紡孔群の配列を数列の
直線上に配置して長方形とする場合でも、更に多くの紡
孔数であっても本発明の効果が発揮できる。
In practicing the present invention, and the number of紡孔forming the紡孔group that can be applied, as the shape and size of the group, the inflow of L 0 and, diameter and shape of the flow tube, into a coagulating liquid flow pipe It depends on the speed and the like, and is not particularly limited. However, if the area of the spinning group is too large, the crossing angle of the spinning axis becomes too large, which causes a problem in the processing surface of the spinneret. the diameter of紡孔sequence circle, three times the distance L 0 from the spinneret surface to the flow tube inlet less, preferably 2 times the L 0 or less, more preferably L 0 or less, as the number of holes 1000
The number of holes is selected to be not more than 150 holes. As a special case, the effect of the present invention can be exerted even when the flow tube is formed into a slit shape and the arrangement of the spinning groups is arranged in a straight line of several rows to form a rectangle, or even with a larger number of spinning holes.

本発明の流管を用いるエヤギャップ紡糸を実施する上
で、凝固液面9と流管11の入口の距離(L0)を適切に定
めることが必要である。
In carrying out the air gap spinning using the flow tube of the present invention, it is necessary to appropriately determine the distance (L 0 ) between the coagulating liquid surface 9 and the inlet of the flow tube 11.

L0が大であると、紡糸開始時又は紡糸中に発生する糸
条切断時に、前述の如く自動的に液面を突破して浴中に
導入された糸条が引続き流管入口に導びかれず、凝固液
10の部分に滞留しやすい。又、同時にL0が大であると走
行糸条7と凝固液10との接触が長くなり摩擦抵抗が増し
て糸条の切断等の問題を生じる。従ってL0は約40mm以
下、更に好ましくは30mm以下、特別な場合は15mm以下に
設定される。
When L 0 is large, the time of yarn cutting that occurs during the spinning start or spinning, the yarn is continued flow tube inlet is introduced into the bath by breaking through the automatic liquid level as described above Shirubebi No coagulation liquid
Easy to stay in part 10 At the same time, when L 0 is large, the contact between the traveling yarn 7 and the coagulating liquid 10 becomes longer, the frictional resistance increases, and problems such as cutting of the yarn occur. Thus L 0 is about 40mm or less, more preferably 30mm or less, a particular case is set to 15mm or less.

一方、L0が5mm以下では凝固液面に渦が発生しやす
く、液面が安定に保てない等の問題が生じ、好ましくな
い。
On the other hand, if L 0 is 5 mm or less, vortices are likely to be generated on the surface of the coagulating liquid, and the liquid level cannot be maintained stably, which is not preferable.

流管の入口は好ましくは、紡糸口金面に正対し、紡孔
群の中心から紡糸口金面に立てた垂直線上に位置するこ
とであるが、必らずしも正確にそれが守られなくとも本
発明の効果は期待できる。
The inlet of the flow tube is preferably located directly on the spinneret surface and on a vertical line from the center of the spinneret to the spinneret surface. The effects of the present invention can be expected.

本発明で言う流管とは、凝固浴から凝固しつつある糸
条を凝固液と共に流出させて取出す為の細管を総称して
おり、その内径、長さ、形状等については、何らの制限
もなく、用いるポリマー、ドープ性状、凝固機構等によ
り任意に最適のものが選ばれて良く、極端な場合は、凝
固浴に穿たれたオリフィスであっても良い。
The term “flow tube” as used in the present invention is a general term for a thin tube for taking out a thread that is coagulating from a coagulation bath together with a coagulating liquid, and has no restrictions on its inner diameter, length, shape, and the like. Instead, an optimum one may be arbitrarily selected depending on the polymer to be used, the properties of the dope, the coagulation mechanism, and the like. In an extreme case, an orifice formed in a coagulation bath may be used.

流管の特別なものとしては、前述の如く、紡孔群を長
方形状に配置し、流管をこれに対してスリット状にして
用いてもよい。
As a special type of the flow tube, as described above, the spinning group may be arranged in a rectangular shape, and the flow tube may be used in a slit shape.

本発明を実施する上で、流管から糸状の引取り速度や
流管を流れる凝固液の速度は特に制限されるものではな
いが、本発明の高い吐出線速や安定な紡糸性を活かすた
めには、引取り速度は高い方が好ましく、少なくとも20
0m/分以上、場合によっては、2000m/分といった高速度
の引取りも可能である。又、このような高速度で流管か
ら糸条を引取る上で、流管中での凝固糸条と凝固液の速
度差が過大であると、摩擦力により糸条に無用の変形を
生じ、繊維切断や物性低下の原因となり好ましくない。
通常この速度差は、200m/分以下、更には100m/以下に設
定されるのが好ましい。
In carrying out the present invention, the thread-like take-up speed from the flow tube and the speed of the coagulating liquid flowing through the flow tube are not particularly limited, but in order to take advantage of the high discharge linear speed and stable spinnability of the present invention. High take-off speed is preferred, at least 20
High-speed take-up such as 0 m / min or more, and in some cases, 2000 m / min is also possible. Also, when pulling the yarn from the flow tube at such a high speed, if the speed difference between the coagulated yarn and the coagulating liquid in the flow tube is excessive, unnecessary deformation of the yarn may occur due to frictional force. This is not preferable because it causes fiber cutting and deterioration of physical properties.
Usually, this speed difference is preferably set to 200 m / min or less, more preferably 100 m / min or less.

空気層の長さも、本発明を実施する上で制限されるも
のではないが、あまりに大きいと、空気層を走行するド
ープ流が不安定となり本発明の特徴とする液面突破効果
まで失なうことがある為、通常30mm以下、好ましくは20
mm以下に選ばれる。
The length of the air layer is not limited in practicing the present invention, but if it is too large, the dope flow traveling in the air layer becomes unstable and loses the liquid level breaking effect characteristic of the present invention. 30mm or less, preferably 20mm
mm or less.

本発明の流管式湿式紡糸を実施する上で、紡糸用ドー
プの組成は限定されるものではなく、本発明の必要とす
る条件が工業的に実施できるものであれば良いが、上記
の如く、従来の紡糸の概念からは異常とも言える吐出線
速故、紡糸口金の背圧が極めて高くなる為、高剪断速度
下に粘性抵抗が激減する構造粘性を有する光学的異方性
ドープ又は液晶ドープや、流動配向しやすい剛直鎖ポリ
マー又はウォーム(虫)ライク鎖ポリマーといわれるポ
リマーの溶液が好適である。
In carrying out the flow tube wet spinning of the present invention, the composition of the spinning dope is not limited, and it is sufficient that the conditions required for the present invention can be implemented industrially. Because of the linear discharge speed which can be said to be abnormal from the conventional spinning concept, the back pressure of the spinneret becomes extremely high, so that the viscous resistance decreases drastically under high shearing speed. Also, a solution of a polymer referred to as a rigid linear polymer or a worm (insect) -like polymer which is easily flow-oriented is preferable.

更に、同じ理由から、紡孔通過時の剪断速度下での見
掛けの粘度は、低い方が望ましく、好適には200ポアズ
以下であるが、それ以上であっても紡糸設備が十分な機
械強度をもって設計されていれば、本発明の実施は可能
である。
Further, for the same reason, the apparent viscosity under the shear rate at the time of passing through the spinning is desirably low, preferably 200 poise or less, but even if it is higher, the spinning equipment has sufficient mechanical strength. The implementation of the present invention is possible if designed.

これらの本発明の実施に好適なドープの例としては、
ポリパラフェニレンテレフタルアミド(以下PPTAと略
記)を濃硫酸に溶解した光学異方性ドープ(特公昭50−
8474号公報、特公昭59−14568号公報を参照)、セルロ
ース誘導体の光学異方性ドープ(特開昭52−96230号公
報)が挙げられる。
Examples of suitable dopes for practicing these inventions include:
Optically anisotropic dope prepared by dissolving polyparaphenylene terephthalamide (hereinafter abbreviated as PPTA) in concentrated sulfuric acid.
No. 8474, JP-B-59-14568) and optically anisotropic doping of cellulose derivatives (JP-A-52-96230).

更に光学異方性ドープではないが、セルロースを銅ア
ンモニア錯体溶液に溶解したドープ、N−メチルモルホ
リンオキサイド(以下NMMOと略称)と水の混合物に溶解
したドープ、セルローズザンテートのアリカリ水溶液の
ドープ(謂ゆるビスコースドープ)も、本発明の実施に
好適であり、中でも、ビスコースドープは粘度が低く、
極めて高い吐出線速度、例えば1000m/分以上まで安定に
吐出できる。又、NMMOと水のドープも、100℃前後まで
温度を高めて使用でき、吐出時の粘度を低めることがで
きる点で有利である。
Further, although not an optically anisotropic dope, a dope in which cellulose is dissolved in a copper ammonia complex solution, a dope in a mixture of N-methylmorpholine oxide (hereinafter abbreviated as NMMO) and water, and a dope with an aqueous solution of cellulose xanthate in alkali ( So-called viscose dope) is also suitable for the practice of the present invention, among which viscose dope has a low viscosity,
Discharge can be performed stably up to an extremely high discharge linear velocity, for example, 1000 m / min or more. In addition, NMMO and water dope can be used at elevated temperatures up to around 100 ° C., which is advantageous in that the viscosity at the time of discharge can be reduced.

本発明の方法により流管式湿式紡糸された糸条は、次
いで、各々のポリマーや糸条の性質、引出し速度に応じ
て任意の仕上げ工程に導かれ、繊維として完成される。
The flow tube wet-spun yarn according to the method of the present invention is then guided to an optional finishing step according to the properties of each polymer and the yarn and the drawing speed to be completed as a fiber.

例えば、PPTA他の光学異方性ドープから得られた凝固
糸条は、紡糸されたまゝで既に繊維構造が完成されてい
る為、既に本発明者らが提案した特公昭55−9088号公報
の如く、コンベア上に堆積させて、水洗、給油、乾燥す
る方法が適用可能である。又、ビスコースレーヨンに本
発明を適用した場合は、従来のセントル方式でケーク状
に一旦捲取った後精錬仕上げされても良く、又、本発明
の安定な紡糸性を活かして、ネルソンロール方式他の連
続式精錬−乾燥装置により仕上げ処理されることも好ま
しい。
For example, a coagulated yarn obtained from an optically anisotropic dope such as PPTA has already been completed in a fiber structure as it is spun, and therefore, Japanese Patent Publication No. 55-9908, which has already been proposed by the present inventors. As described above, a method of depositing on a conveyor, washing with water, refueling, and drying can be applied. Further, when the present invention is applied to viscose rayon, it may be refined after being once wound up in a cake shape by a conventional centrifugal method, and by taking advantage of the stable spinnability of the present invention, a Nelson roll method. It is also preferable that the finishing treatment is performed by another continuous refining-drying device.

〔発明の作用〕[Function of the invention]

本発明のエヤギャップ紡糸の特徴とするところは、流
管紡糸法を併用して高速紡糸に適したものとし、更に最
も特徴とするところは、紡糸口金として、その紡孔の紡
孔軸が流管の中心線上であって、凝固浴面から流管入口
までの距離は(L0)の中間点と、流管入口からL0だけ流
管出口方向に離れた点との間の一点で交差する如く穿孔
されたものを用い、且つドープを350m/分以上の高速度
で吐出させることであり、このような超高速度で噴出的
に吐出されたドープは、それ自体の運動エネルギーによ
り紡糸口金面のドープ剥離力に勝り、これまでのエヤギ
ャップ紡糸で問題であった紡糸口金面へのドープの粘着
という問題が発生しない。更に、ドープ流が紡孔軸に沿
って噴出され、凝固液面に傾いた角度で大きなエネルギ
ーで衝突する為に凝固液面に漂流することなく、ただち
に凝固液中に自動的に浸入し、液中でも拡散することな
く集束状態で流管に達する。
The feature of the air gap spinning of the present invention is that it is suitable for high-speed spinning in combination with the flow tube spinning method, and the most characteristic feature is that the spinning axis of the spinning nozzle is a flow tube. And the distance from the coagulation bath surface to the inlet of the flow tube intersects at a point between the midpoint of (L 0 ) and the point separated from the inlet of the flow tube by L 0 in the direction of the outlet of the flow tube. The dope discharged as described above is used, and the dope is discharged at a high speed of 350 m / min or more. And the problem of dope sticking to the spinneret, which has been a problem in the conventional air gap spinning, does not occur. Furthermore, the dope stream is jetted out along the spinning axis and immediately enters the coagulation liquid immediately without drifting to the coagulation liquid surface because it collides with the coagulating liquid surface at a large angle at an inclined angle. Above all, it reaches the flow tube in a focused state without diffusion.

流管入口が上記の如く適切に設定されており、この条
糸は自動的に流管を通って凝固液と共に流出する。
The inlet of the flow tube is appropriately set as described above, and the yarn automatically flows out with the coagulating liquid through the flow tube.

このように円滑に紡糸開始が自動的に行え、又紡糸中
に事故的に発生する部分なドープ流の切断に対しても、
自動的に紡糸が復旧される為、これまでエヤギャップ紡
糸の問題とされた操業率の低さが解消できる。
In this way, the spinning can be started automatically and smoothly, and even for the cutting of the dope stream that is accidentally generated during spinning,
Since the spinning is automatically restored, the low operating rate, which has been a problem of the air gap spinning, can be solved.

〔実施例〕〔Example〕

以下に実施例をもって本発明の実施態様の一例を例示
するが、例中特に断わらぬ限り、百分率は重量によるも
のである。
Hereinafter, examples of embodiments of the present invention will be described by way of examples. In the examples, percentages are by weight unless otherwise specified.

実施例1 下記条件で低温溶液重合法によりPPTAポリマーを得
た。
Example 1 A PPTA polymer was obtained by a low-temperature solution polymerization method under the following conditions.

特公昭53−43986号公報に示された重合装置中でN−
メチルピロリドン1000部に無水塩化カルシウム70部を溶
解し、次いでパラフェニレンジアミン48.6部を溶解し
た。8℃に冷却した後、テレフタル酸ジクロライド91.4
部を粉末状で一度に加えた。数分後に重合反応物はチー
ズ状に固化したので、特公昭53−43986号公報記載の方
法にしたがって重合装置より重合反応物を排出し、直ち
に2軸の密閉型ニーダーに移し、同ニーダー中で重合反
応物を微粉砕した。次に微粉砕物をヘンシェルミキサー
中に移し、ほぼ等量の水を加えてさらに粉砕した後、濾
過し、数回温水中で洗浄して、110℃の熱風中で乾燥し
た。98.5%硫酸中、0.2g/100mlの濃度で30℃にて測定し
たηinhが6.2の淡黄色のPPTAポリマー95部を得た。
In a polymerization apparatus disclosed in JP-B-53-43986, N-
70 parts of anhydrous calcium chloride was dissolved in 1000 parts of methylpyrrolidone, and then 48.6 parts of paraphenylenediamine were dissolved. After cooling to 8 ° C, terephthalic acid dichloride 91.4
Parts were added at once in powder form. After a few minutes, the polymerization reaction product was solidified into a cheese, and the polymerization reaction product was discharged from the polymerization apparatus in accordance with the method described in JP-B-53-43986. The polymerization reaction product was pulverized. Next, the finely pulverized product was transferred into a Henschel mixer, added with an approximately equal amount of water, further pulverized, filtered, washed several times in warm water, and dried in hot air at 110 ° C. 95 parts of a pale yellow PPTA polymer having a η inh of 6.2 measured at 30 ° C at a concentration of 0.2 g / 100 ml in 98.5% sulfuric acid was obtained.

得られたPPTAポリマーを99.8%濃硫酸ポリマー濃度が
19%となるように、70℃で2時間かけて溶解した。溶解
は真空中で行い、溶解に次いで2時間真空下に静置脱泡
し、光学異方性ドープを調整した。尚、光学異方性は偏
光顕微鏡のクロスニコル下の暗視野が、ドープのプレパ
ラートにより明視野化することで確認した。
99.8% concentrated sulfuric acid polymer concentration obtained PPTA polymer
The solution was dissolved at 70 ° C. for 2 hours so that the concentration became 19%. The dissolution was carried out in a vacuum, and after the dissolution, the mixture was allowed to stand under vacuum for 2 hours to remove bubbles, thereby adjusting the optically anisotropic dope. The optical anisotropy was confirmed by making the dark field under crossed Nicols of a polarizing microscope a bright field with a dope preparation.

このドープをSUS316ステンレス鋼の焼結不織布の5μ
mまで排除保証のフィルターで濾過した後、タンタル製
で、紡糸口金面が第2図の如く周辺部が162゜の角度を
成す斜面となるように凹面に加工され、その斜面に直径
8mmの円周上に0.045mmの直径の紡孔が25個、ほゞ紡糸口
金面にその紡糸軸が垂直となるように穿孔されており、
紡孔軸は紡糸口金から25mmの点で交差する紡糸口金を通
じて、吐出線速400m/分で15mmので空気層に吐出した。
This dope is 5μ of sintered SUS316 stainless steel non-woven fabric.
After filtering through a filter that guarantees exclusion up to m, it is made of tantalum, and the spinneret surface is processed into a concave surface so that the peripheral part has a slope of 162 ° as shown in FIG.
Twenty-five 0.045 mm diameter spinning holes are drilled on the circumference of 8 mm, and the spinning axis is perpendicular to the surface of the spinneret,
The spinning axis was discharged to the air layer at a discharge linear speed of 400 m / min at a speed of 15 mm through a spinneret intersecting at a point 25 mm from the spinneret.

紡糸浴としては、第2図の如く、特開昭59−1573156
号公報記載の流管11の出口に減圧室16を設け、ノズル17
aを通じて該室内を減圧に吸引し、ノズル17bにて室内に
溜る凝固液を吸引排出し、室下部に設けたオリフィス18
を通して糸条を引出す装置を用いた。
As a spinning bath, as shown in FIG.
A pressure reducing chamber 16 is provided at the outlet of the flow tube 11 described in
The chamber is suctioned to a reduced pressure through a, and the coagulating liquid remaining in the chamber is suctioned and discharged by a nozzle 17b, and an orifice 18 provided at the lower part of the chamber is sucked and discharged.
A device for pulling out the yarn through the device was used.

ここで、凝固液面と流管入口の距離L0は15mmで、凝固
液としては30℃の20%濃硫酸を用いた。
Here, in the coagulation liquid surface and the flow tube inlet of the distance L 0 is 15 mm, as the coagulating solution with 20% concentrated sulfuric acid 30 ° C..

流管11は、15mmの直径のガラス管の一端を円錘形に絞
り、その先端に直径約1mm、長さ約1mmのオリフィスを穿
ったものを、オリフィス部が紡糸浴中に挿入される如く
設置した。
The flow tube 11 is obtained by squeezing one end of a glass tube having a diameter of 15 mm into a conical shape, and piercing an orifice having a diameter of about 1 mm and a length of about 1 mm at its tip so that the orifice portion is inserted into the spinning bath. installed.

減圧室16を減圧にし、オリフィスから減圧室に流入す
る凝固液のオリフィス部線速を950m/分となるように調
整し、紡糸を開始した。
The pressure in the decompression chamber 16 was reduced, and the linear velocity of the orifice portion of the coagulating liquid flowing from the orifice into the decompression chamber was adjusted to 950 m / min, and spinning was started.

紡糸を開始すると同時に紡孔からドープ流が勢いよく
噴出され、紡孔軸に沿って円錘を形成する如く空気層を
走行し、瞬間的に液面を突破して流管に吸込まれて糸立
てが自動的に完了した。
Simultaneously with the start of spinning, a dope flow is spouted from the spinning vigorously and travels through the air layer so as to form a cone along the spinning axis. The stand was completed automatically.

次いで減圧室16から下部オリフィス18を通じて凝固糸
条を1000m/分の速度で引出した。
Next, the coagulated yarn was drawn out from the decompression chamber 16 through the lower orifice 18 at a speed of 1000 m / min.

引出された凝固糸条は、特公昭55−9088号公報に記載
の如く、ステンレス鋼針金の平織金網の無端ベルトより
なるコンベア上に糸山状に堆積された状態で、1%水酸
化ナトリウム水溶液で中和され、次いで水洗、給油され
た後、乾燥され、コンベア上から引取られ、巻き取られ
た。
As described in JP-B-55-9088, the drawn coagulated yarn is piled up on a conveyor consisting of an endless belt of a flat woven wire mesh made of stainless steel wire, and is then piled up with a 1% aqueous sodium hydroxide solution. After being neutralized and then washed with water and refueled, it was dried, taken up on a conveyor, and wound up.

得られたPPTA繊維は、ヤーンデニールが85デニール、
強度23.7g/d、伸度5.2%、初期モジュラス375g/dであっ
た。
The obtained PPTA fiber has a yarn denier of 85 denier,
The strength was 23.7 g / d, the elongation was 5.2%, and the initial modulus was 375 g / d.

尚、紡糸を開始した後、最後の約30分の間、スピンパ
ック内のドープの置換不良によると思われる吐出ドープ
流への空気の混入が見られ、単糸切断を十数回生じた
が、その都度自動的にドープ流は液面を突破し、他の糸
条と共に流管及び下部オリフィスを通過し、紡糸を中断
すべき故障には至らなかった。
During the last about 30 minutes after the start of the spinning, air was mixed into the discharged dope stream, which was considered to be due to poor replacement of the dope in the spin pack. In each case, the dope flow automatically broke through the liquid surface, passed through the flow tube and the lower orifice together with other yarns, and did not result in a failure in which spinning was interrupted.

比較例1 紡糸口金を、紡糸口金面が平坦で、紡孔軸が該口金面
に垂直に互いに平行に穿孔されている従来のものに変え
た他は実施例1と同一の条件で紡糸を行った。
Comparative Example 1 Spinning was performed under the same conditions as in Example 1 except that the spinneret was changed to a conventional spinneret having a flat spinneret surface and a spinning axis perforated perpendicular to the spinneret surface and parallel to each other. Was.

先ず紡糸開始に当っては、ドープ流は一部は液面を突
破したものの、大半は液面を漂い、次いで突破した一部
の糸条と共に流管に引込まれた為、流管入口を漂流して
いた糸条塊が閉塞し、糸立てできなかった。
First, at the start of spinning, the dope flow partially broke through the liquid surface, but most of it drifted off the liquid surface, and was then drawn into the flow tube along with some of the broken yarn, so it drifted at the inlet of the flow tube. The lump that had been clogged was clogged, and the thread could not be threaded.

次いで人手によって全ての糸条を流管に通し、下部オ
リフィスを通過させ、ネットコンベアに導き、糸条を巻
き取った。
Next, all the yarns were manually passed through a flow tube, passed through a lower orifice, guided to a net conveyor, and wound up.

実施例1と同様に、紡糸開始後はドープ流に空気の混
入があり、単糸切断が生じ、その結果単糸切断部のドー
プ流が液面を漂い、その後他の糸条に巻き込まれて流管
に導かれる現象が観察された。巻き込まれた糸条が塊状
となって流管を閉塞することで、紡糸の継続が不可能と
なった。
As in Example 1, after the start of spinning, air was mixed in the dope stream, and single yarn was cut. As a result, the dope flow of the single yarn cut portion drifted on the liquid surface, and was subsequently caught by another yarn. A phenomenon leading to the flow tube was observed. The entangled yarn became clumped and blocked the flow tube, so that spinning could not be continued.

実施例2 レーヨンに用いられる溶解用針葉樹パルプを稀硫酸に
浸漬して加水分解し、銅−アンモニア液によるηinhか
ら算出した平均重合度330のセルロースを、水酸化ナト
リウムを触媒としてアクリロニトリルと反応させ、置換
度が2.62のシアノエチルセルロース(CyEC)に誘導し
た。
Example 2 Softwood pulp for dissolution used for rayon was immersed in dilute sulfuric acid and hydrolyzed, and cellulose having an average degree of polymerization of 330 calculated from ηinh by a copper-ammonia solution was reacted with acrylonitrile using sodium hydroxide as a catalyst. The degree of substitution was induced to 2.62 cyanoethylcellulose (CyEC).

このCyECを予じめ尿素により亜硝酸根を除去された75
%硝酸に0℃で、30%となるよう溶解して得た光学異方
性ドープを第2図の装置を用いて紡糸を行った。
Nitrite was removed by urea in advance of this CyEC.
An optically anisotropic dope obtained by dissolving in 30% nitric acid at 0 ° C. to give a concentration of 30% was spun using the apparatus shown in FIG.

紡糸口金にステンレス鋼製であって、紡孔配列円の直
径が9mmと5mmの二重同心円配列で且つ0.055mmの紡孔が4
0孔配置されており、平坦な紡糸口金面にその紡孔軸が
紡糸口金面から25mmの点で交差するよう穿孔されている
ものを用い、吐出線速度を350m/分として吐出させた。
凝固液としては5℃の水を用い、空気層を10mm、液面と
流管の距離を25mmとした。流管は内径が1mmのガラス管
を50mmに切断したものを用い、凝固液が775m/分で流出
するように減圧室の排気を調整した。
The spinneret is made of stainless steel, and the diameter of the spinning array circle is 9 mm and 5 mm.
A hole having 0 holes was used, and a flat spinneret was perforated so that its spinning axis intersected at a point 25 mm from the surface of the spinneret, and discharge was performed at a discharge linear velocity of 350 m / min.
5 ° C. water was used as the coagulating liquid, the air layer was 10 mm, and the distance between the liquid surface and the flow tube was 25 mm. As the flow tube, a glass tube having an inner diameter of 1 mm cut into 50 mm was used, and the evacuation of the decompression chamber was adjusted so that the coagulating liquid flowed out at 775 m / min.

紡糸開始時も、糸切れ時も、いずれも実施例1同様の
極めて容易な液面通過製と流管へのドープの流入による
糸状引出しが確認された。
At both the start of the spinning and the breakage of the yarn, it was confirmed that the production of the liquid was extremely easy as in Example 1 and that the yarn was drawn out due to the dope flowing into the flow tube.

引出された繊維を、ステンレス製のボビン上に巻き取
り、ボビンのまゝ終夜流水に浸漬して洗浄し、次いでエ
ヤオーブン中で乾燥し、6.0g/dの強度、5.1%の伸度のC
yEC繊維を得た。
The drawn fiber is wound on a stainless steel bobbin, washed by immersing the bobbin in running water overnight, and then dried in an air oven to obtain 6.0 g / d strength, 5.1% elongation C.
yEC fiber was obtained.

比較例2 紡糸口金として、通常の紡孔軸が平行である他は実施
例2と同様の設計のものを用い、その他の条件は実施例
2と同一条件で紡糸を行った。
Comparative Example 2 A spinneret having the same design as in Example 2 was used except that the normal spinning axis was parallel, and spinning was performed under the same conditions as in Example 2.

この比較例では、吐出されたドープは、凝固液面に漂
流して容易には液中に導入されず、紡糸開始に手間取る
という操作上の問題が発生した。
In this comparative example, the discharged dope drifted to the surface of the coagulating liquid, was not easily introduced into the liquid, and caused an operational problem that it took time to start spinning.

実施例3、比較例3 通常のビスコース(水酸化ナトリウム6%、セルロー
ス8.5%、γ価40、粘度50秒)を、硫酸120g/、硫酸ナ
トリウム260g/、硫酸亜鉛15g/を含む凝固液中にエ
ャギャップ紡糸した。
Example 3 and Comparative Example 3 Ordinary viscose (sodium hydroxide 6%, cellulose 8.5%, γ value 40, viscosity 50 seconds) was added to a coagulation liquid containing sulfuric acid 120g / sodium sulfate 260g / zinc sulfate 15g /. Was spun.

本実施例では紡糸浴としては第1図のものを用い、紡
糸口金としては、ほゞ球面を形成する凹面の紡糸口金面
に、0.05mmの直径の紡孔がその軸を紡糸口金面から20mm
の点で交差する如く33個穿孔された金−白金含金製のも
のとし、空気層を5mm、液面と流管の距離を8mmに設定し
た。
In this embodiment, the spinning bath shown in FIG. 1 is used. As the spinneret, a hole having a diameter of 0.05 mm is formed on the concave surface of the concave spinneret forming a substantially spherical surface by 20 mm from the axis of the spinneret.
Were made of gold-platinum-containing gold perforated so as to intersect at point 3, the air layer was set to 5 mm, and the distance between the liquid surface and the flow tube was set to 8 mm.

流管は内径1.5mmのガラス管を40mmに切断して用い、
凝固液を600m/分の速度で該流管を通過するように供給
した。
The flow tube is a glass tube with an inner diameter of 1.5 mm cut into 40 mm and used.
The coagulation liquid was supplied at a speed of 600 m / min so as to pass through the flow tube.

800m/分の吐出線速でビスコースを吐出したところ、
全く問題なく液面を突破し、流管から自動的に流れ出し
た。
When viscose was discharged at a discharge linear speed of 800 m / min,
It broke through the liquid surface without any problems and flowed out of the flow tube automatically.

この糸条を600m/分で紡糸浴から引出し、凝固液と共
に空間を落下させ、次いでガイドを経て引取りロールに
導き、ネットコンベア上に堆積して精錬、水洗、乾燥
し、巻取った。尚、流管を出てから引取りロールの間で
約40%の伸長が生じており、引取りロールで850m/分で
引取ることができた。
The yarn was drawn out of the spinning bath at 600 m / min, dropped in the space together with the coagulating liquid, then guided to a take-up roll via a guide, deposited on a net conveyor, refined, washed with water, dried and wound up. In addition, the elongation of about 40% occurred between the take-off rolls after leaving the flow tube, and the take-up rolls could take off at 850 m / min.

得られた繊維は、75デニール、強度1.71g/d、伸度21.
7%であり、通常のビスコースレーヨンの数倍の速度で
紡糸したにも関わらず、ケーク糸と遜色ない物性を示し
た。
The obtained fiber is 75 denier, strength 1.71 g / d, elongation 21.
It was 7%, and showed physical properties comparable to cake yarn, despite being spun at several times the speed of ordinary viscose rayon.

一方比較の為、吐出線速を200m/分に低めて紡糸を開
始したところ、吐出されたビスコース流が液面にたま
り、流管入口を閉塞する為、紡糸が不可能であり、ビス
コースドープの凝固繊維が弱いため、人手による流管へ
の糸通しも不可能であり、紡糸を断念した。
On the other hand, for comparison, when the spinning speed was reduced to 200 m / min and spinning was started, the spouted viscose flow accumulated on the liquid surface and blocked the inlet of the flow tube, making spinning impossible. Since the coagulated fiber of the dope was weak, it was impossible to manually thread the fiber into the flow tube, and spinning was abandoned.

〔発明の効果〕〔The invention's effect〕

本発明によれば、高速紡糸に適したエヤギャップ紡糸
と流管式紡糸を組合せた湿式紡糸が、極めて容易に紡糸
を開始できる上、紡糸中の事故による単糸切断発生時も
自動的に糸条がつながりつつ紡糸が安定に継続するとい
う利点が提供され、湿式紡糸の生産性を高める上で有用
である。
According to the present invention, wet spinning combining air gap spinning and flow tube spinning suitable for high-speed spinning can start spinning very easily, and automatically even when a single yarn break occurs due to an accident during spinning. This is advantageous in that the spinning is stably continued while the spinning is connected, and the productivity of wet spinning is increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の方法を実施するための装置
の一例を示す縦断面図である。 2……スピンパック、3……紡糸口金、 7……凝固糸条、8……空気層、 9……凝固液面、10……凝固液、 11……流管、12……紡糸浴、 14……凝固糸条、16……減圧室、 18……下部オリフィス。
1 and 2 are longitudinal sectional views showing an example of an apparatus for performing the method of the present invention. 2 ... Spin pack, 3 ... Spinner, 7 ... Coagulated yarn, 8 ... Air layer, 9 ... Coagulated liquid surface, 10 ... Coagulated liquid, 11 ... Flow tube, 12 ... Spinning bath, 14 ... coagulated thread, 16 ... decompression chamber, 18 ... lower orifice.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】紡糸口金より紡糸ドープを一旦空気中に押
出し、次いで該ドープ流を凝固液中に導いて紡糸するエ
ヤギャップ紡糸法において、凝固された糸条を流管を通
じて凝固液と共に紡糸浴から引出し、該流管の入口を凝
固液面から5mm乃至40mmの距離に位置させ、紡糸口金と
してその紡孔軸が流管の中心線上であって、凝固液面か
ら流管入口までの距離(L0)の中間点と、流管入口から
L0だけ流管出口方向に離れた点との間の一点で交差する
如く穿孔されたものを用い、更に紡糸ドープを該紡孔か
ら350m/分以上の吐出線速で吐出することを特徴とする
エヤギャップ紡糸法。
In an air gap spinning method in which a spinning dope is once extruded into the air from a spinneret and then the dope stream is introduced into a coagulating liquid and spun, the coagulated yarn is passed from a spinning bath together with the coagulating liquid through a flow tube. Withdrawing, the inlet of the flow tube is positioned at a distance of 5 mm to 40 mm from the surface of the coagulating liquid, and the spinning axis of the spinneret is on the center line of the flow tube, and the distance from the surface of the coagulating liquid to the inlet of the flow tube (L 0 ) from the midpoint and from the inlet of the flow tube
I used those as perforated intersect at a point between the point separated only flow tube exit direction L 0, and characterized in that for discharging further spinning dope at 350 meters / minute or more discharge linear velocity from該紡hole Air gap spinning method.
【請求項2】紡糸口金面が凹面であり、紡孔が該紡糸口
金面にほゞ垂直に穿孔された紡糸口金を用いることを特
徴とする特許請求の範囲第1項記載のエヤギャップ紡糸
法。
2. The air gap spinning method according to claim 1, wherein the spinneret surface is concave, and the spinneret is formed by using a spinneret perforated substantially perpendicular to the spinneret surface.
【請求項3】紡糸ドープがポリパラフェニレンテレフタ
ルアミドの光学異方性ドープである特許請求の範囲第1
項又は第2項記載のエヤギャップ紡糸法。
3. The spin dope is an optically anisotropic dope of polyparaphenylene terephthalamide.
Item 3. The air gap spinning method according to item 2 or 2.
【請求項4】紡糸ドープがセルロール誘導体の光学異方
性ドープである特許請求の範囲第1項又は第2項記載の
エヤギャップ紡糸法。
4. The air gap spinning method according to claim 1, wherein the spinning dope is an optically anisotropic dope of a cellulose derivative.
【請求項5】紡糸ドープがセルロースザンテートのアル
カリ水溶液ドープ、セルロースの銅アンモニア錯体溶液
ドープ、セルロースのN−メチルモルホリンオキサイド
と水の混合物ドープのいずれかである特許請求の範囲第
1項又は第2項記載のエヤギャップ紡糸法。
5. The dope according to claim 1, wherein the spinning dope is selected from the group consisting of an alkali aqueous solution dope of cellulose xanthate, a copper ammonia complex solution dope of cellulose, and a mixture dope of N-methylmorpholine oxide and water of cellulose. 3. The air gap spinning method according to claim 2.
JP62268058A 1987-10-26 1987-10-26 Air gap spinning method Expired - Lifetime JP2648154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268058A JP2648154B2 (en) 1987-10-26 1987-10-26 Air gap spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268058A JP2648154B2 (en) 1987-10-26 1987-10-26 Air gap spinning method

Publications (2)

Publication Number Publication Date
JPH01111005A JPH01111005A (en) 1989-04-27
JP2648154B2 true JP2648154B2 (en) 1997-08-27

Family

ID=17453303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268058A Expired - Lifetime JP2648154B2 (en) 1987-10-26 1987-10-26 Air gap spinning method

Country Status (1)

Country Link
JP (1) JP2648154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138519B2 (en) 2003-02-10 2008-08-27 本田技研工業株式会社 Stabilizer support structure
EP2260131B1 (en) * 2008-03-31 2012-08-08 Kolon Industries, Inc Para-aramid fiber and method of preparing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078034A (en) * 1976-12-21 1978-03-07 E. I. Du Pont De Nemours And Company Air gage spinning process
JPS5761708A (en) * 1980-10-02 1982-04-14 Tanaka Kikinzoku Kogyo Kk Spinneret

Also Published As

Publication number Publication date
JPH01111005A (en) 1989-04-27

Similar Documents

Publication Publication Date Title
SK279852B6 (en) Process for the production of cellulosic articles
JP2004211277A (en) Lyocell multifilament for tire cord and method of producing the same
KR20000068304A (en) Lyocell fibers and process for their preparation
JP3888645B2 (en) Method for producing high-strength aramid fiber
SK104496A3 (en) Spinning device
KR100492069B1 (en) Process and device for the transport of continuous moldings without tensile stress
JP4598607B2 (en) Dry-wet spinning method and apparatus
JP4593370B2 (en) Dry and wet spinning equipment
KR100486812B1 (en) Lyocell multi-filament for tire cord and process for preparing the same
JP2648154B2 (en) Air gap spinning method
JP2603971B2 (en) Flow tube wet spinning method
JPS585283B2 (en) Gokusaisen Ishiyuugoutai Oyobi Sonoseizouhouhou Narabini Seizou Souchi
JPS6122042B2 (en)
JP2817812B2 (en) Method for spinning high strength, high modulus aromatic polyamide
JPS61102413A (en) Production of poly-paraphenylene terephthalamide yarn
JP2648155B2 (en) Flow tube wet spinning method with excellent stability
JP2003531313A (en) Melt blow method using mechanical thinning
JPH07268718A (en) Method for wet spinning regenerated cellulosic fiber
US5853640A (en) Process for making high tenacity aramid fibers
KR100488607B1 (en) Spinneret and quenching apparatus for lyocell multifilament
JPS6065110A (en) Production of poly-p-phenylene terephthalamide fiber
JP3338168B2 (en) Wet spinning method
KR100540042B1 (en) Quenching apparatus for preparing Lyocell multi-filament
JP2001316934A (en) Method for producing solvent spun cellulose fiber
JPH09291413A (en) Surface fibrillated fiber, fibril-containing split fiber obtained therefrom and their production