JP2647482B2 - Sealing treatment method for ceramic spray coating - Google Patents

Sealing treatment method for ceramic spray coating

Info

Publication number
JP2647482B2
JP2647482B2 JP1033782A JP3378289A JP2647482B2 JP 2647482 B2 JP2647482 B2 JP 2647482B2 JP 1033782 A JP1033782 A JP 1033782A JP 3378289 A JP3378289 A JP 3378289A JP 2647482 B2 JP2647482 B2 JP 2647482B2
Authority
JP
Japan
Prior art keywords
monomer
ceramic
pores
sprayed
runner vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1033782A
Other languages
Japanese (ja)
Other versions
JPH02213458A (en
Inventor
吉之助 村田
静夫 澤
公一 風間
繁夫 長谷川
治男 北村
長太郎 西田
東三 谷守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP1033782A priority Critical patent/JP2647482B2/en
Publication of JPH02213458A publication Critical patent/JPH02213458A/en
Application granted granted Critical
Publication of JP2647482B2 publication Critical patent/JP2647482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸流ファン翼、コンプレツサ翼などの可動翼
ポンプのランナベーンの製作に有利に適用することがで
きるセラミック溶射皮膜の封孔処理方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sealing a ceramic sprayed coating that can be advantageously applied to the production of runner vanes for movable blade pumps such as axial fan blades and compressor blades. .

〔従来の技術〕[Conventional technology]

セラミツクの溶射材は耐摩耗性に優れた材料であり、
最近各種製品に利用されている。
Ceramic spray material is a material with excellent wear resistance.
Recently used for various products.

例えば、最近可動翼ポンプは流体輸送の負荷変動追従
制御運転が容易に行える特徴を活かして多用されるよう
になつてきているが、土砂、アツシユ、その他化合物の
結晶を含むスラリ溶液の輸送において、可動翼が激しく
摩耗する問題をしばしば生じている。このため、従来か
ら耐摩耗性及び耐食性に優れた材料の選定が強く望まれ
ているが、耐摩耗性に優れた材料が必ずしも耐食性を満
足せず、逆に耐食性に選れた材料が耐摩耗性を満足しな
いといつた環境も多く、腐食、摩耗の問題が解決されて
いなのが現状状である。一方、耐摩耗性を満足しなかつ
た材料の接液部の表面にセラミツク溶射を施こし、耐摩
耗性を改善するといつた方法が提案されている。
For example, recently, movable blade pumps have come to be frequently used by taking advantage of the feature that the load fluctuation follow-up control operation of fluid transportation can be easily performed.In the transportation of slurry solution containing crystals of earth and sand, ash, and other compounds, The problem often arises that the movable wing is severely worn. For this reason, it has been strongly desired to select a material having excellent wear resistance and corrosion resistance. However, a material having excellent wear resistance does not always satisfy the corrosion resistance. Unless the properties are satisfied, there are many environments where the problems of corrosion and wear have not been solved. On the other hand, there has been proposed a method of improving the wear resistance by applying a ceramic spray to the surface of the liquid contact portion of a material which does not satisfy the wear resistance.

しかしながら、現状開発されている溶射技術では無細
孔の皮膜が得られず、耐食性が要求される製品への応用
が阻れている。これを解決するため、従来から溶射皮膜
に生じた細孔を封じる、謂ゆる封孔処理方法が提案され
ている。
However, the currently developed thermal spraying technique does not provide a non-porous coating, which hinders application to products that require corrosion resistance. In order to solve this problem, a so-called so-called sealing treatment method for sealing pores formed in the thermal spray coating has been proposed.

従来、提案されている封孔処理方法はエポキシ樹脂、
ポリエステル系樹脂、シリコーン系樹脂などの熱硬化性
樹脂又はアクリル樹脂、酢酸ビニル樹脂のエマルジヨン
を塗布する方法あるいはそれらの樹脂を希釈した溶液に
浸漬して含浸させる方法がある。
Conventionally, the sealing method proposed is epoxy resin,
There is a method of applying a thermosetting resin such as a polyester resin or a silicone resin or an emulsion of an acrylic resin or a vinyl acetate resin, or a method of dipping and impregnating such a resin in a diluted solution.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の樹脂溶液の塗布あるいは含浸させる方法におい
て、樹脂の希釈率を小さくした場合は溶液の粘度が高く
なるため溶射皮膜の細孔内に入りにくく、溶射層の極く
表層を覆つているだけの状態になり易く、又、逆に希釈
率を大きくした場合には細孔の奥深くまで入り易くなる
が、乾燥により溶液が揮散後は細孔内は再び穴ができ、
細孔内全体を樹脂で埋めた状態にはなり難しい。そのた
め、封孔処理をしたセラミツク溶射材であつても、水溶
液と接触する環境では溶射セラミツクと母材との界面が
腐食され、可動翼ポンプのランナベーンのように長期耐
久性が要求される製品には適用し難いという問題があっ
た。
In the conventional method of applying or impregnating a resin solution, when the dilution ratio of the resin is reduced, the viscosity of the solution increases, so that it is difficult to enter the pores of the thermal spray coating, and only covers the very surface layer of the thermal spray layer. It is easy to be in a state, and conversely, when the dilution rate is increased, it is easy to enter deep into the pores, but after the solution is volatilized by drying, holes are formed again in the pores,
It is difficult to fill the entire pores with resin. Therefore, even if the ceramic sprayed material is sealed, the interface between the sprayed ceramic and the base material will be corroded in an environment that comes into contact with the aqueous solution, making it a product that requires long-term durability, such as a runner vane for a movable blade pump. Is difficult to apply.

本発明は上記技術水準に鑑み、セラミツク溶射材の封
孔処理方法における従来の欠点を解消し、可動翼ポンプ
のランナベーンの表面に形成されたセラミック溶射皮膜
の細孔を完全に樹脂で封じ込め、腐食性液体の浸透を防
止できる耐食性に優れた封孔処理方法を提供しようとす
るものである。
In view of the above technical level, the present invention solves the conventional drawbacks in the method for sealing a ceramic sprayed material, completely encloses the pores of the ceramic sprayed coating formed on the surface of the runner vane of the movable blade pump with resin, and performs corrosion. An object of the present invention is to provide a sealing treatment method which is capable of preventing the penetration of an ionic liquid and has excellent corrosion resistance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、可動翼ポンプのランナベーンの表面に形成
されたセラミック溶射皮膜の封孔処理を行うに際し、 該セラミック溶射皮膜が形成されたランナベーンを加
温しながら減圧乾燥する第一工程、 減圧を保持した状態で、モノマーをフラツシユさせて
該溶射皮膜の細孔にモノマーを吸着させる第二工程、 減圧状態を保持した状態で、モノマーに重合触媒を混
合した溶液を該溶射皮膜の細孔内に含浸させる第三工
程、 前記モノマーに重合触媒を混合した溶液を含浸した溶
射皮膜のモノマーを、モノマー蒸気が温度、圧力に対し
て平衡な分圧下において重合させる第四工程 からなることを特徴とするセラミック溶射皮膜の封孔処
理方法である。
The present invention provides a first step of drying the reduced pressure while heating the runner vane on which the ceramic sprayed coating is formed when sealing the sprayed ceramic coating formed on the surface of the runner vane of the movable blade pump. A second step of flashing the monomer and adsorbing the monomer into the pores of the sprayed coating in the state of being sprayed, impregnating the pores of the sprayed coating with a solution obtained by mixing the polymerization catalyst with the monomer while maintaining the reduced pressure state A third step of polymerizing the monomer of the thermal spray coating impregnated with the solution obtained by mixing the monomer with a polymerization catalyst under a partial pressure in which the monomer vapor is balanced with respect to temperature and pressure. This is a method for sealing the thermal spray coating.

本発明におけるセラミツク溶射材としては、アルミ
ナ、タングステンカーバイド、ジルコニア、チタニアな
ど多くの耐摩耗性に優れたセラミツク材ならば何でも使
用できる。またモノマーとしてはスチレン、メチルメタ
アクリレートなど多くのものが使用でき、重合触媒とし
てもベンゾイルパーオキサイド、パークミルパーオキサ
イドなど多くの有機過酸化物が使用できる。なお重合触
媒の混合量は製品の種類によつて任意に選定できるが、
好ましくは0.5〜5.0wt%の範囲の量で使用される。
As the ceramic sprayed material in the present invention, any ceramic material having excellent wear resistance, such as alumina, tungsten carbide, zirconia, and titania, can be used. Further, many monomers such as styrene and methyl methacrylate can be used as the monomer, and many organic peroxides such as benzoyl peroxide and parkyl peroxide can be used as the polymerization catalyst. The mixing amount of the polymerization catalyst can be arbitrarily selected depending on the type of the product.
Preferably it is used in an amount ranging from 0.5 to 5.0% by weight.

〔作用〕[Action]

本発明は微細な細孔の奥深くまで樹脂を完全に充填す
るため、第一工程において細孔内に吸着した水分を完全
に除去する目的で加温しながら減圧乾燥を行う。もし水
分が残留した場合にはモノマー含浸工程において、モノ
マーを細孔全体に充填するのを阻害するばかりでなく、
セラミツクとモノマーとの濡れを阻害するため、モノマ
ーを含浸させて重合させた場合、セラミツクと樹脂とが
接着した状態になりにくい。
In the present invention, in order to completely fill the resin deep into the fine pores, drying under reduced pressure is performed while heating for the purpose of completely removing water adsorbed in the pores in the first step. If water remains, in the monomer impregnation step, not only does it hinder the monomer from filling the entire pores,
In order to inhibit the wetting of the ceramic and the monomer, when the monomer is impregnated and polymerized, it is difficult for the ceramic and the resin to adhere to each other.

第二の工程はモノマーを細孔内に含浸させやすくする
ための処理で、減圧した状態でモノマーをフラツシユさ
せて、細孔内にモノマーの蒸気を導入することにより、
細孔内のセラミツク面をモノマーで濡らす工程である。
この工程により、次工程のモノマー含浸を完全にする作
用をするばかりでなく、モノマーを重合した樹脂とセラ
ミツクの接着を強め、細孔を完全に封孔できるのであ
る。
The second step is a process for facilitating the impregnation of the monomer into the pores, by flashing the monomer under reduced pressure, and introducing the vapor of the monomer into the pores,
This is a step of wetting the ceramic surface in the pores with the monomer.
This step not only functions to complete the impregnation of the monomer in the next step, but also enhances the adhesion between the resin in which the monomer has been polymerized and the ceramic, thereby completely closing the pores.

第三の工程は、重合触媒を混合したモノマーを含浸さ
せる工程である。ランナベーンのセラミック溶射皮膜形
成部分を重合触媒を混合したモノマー溶液に完全に浸漬
させて減圧することにより、セラミツク溶射皮膜の細孔
部に重合触媒を混合したモノマーを含浸させることがで
きる。
The third step is a step of impregnating a monomer mixed with a polymerization catalyst. By completely immersing the portion of the runner vane where the ceramic sprayed coating is formed in the monomer solution mixed with the polymerization catalyst and reducing the pressure, the pores of the ceramic sprayed coating can be impregnated with the monomer mixed with the polymerization catalyst.

第四の工程は、セラミツク溶射皮膜の細孔部に含浸し
たモノマーを蒸発揮酸させることなく、すべて重合させ
る工程である。含浸したモノマーを蒸発揮酸させないた
めに、モノマーの蒸気が含浸したモノマーを重合させる
温度、圧力において平衡な分圧に調整した容器内に移
し、重合が完結する迄保持するのがよい。
The fourth step is a step in which the monomer impregnated in the pores of the ceramic sprayed coating is all polymerized without vaporizing acid. In order to prevent the impregnated monomer from evaporating acid, it is preferred that the monomer be transferred into a vessel adjusted to an equilibrium partial pressure at the temperature and pressure at which the impregnated monomer is polymerized, and held until the polymerization is completed.

以上、第一工程から第四工程まで連続的に処理するこ
とにより、セラミツク溶射皮膜の細孔内を完全に封じる
ことができ、耐食性に優れたセラミツク溶射皮膜が形成
されたランナベーンを提供できる。
As described above, by continuously processing from the first step to the fourth step, the pores of the ceramic sprayed coating can be completely sealed, and a runner vane having a ceramic sprayed coating excellent in corrosion resistance can be provided.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第8図を参照しな
がら詳述する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.

第1図、第2図は可動翼ポンプのランナンベーンの一
態様を示す図で、第1図はポンプ本体に取付ける軸に対
して正面から見た図、第2図は軸に対して上から見た図
である。第3図はランナベーンの軸部を除いた全面に50
0μmの厚さにアルミナを溶射したランナベーンを軸に
対して上から見た図、第4図は第3図のA−A′矢視の
一部の断面を拡大した図である。
1 and 2 are views showing an embodiment of a run-number vane of a movable vane pump. FIG. 1 is a front view of a shaft attached to a pump body, and FIG. 2 is a top view of the shaft. FIG. Fig. 3 shows the entire surface excluding the runner vane shaft.
FIG. 4 is a view in which a runner vane sprayed with alumina having a thickness of 0 μm is viewed from above with respect to the axis, and FIG. 4 is an enlarged view of a part of a cross section taken along the line AA ′ in FIG.

第5図〜第8図はアルミナを溶射したランナベーンを
スチレンモノマーを用いて封孔処理する態様を示す図で
あり、第5図は溶射したランナベーンの減圧乾燥工程の
態様を示す図、第6図はスチレンモノマーのフラツシユ
によるアルミナ溶射コーテイング膜細孔内へモノマーを
吸着させる態様を示す図、第7図はスチレンモノマーに
重合触媒としてベンゾイルパーオキサイドを3wt%加え
た溶液中にアルミナ溶射したランナベーンを浸漬し、減
圧状態でベンゾイルパーオキサイドを含むスチレンモノ
マーを含浸する態様を示す図、第8図はスチレンモノマ
ー蒸気中でアルミナ溶射ランナベーンのコーテイング膜
細孔内に含浸したモノマーを重合させる態様を示す図で
ある。
FIG. 5 to FIG. 8 are views showing an embodiment in which the alumina sprayed runner vanes are sealed using a styrene monomer. FIG. 5 is a view showing an aspect of a vacuum drying step of the sprayed runner vanes, FIG. Fig. 7 shows an embodiment in which a monomer is adsorbed into pores of an alumina-sprayed coating film by flashing of styrene monomer. Fig. 7 shows immersion of runner vanes sprayed with alumina in a solution obtained by adding benzoyl peroxide as a polymerization catalyst to styrene monomer by 3 wt%. FIG. 8 shows an embodiment in which a styrene monomer containing benzoyl peroxide is impregnated under reduced pressure, and FIG. 8 shows an embodiment in which the monomer impregnated in the pores of the coating film of the alumina sprayed runner vane is vaporized in styrene monomer vapor. is there.

第1図〜第8図の図において、1は可動翼ポンプのラ
ンナベーン本体(SCS14製)、2はランナベーン先端部
に溶射したアルミナ溶射コーテイング膜、3は蓋付減圧
容器、4はコツク付モノマー注入器、5はコツク、6は
真空ポンプ、7はベンゾイルパーオキサイドを含むスチ
レンモノマーの溶液、8はスチレンモノマーの蒸気、9
はスチレンモノマー蒸発用容器である。
1 to 8, reference numeral 1 denotes a runner vane main body (made of SCS14) of a movable vane pump, 2 denotes an alumina sprayed coating film sprayed on a tip of the runner vane, 3 denotes a pressure-reduced container with a lid, and 4 denotes monomer injection with a stick. Vessel 5, vacuum pump 6, styrene monomer solution containing benzoyl peroxide, 8 styrene monomer vapor, 9
Is a container for styrene monomer evaporation.

最長部の長さ400mmのランナベーン先端部にアルミナ
を500μm溶射したランナベーンを作製し、そのランナ
ベーンを100℃に加熱したのち、真空ポンプ6で減圧で
きるようにした容器3内に入れ、100℃に加温しなが
ら、1トールで10分間減圧乾燥した。(第5図) 次いで、減圧を保持した状態で、温度を室温まで下げ
たのち、あらかじめ容器3上部にセツトしたスチレンモ
ノマー注入器4のコツク5を開き、溶射コーテイング膜
の面にスチレンのモノマーが接触しないようにフラツシ
ユさせ、その後、真空ポンプ6につながるコツク5を閉
じて10分間保持した。(第6図) 次いで、モノマー注入器4内にベンゾイルパーオキサ
イド3wt%を含むスチレンモノマーを入れ、真空ポンプ
6につながるコツク5を開いて容器内を減圧にしなが
ら、スチレンモノマー注入器4のコツク5を開いて、供
試ランナベーンのアルミナ溶射コーテイング部の全体が
完全に浸漬するまで、ベンゾイルパーオキサイド3wt%
を含むスチレンモノマーを注入したのち、減圧しながら
10分間保持した。(第7図) 次いで、減圧を解除したのち、ランナベーンを取り出
し、スチレンモノマーを入れた蒸発用容器9を設置した
蓋付容器3に移し、50℃で24時間保持した。(第8図) 上記、処理を行つたアルミナ溶射ランナベーンと、封
孔処理を行なわなかつたアルミナ溶射ランナベーン及び
常温硬化エポキシ樹脂を表面に塗布したアルミナ溶射ラ
ンナベーンを可動翼ポンプに取付け、pH5.0の硫酸溶液
を循環させながら、6ケ月間耐久性評価試験を行つた結
果、上記封孔処理を行つたランナベーンは接着面の異常
は認められなかつたのに対し、封孔処理をしなかつたも
の及びエポキシ樹脂を塗布したものはコーテイング膜と
母材の接着面から剥離した。
A runner vane was prepared by spraying 500 μm of alumina onto the tip of a runner vane having a length of 400 mm. The runner vane was heated to 100 ° C., then placed in a container 3 capable of being depressurized by a vacuum pump 6, and heated to 100 ° C. Dry under reduced pressure at 1 Torr for 10 minutes while warming. (FIG. 5) Next, while maintaining the reduced pressure, the temperature was lowered to room temperature, and then the screw 5 of the styrene monomer injector 4 previously set on the upper part of the container 3 was opened, and the styrene monomer was coated on the surface of the thermal spray coating film. After flushing so as not to contact, the cock 5 connected to the vacuum pump 6 was closed and held for 10 minutes. (FIG. 6) Next, a styrene monomer containing 3% by weight of benzoyl peroxide is put into the monomer injector 4, and the nut 5 connected to the vacuum pump 6 is opened to reduce the pressure inside the container. Open the test runner vane until 3% by weight of benzoyl peroxide
After injecting styrene monomer containing
Hold for 10 minutes. (FIG. 7) Next, after releasing the reduced pressure, the runner vane was taken out, transferred to the lidded container 3 in which the evaporation container 9 containing the styrene monomer was set, and kept at 50 ° C. for 24 hours. (FIG. 8) The sprayed alumina spray runner vanes, the sprayed alumina spray runner vanes not subjected to the sealing treatment, and the sprayed alumina spray runner vanes coated with a cold-curable epoxy resin on the surface were attached to a movable blade pump. As a result of performing a durability evaluation test for 6 months while circulating the sulfuric acid solution, the runner vanes subjected to the above sealing treatment did not show any abnormality in the adhesive surface, whereas those without the sealing treatment did not. The coated epoxy resin was peeled off from the bonding surface between the coating film and the base material.

〔実施例II〕(Example II)

実施例Iと同様の操作で、スチレンモノマーをメチル
メタアクリレートモノマーにかえて、封孔処理を行なつ
た供試セラミツク溶射材を作成した。これを実施例Iと
同条件で腐食試験した結果、スチレンモノマーで封孔処
理したのと同様、良好な耐食性を示した。
In the same manner as in Example I, a test ceramic sprayed material subjected to a sealing treatment was prepared by changing the styrene monomer to a methyl methacrylate monomer. This was subjected to a corrosion test under the same conditions as in Example I. As a result, good corrosion resistance was exhibited, as in the case of sealing with a styrene monomer.

〔発明の効果〕〔The invention's effect〕

本発明は従来セラミツク溶射皮膜を形成させたランナ
ベーンが適用できなかつた腐食性環境までセラミツク溶
射皮膜を形成させたランナベーンを適用できるようにし
たもので、耐摩耗性が要求される可動翼ポンプにセラミ
ック溶射皮膜を形成させたランナベーンを適用可能にし
た工業的効果は大きい。
The present invention allows a runner vane having a ceramic sprayed coating formed thereon to be applied to a corrosive environment where a runner vane having a conventionally formed ceramic sprayed coating cannot be applied. The industrial effect that the runner vane on which the thermal spray coating is formed can be applied is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は可動翼ランナベーンの態様を示す図、
第3図はランナベーンの一部にセラミツク溶射した態様
を示す図、第4図は第3図のA−A′矢視の一部の断面
の拡大図、第5図〜第8図は封孔処理方法の態様を示す
図であり、第5図は溶射したランナベーンの減圧乾燥工
程の態様を示す図、第6図はスチレンモノマーのフラツ
シユによるアルミナ溶射コーテイング膜細孔内へモノマ
ーを吸着させる態様を示す図、第7図はスチレンモノマ
ーに重合触媒としてベンゾイルパーオキサイド3wt%加
えた溶液中にアルミナ溶射したランナベーンを浸漬し、
減圧状態でベンゾイルパーオキサイドを含むスチレンモ
ノマーを含浸する態様を示す図、第8図はスチレンモノ
マー蒸気中でアルミナ溶射ランナベーンのコーテイング
膜細孔内に含浸したモノマーを重合させる態様を示す図
である。
FIG. 1 and FIG. 2 are views showing aspects of a movable wing runner vane.
FIG. 3 is a view showing a state in which a part of the runner vane is thermally sprayed with a ceramic, FIG. 4 is an enlarged view of a part of a section taken along the line AA 'in FIG. 3, and FIGS. FIG. 5 is a diagram showing an embodiment of a treatment method, FIG. 5 is a diagram showing an embodiment of a vacuum drying step of sprayed runner vanes, and FIG. 6 is a diagram showing an embodiment in which a monomer is adsorbed into pores of an alumina sprayed coating film by flashing a styrene monomer. FIG. 7 shows a styrene monomer in which 3 wt% of benzoyl peroxide was added as a polymerization catalyst, and a runner vane sprayed with alumina was immersed in the solution.
FIG. 8 is a diagram showing an embodiment in which a styrene monomer containing benzoyl peroxide is impregnated under reduced pressure, and FIG. 8 is a diagram showing an embodiment in which a monomer impregnated in pores of a coating film of an alumina sprayed runner vane is vaporized in styrene monomer vapor.

フロントページの続き (72)発明者 長谷川 繁夫 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 北村 治男 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社内 (72)発明者 西田 長太郎 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社内 (72)発明者 谷守 東三 兵庫県高砂市荒井町新浜2丁目1番1号 (56)参考文献 特開 平1−263259(JP,A) 特開 昭57−70275(JP,A) 特開 昭54−106052(JP,A)Continued on the front page (72) Inventor Shigeo Hasegawa 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside of Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Haruo Kitamura 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Inside Heavy Industries, Ltd. (72) Inventor Chotaro Nishida 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Heavy Industries, Ltd. (72) Inventor Higashizo Tanori 2-1-1, Araimachi Shinhama, Takasago City, Hyogo Prefecture (56 References JP-A-1-263259 (JP, A) JP-A-57-70275 (JP, A) JP-A-54-106052 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可動翼ポンプのランナベーンの表面に形成
されたセラミック溶射皮膜の封孔処理を行うに際し、該
セラミック溶射皮膜が形成されたランナベーンを加温し
ながら減圧乾燥する第一工程、 減圧を保持した状態で、モノマーをフラッシュさせて該
溶射皮膜の細孔にモノマーを吸着させる第二工程、 減圧状態を保持した状態で、モノマーに重合触媒を混合
した溶液を該溶射皮膜の細孔内に含浸させる第三工程、 前記モノマーに重合触媒を混合した溶液を含浸した溶射
皮膜のモノマーを、モノマー蒸気が温度、圧力に対して
平衡な分圧下において重合させる第四工程 からなることを特徴とするセラミック溶射皮膜の封孔処
理方法。
A first step of drying the reduced pressure while heating the runner vane on which the ceramic sprayed coating is formed, when performing the sealing treatment of the ceramic sprayed coating formed on the surface of the runner vane of the movable blade pump; In the held state, the second step of flushing the monomer and adsorbing the monomer in the pores of the sprayed coating, while maintaining the reduced pressure state, the solution in which the polymerization catalyst is mixed with the monomer is introduced into the pores of the sprayed coating. A third step of impregnating, and a fourth step of polymerizing the monomer of the thermal spray coating impregnated with the solution obtained by mixing the monomer with a polymerization catalyst under a partial pressure in which the monomer vapor is balanced with respect to temperature and pressure. Sealing method for ceramic spray coating.
JP1033782A 1989-02-15 1989-02-15 Sealing treatment method for ceramic spray coating Expired - Fee Related JP2647482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033782A JP2647482B2 (en) 1989-02-15 1989-02-15 Sealing treatment method for ceramic spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033782A JP2647482B2 (en) 1989-02-15 1989-02-15 Sealing treatment method for ceramic spray coating

Publications (2)

Publication Number Publication Date
JPH02213458A JPH02213458A (en) 1990-08-24
JP2647482B2 true JP2647482B2 (en) 1997-08-27

Family

ID=12396037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033782A Expired - Fee Related JP2647482B2 (en) 1989-02-15 1989-02-15 Sealing treatment method for ceramic spray coating

Country Status (1)

Country Link
JP (1) JP2647482B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9519888D0 (en) * 1995-09-29 1995-11-29 Atomic Energy Authority Uk Electrically isolating coating layers
GB2397257A (en) * 2003-01-16 2004-07-21 Rolls Royce Plc Article provided with a vibration damping coating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089765B2 (en) * 1988-04-15 1996-01-31 三菱重工業株式会社 Sealing method for ceramic sprayed material

Also Published As

Publication number Publication date
JPH02213458A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
Wang et al. Self-healing superamphiphobicity
US3672942A (en) Process for impregnating porous metal articles
US3969552A (en) Process for impregnating porous articles
KR910018577A (en) Steel products with double protective coatings and manufacturing methods thereof
JP2647482B2 (en) Sealing treatment method for ceramic spray coating
KR102599253B1 (en) Conformal fluoropolymer coatings
Tusher et al. Future and challenges of coating materials
CN108395570A (en) A kind of self-repair material and preparation method and application
CN106884325A (en) A kind of method that polyphenylene sulfide filter material surface coats polytetrafluoroethylene (PTFE)
CA2003653A1 (en) Topical treatment for sealing carbon and graphite surfaces
JPH089765B2 (en) Sealing method for ceramic sprayed material
Li et al. A robust and reusable lubricant-infused surface with anticorrosion and anti-icing properties
CN109294305B (en) Anti-corrosion coating for screw thread manual valve
US4275111A (en) Corrosion protection structure
JPH0759687B2 (en) Joining method for multiple articles
CN109881227A (en) A kind of rack plating product closing aftertreatment technology
US3700495A (en) Process for coating substrates with polyethylene and products produced thereby
JPH01195300A (en) Pore sealing treatment of anodic oxide film of aluminum
JPH0610112A (en) Method for strengthening inorganic coating film
CN214324200U (en) 3D prints model surface wax dipping device
RU2746480C1 (en) Method for obtaining waterproofing coating for porous surfaces
Tyowua et al. Non‐Wettable Surfaces–From Natural to Artificial and Applications: A Critical Review
FR2322007A1 (en) Polyvinylidene fluoride-coated glass fibre panels - for lining chemical tanks, esp. for protecting ships holds against liquid contents
Williams et al. Improvement in oxidation resistance of the leading edge thermal protection for a space shuttle
US4298635A (en) Corrosion protection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees