JP2644841B2 - Plate-like inorganic material sintered body and its manufacturing method - Google Patents

Plate-like inorganic material sintered body and its manufacturing method

Info

Publication number
JP2644841B2
JP2644841B2 JP63227494A JP22749488A JP2644841B2 JP 2644841 B2 JP2644841 B2 JP 2644841B2 JP 63227494 A JP63227494 A JP 63227494A JP 22749488 A JP22749488 A JP 22749488A JP 2644841 B2 JP2644841 B2 JP 2644841B2
Authority
JP
Japan
Prior art keywords
plate
inorganic material
inorganic
sintered body
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63227494A
Other languages
Japanese (ja)
Other versions
JPH0280379A (en
Inventor
忠義 渡部
英雄 居上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUREE BAAN SERAMITSUKUSU KK
Original Assignee
KUREE BAAN SERAMITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUREE BAAN SERAMITSUKUSU KK filed Critical KUREE BAAN SERAMITSUKUSU KK
Priority to JP63227494A priority Critical patent/JP2644841B2/en
Publication of JPH0280379A publication Critical patent/JPH0280379A/en
Application granted granted Critical
Publication of JP2644841B2 publication Critical patent/JP2644841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、板状無機物質焼結体及びその製法に関す
る。
The present invention relates to a plate-like inorganic material sintered body and a method for producing the same.

[従来の技術] 板状のセラミックスは窯道具として陶磁器の素焼きや
絵付けの棚板としてあるいはトンネルキルンの耐火材料
として広く用いられている。これらと材料に共通して求
められる主な特性は耐熱性が高いこと、強度が大きいこ
と、熱衝撃に強いことである。これらの特性を満すた
め、材質としては炭化ケイ素、アルミナ、さらに熱膨脹
率の小さいコージェライトなどが用いられ、さらに、セ
ラミックスの組織を改善するために粗粒配合や球形粒子
を利用した最密充填配合などの方法がとられている。
[Prior Art] Plate-shaped ceramics are widely used as kiln tools, as unglazed ceramics, as shelves for painting, or as refractory materials for tunnel kilns. The main characteristics commonly required of these materials are high heat resistance, high strength, and high resistance to thermal shock. In order to satisfy these characteristics, silicon carbide, alumina, cordierite with a low coefficient of thermal expansion, etc. are used as the material.Furthermore, in order to improve the structure of ceramics, close-packing using coarse particles and spherical particles is used. Methods such as compounding are employed.

しかし、これらの改質、改善が進められても従来使用
されている汎用の板状セラミックスは、その厚さを7mm
以下にすることは極めて困難と見られていた。
However, even if these modifications and improvements have been made, the general-purpose plate-like ceramics conventionally used have a thickness of 7 mm.
It was considered extremely difficult to:

[発明が解決しようとする課題] 本発明はこうした実情に鑑み、薄く軽量で高温下での
強度が強く、熱衝撃性の優れた板状の無機物質焼結体及
びその製法を提供することを目的とするものである。
[Problems to be Solved by the Invention] In view of such circumstances, the present invention provides a plate-shaped inorganic material sintered body that is thin and lightweight, has high strength at high temperatures, and has excellent thermal shock resistance, and a method for producing the same. It is the purpose.

[課題を解決するための手段] 本発明者らは、上記課題を解決すべく従来より研究を
続けてきたが、焼結材料の無機物質を選択することによ
り目的とする焼結体を得ることができることを見出し、
又その好適な製造条件を見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have been continuously researching to solve the above problems, but to obtain a desired sintered body by selecting an inorganic substance of a sintering material. Find out what you can do,
Further, the present inventors have found suitable production conditions, and have reached the present invention.

すなわち、本発明は、(1)アスペクト比5以上の板
状無機物質及び長さと直径との比(L/D)が3以上の針
状あるいは柱状無機物質からなる群から選ばれた少くと
も一種の無機物質を全無機物質の30〜90重量%含む無機
物質を焼成してなり、かつ前記板状、針状、柱状無機物
質が平面に平行な一定方向に配向していることを特徴と
する板状無機物質焼結体、(2)アスペクト比5以上の
板状無機物質及び長さと直径との比(L/D)が3以上の
針状あるいは柱状無機物質からなる群から選ばれた少く
とも一種の無機物質を全無機物質の30〜90重量%含む無
機物質に水を加えて混練後、押出機で円筒状に押出し、
この円筒を切り開き、押出し方向に圧延した後、800〜1
200℃で焼結することを特徴とする板状無機物質焼結体
の製法である。
That is, the present invention relates to (1) at least one kind selected from the group consisting of plate-like inorganic substances having an aspect ratio of 5 or more and needle-like or columnar inorganic substances having a length-to-diameter ratio (L / D) of 3 or more. Wherein the plate-like, needle-like, and columnar inorganic substances are oriented in a certain direction parallel to a plane. Plate-like inorganic material sintered body, (2) a small number of members selected from the group consisting of plate-like inorganic materials having an aspect ratio of 5 or more and needle-like or columnar inorganic materials having a length-to-diameter ratio (L / D) of 3 or more Water is added to an inorganic substance containing 30 to 90% by weight of the total inorganic substance and kneaded, and then extruded into a cylindrical shape with an extruder.
After cutting this cylinder open and rolling in the extrusion direction, 800-1
This is a method for producing a plate-like inorganic material sintered body, which is characterized by sintering at 200 ° C.

本発明の板状無機物質焼結体の微構造を板に直角に配
向方向に平行に切断した断面で見ると前記の板状、針
状、柱状の無機物質がその一部分で結合する層構造を取
っており、その層状物質の間隙をそれ以外の物質と空隙
が占めている。本発明はこのような構造をとる焼結体が
大きい強度、高い耐熱衝撃性を示すことを見出したもの
である。
When the microstructure of the plate-like inorganic material sintered body of the present invention is viewed in a cross section cut at right angles to the plate and parallel to the orientation direction, the plate-like, needle-like, and columnar inorganic materials have a layered structure in which a part thereof is partially bonded. The gap between the layered substances is occupied by the other substances and voids. The present invention has found that a sintered body having such a structure exhibits high strength and high thermal shock resistance.

このような構造は、前記の板状、針状、柱状無機物質
から選ばれた少くとも一種の無機物質を30〜90重量%、
他の無機物質残部とを土練機で押出し、圧延することに
より配向させた後、適度な温度で焼結することによって
得ることができる。板状、針状、柱状の無機物質として
は熱膨脹率の小さなよく焼結した物質を使用することが
耐熱衝撃性を高める上からは特に望ましい。
Such a structure, 30-90% by weight of at least one inorganic substance selected from the above-mentioned plate-like, needle-like, and columnar inorganic substances,
The remaining inorganic material can be obtained by extruding with a kneader, orienting by rolling, and then sintering at an appropriate temperature. It is particularly desirable to use a well-sintered material having a small coefficient of thermal expansion as the plate-like, needle-like, or column-like inorganic material from the viewpoint of improving thermal shock resistance.

本発明に使用する板状無機物質は、板状粒子の直径と
厚さの比であるアスペクト比が5以上、望ましくは7以
上、さらに大きい強度を得るためにより望ましくは10以
上である。このような板状無機物質としては、たとえば
ワラストナイト、コージエライト等を挙げることができ
る。とくに焼結されたコージエライトを板状に粉砕した
ものは、本発明において最も好ましい材料である。
The aspect ratio of the plate-like inorganic substance used in the present invention, which is the ratio of the diameter to the thickness of the plate-like particles, is 5 or more, preferably 7 or more, and more preferably 10 or more for obtaining a higher strength. Examples of such a plate-like inorganic substance include wollastonite and cordierite. Particularly, sintered cordierite obtained by pulverizing into a plate shape is the most preferable material in the present invention.

本発明に使用する前記L/Dが3以上の針状、あるいは
柱状である無機物質としては、たとえばアルミナ繊維、
ケイ灰石等を挙げることができる。
As the inorganic material having an L / D of 3 or more needle-like or columnar used in the present invention, for example, alumina fiber,
Wollastonite and the like can be mentioned.

これら板状、針状あるいは柱状無機物質は、全無機材
料の30〜90重量%の範囲で使用することにより、得られ
る板状無機物質焼結体に大きな強度と高い耐衝撃性を発
現させることができるが、望ましい範囲は35〜60重量
%、さらにより望ましくは35〜60重量%の範囲である。
By using these plate-like, needle-like, or columnar inorganic substances in the range of 30 to 90% by weight of the total inorganic material, the obtained plate-like inorganic substance sintered body can exhibit great strength and high impact resistance. However, the preferred range is 35-60% by weight, and even more preferably 35-60% by weight.

前記板状、針状、柱状無機物質と共に使用する他の無
機物質としては、耐火性をもち、粒子が球形に近いもの
が用いられる。このようなものとしては、たとえばアル
ミナ、ムライト、粘土、タルク等を挙げることができ
る。これらの物質は、押出し成形の際可塑剤として作用
する。
As the other inorganic substance used together with the plate-like, needle-like, and columnar inorganic substances, those having fire resistance and particles having a shape close to a sphere are used. Such materials include, for example, alumina, mullite, clay, talc and the like. These materials act as plasticizers during extrusion.

これらの無機物質に水と加えて土練機で混練した後、
押出し機により円筒状に押出す。この際の押出し圧は10
〜50kg/cm2が適当である。又、この土練機や押出し機は
公知のものを使用することができる。次いで円筒状押出
し成形物を切り開き、押出し方向に圧延する。圧延後、
板状体を焼成する。
After adding water to these inorganic substances and kneading with a kneading machine,
Extrude into a cylinder with an extruder. The extrusion pressure at this time is 10
~ 50 kg / cm 2 is appropriate. In addition, a known kneading machine or extruder can be used. Next, the cylindrical extruded product is cut open and rolled in the extrusion direction. After rolling,
The plate is fired.

焼成温度は高すぎると粒子間の結合が進み過ぎ本発明
の意図とした構造が失われ、逆に低く過ぎると粒子間の
結合が不十分となり、十分な強度が得られない。焼成は
使用する原料に合わせて適度な温度が選択されるが、通
常800〜1200℃の温度が選択される。焼結を完全には行
わず、焼結体中に5〜30%の空隙を残留させるのが好ま
しい。
If the sintering temperature is too high, the bonding between particles progresses too much, losing the structure intended by the present invention. Conversely, if it is too low, the bonding between particles becomes insufficient and sufficient strength cannot be obtained. In sintering, an appropriate temperature is selected according to the raw materials to be used. It is preferable that sintering is not completely performed, leaving 5 to 30% of voids in the sintered body.

前記した本発明のような構造をとる物質が何故大きい
強度と高い耐熱衝撃性を示すかという理由については現
在のところ明確ではないが、板状、針状、柱状の無機物
質で形成される骨格の層構造で大きい強度が発現され、
この層構造の間にある物質と空隙で熱膨脹が吸収される
ので結果として高い耐熱衝撃性が示されるものと考えら
れる。たとえば、板状無機物質に熱膨脹率の小さなコー
ジエライトを用い、熱膨脹率の大きな粘土物質を配合し
た場合、配合比率から計算された熱膨脹率の値より実際
に得られる熱膨脹率の値が小さい傾向にあることも前述
した考え方を裏付けている。
Although it is not clear at present why the substance having the structure having the structure of the present invention exhibits high strength and high thermal shock resistance, a skeleton formed of a plate-like, needle-like, or columnar inorganic substance Large strength is expressed by the layer structure of
It is considered that the thermal expansion is absorbed by the substance and the voids between the layer structures, and as a result, high thermal shock resistance is exhibited. For example, when a cordierite having a small thermal expansion coefficient is used for a plate-like inorganic substance and a clay substance having a large thermal expansion coefficient is blended, the value of the thermal expansion coefficient actually obtained tends to be smaller than the value of the thermal expansion coefficient calculated from the blending ratio. This also supports the idea described above.

[実施例) 以下に、実施例を挙げ本発明をさらに詳細に説明す
る。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 平均粒子径0.53mm、平均アスペクト比12のコージエラ
イト40%、147ミクロン全通に粉砕され角状の粒子径を
もつ合成ムライト粉20%、豊徳粘土40%の組成物に水を
加えて混練後、20kg/cm2の圧力で円筒に押し出し、この
円筒を切り開き、多段階で圧延して、400mm×600mm×50
mmの板を製造した。この板をローラーハースキルンを用
いて1180℃で焼成した。得られた耐火材料の性質は次の
通りであった。
Example 1 Water was added to a composition of cordierite 40% having an average particle diameter of 0.53 mm and an average aspect ratio of 12, 20% of synthetic mullite powder having a square particle diameter crushed to 147 microns, and 40% of Hotonoku clay. after kneading, extrusion in a cylindrical pressure of 20 kg / cm 2, cut open the cylinder and rolled in multiple stages, 400 mm × 600 mm × 50
mm plates were produced. This plate was fired at 1180 ° C. using a roller hearth kiln. The properties of the resulting refractory material were as follows.

容積比重 2.01 見掛気孔率 22.1% 熱膨脹係数 3.4×10-6/℃ 曲げ強度 155kgf/cm2 熱間曲げ強度 800℃ 121kgf/cm2 1000℃ 178kgf/cm2 実施例2 実施例1のコージエライト30%、ムライト粉10%に米国
産ケイ灰石20%、タルク粉5%、豊徳粘土35%の組成物
を実施例1と同一の方法で耐火材料板とした。性質は次
の通りであった。
Volume specific gravity 2.01 Apparent porosity 22.1% Thermal expansion coefficient 3.4 × 10 -6 / ° C Bending strength 155kgf / cm 2 Hot bending strength 800 ° C 121kgf / cm 2 1000 ° C 178kgf / cm 2 Example 2 Cordierite 30% of Example 1 A composition comprising 10% of mullite powder, 20% of wollastonite from the United States, 5% of talc powder and 35% of Hotonoku clay was used as a refractory material plate in the same manner as in Example 1. The properties were as follows:

容積比重 1.92 見掛気孔率 27.6% 熱膨脹係数 4.2×10-6/℃ 曲げ強度 210kgf/cm2 熱間曲げ強度 800℃ 112kgf/cm2 1000℃ 212kgf/cm2 比較例1 実施例1においてコージエライトのみを平均粒子径0.
56mm、平均アスペクト比4.5のものに替えた以外は実施
例1と同一の方法で耐火板とした。性質は次の通りであ
った。
Volume specific gravity 1.92 Apparent porosity 27.6% Thermal expansion coefficient 4.2 × 10 -6 / ℃ Flexural strength 210kgf / cm 2 Hot flexural strength 800 ℃ 112kgf / cm 2 1000 ℃ 212kgf / cm 2 Comparative Example 1 In Example 1, only cordierite was used. Average particle size 0.
A refractory plate was prepared in the same manner as in Example 1 except that the plate was replaced with one having a size of 56 mm and an average aspect ratio of 4.5. The properties were as follows:

容積比重 2.06 見掛気孔率 17.6% 熱膨脹係数 3.8×10-6/℃ 曲げ強度 87kgf/cm2 熱間曲げ強度 800℃ 62kgf/cm2 1000℃ 89kgf/cm2 比較例2 コージエライトとして平均粒子径0.53mm、平均アスペ
クト比12のものを25%、147ミクロン全通に粉砕され角
状の粒子形をもつ合成ムライト粉20%、豊徳粘土55%の
組成物を実施例1と同一の方法で耐火材料板とした。性
質は次の通りであった。
Volume specific gravity 2.06 Apparent porosity 17.6% Thermal expansion coefficient 3.8 × 10 -6 / ℃ Bending strength 87kgf / cm 2 Hot bending strength 800 ℃ 62kgf / cm 2 1000 ℃ 89kgf / cm 2 Comparative example 2 Average particle diameter as cordierite 0.53mm A composition comprising 25% of an average aspect ratio of 12 and 20% of synthetic mullite powder having a square particle shape crushed to a diameter of 147 microns, and 55% of Hotonoku clay in the same manner as in Example 1 was used as a refractory material plate. And The properties were as follows:

容積比重 1.92 見掛気孔率 20.8% 熱膨脹係数 6.2×10-6/℃ 曲げ強度 96kgf/cm2 熱間曲げ強度 800℃ 78kgf/cm2 1000℃ 96kgf/cm2 比較例3 実施例1においてコージエライト50%、豊徳粘土8
%、米国産ケイ灰石42%の組成物を実施例1と同一の方
法で耐火板としたが、圧延後の板にクラックが入り、不
良であった。
Volume specific gravity 1.92 Apparent porosity 20.8% Thermal expansion coefficient 6.2 × 10 -6 / ℃ Flexural strength 96kgf / cm 2 Hot flexural strength 800 ℃ 78kgf / cm 2 1000 ℃ 96kgf / cm 2 Comparative example 3 Cordierite 50% in Example 1 , Toyokudoku clay 8
%, 42% of a wollastonite produced in the United States was used as a refractory plate in the same manner as in Example 1, but the rolled plate was cracked and defective.

比較例4 実施例1の組成物を造粒し、200kg/cm2の圧力にて加
圧成形し、100mm×100mm×5mmの板を製造し、実施例1
と同一の方法で耐火板とした。性質は次の通りであっ
た。
Comparative Example 4 The composition of Example 1 was granulated and pressed under a pressure of 200 kg / cm 2 to produce a 100 mm × 100 mm × 5 mm plate.
A refractory plate was prepared in the same manner as described above. The properties were as follows:

容積比重 2.22 見掛気孔率 9.8% 熱膨脹係数 5.3×10-6/℃ 曲げ強度 92kgf/cm2 熱間曲げ強度 800℃ 63kgf/cm2 1000℃ 70kgf/cm2 [発明の効果] 以上説明したように、本発明の板状無機物質焼結体
は、強度及び耐熱衝撃性にきわめて優れており、従来の
耐火材料ではつくることができなかった薄い棚板や炉床
材の製作が可能となる等耐火材料として応用範囲を拡大
することができる。
Volume specific gravity 2.22 Apparent porosity 9.8% Thermal expansion coefficient 5.3 × 10 -6 / ℃ Bending strength 92kgf / cm 2 Hot bending strength 800 ℃ 63kgf / cm 2 1000 ℃ 70kgf / cm 2 [Effect of the invention] As explained above In addition, the plate-like inorganic material sintered body of the present invention is extremely excellent in strength and thermal shock resistance, and makes it possible to manufacture thin shelf boards and hearth materials which could not be made with conventional refractory materials. The range of application as a material can be expanded.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アスペクト比5以上の板状無機物質及び長
さと直径との比(L/D)が3以上の針状あるいは柱状無
機物質からなる群から選ばれた少くとも一種の無機物質
を全無機物質の30〜90重量%含む無機物質を焼成してな
り、かつ前記板状、針状、柱状無機物質が平面に平行な
一定方向に配向していることを特徴とする板状無機物質
焼結体。
1. An inorganic material selected from the group consisting of a plate-like inorganic material having an aspect ratio of 5 or more and a needle-like or columnar inorganic material having a length-to-diameter ratio (L / D) of 3 or more. A plate-like inorganic material obtained by firing an inorganic material containing 30 to 90% by weight of the total inorganic material, and wherein the plate-like, needle-like, and columnar inorganic materials are oriented in a certain direction parallel to a plane. Sintered body.
【請求項2】アスペクト比5以上の板状無機物質及び長
さと直径との比(L/D)が3以上の針状あるいは柱状無
機物質からなる群から選ばれた少くとも一種の無機物質
を全無機物質の30〜90重量%含む無機物質に水を加えて
混練後、押出機で円筒状に押出し、この円筒を切り開
き、押出し方向に圧延した後、800〜1200℃で焼結する
ことを特徴とする板状無機物質焼結体の製法。
2. An inorganic material selected from the group consisting of a plate-like inorganic material having an aspect ratio of 5 or more and a needle-like or columnar inorganic material having a length-to-diameter ratio (L / D) of 3 or more. Water is added to an inorganic substance containing 30 to 90% by weight of the total inorganic substance, kneaded, and extruded into a cylindrical shape by an extruder. This cylinder is cut open, rolled in the extrusion direction, and then sintered at 800 to 1200 ° C. A method for producing a plate-shaped inorganic material sintered body, which is a feature.
JP63227494A 1988-09-13 1988-09-13 Plate-like inorganic material sintered body and its manufacturing method Expired - Lifetime JP2644841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227494A JP2644841B2 (en) 1988-09-13 1988-09-13 Plate-like inorganic material sintered body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227494A JP2644841B2 (en) 1988-09-13 1988-09-13 Plate-like inorganic material sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0280379A JPH0280379A (en) 1990-03-20
JP2644841B2 true JP2644841B2 (en) 1997-08-25

Family

ID=16861768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227494A Expired - Lifetime JP2644841B2 (en) 1988-09-13 1988-09-13 Plate-like inorganic material sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2644841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148297B2 (en) 2009-11-30 2012-04-03 Corning Incorporated Reticular cordierite composition, article and manufacture thereof

Also Published As

Publication number Publication date
JPH0280379A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
KR101901732B1 (en) Refractory coarse ceramic product and method for producing the same and its use
JP2791486B2 (en) Laminated extrusion thermal shock resistant product and method for producing the same
EP0549873B1 (en) Method of making porous ceramic suitable as diesel particulate filters
CN106220224B (en) High-temperature-resistant light heat-insulating material with double-hole structure and preparation method thereof
EP1337495B1 (en) Lithium aluminosilicate ceramic
EP1736455B1 (en) Method for manufacturing honeycomb structure
US4476236A (en) Method for producing a cordierite body
US4960737A (en) Calcium dialuminate/hexaluminate ceramic structures
US5281462A (en) Material, structure, filter and catalytic converter
US4293514A (en) Method of producing honeycomb structural bodies consisting of barium titanate series ceramics having a positive temperature coefficient of electric resistance
US5429779A (en) Method of making cordierite bodies
US6703337B2 (en) Ceramic media
EP1739065B1 (en) Method for producing porous honeycomb structure and porous honeycomb structure
JPH08283073A (en) Kiln tool
JP2644841B2 (en) Plate-like inorganic material sintered body and its manufacturing method
KR101736238B1 (en) Bundle Type Clay Bricks And Manufacturing Method Of The Same, And Clay Brick With A Longitudinal Hole
US5962351A (en) Method of producing β-spodumene bodies
KR100575327B1 (en) Large size low-expansion ceramic plate and setter, and process for producing the same
CN1186179C (en) Hollow ceramic rod and manufacturing process thereof, and its application for producing light refractory material
JPH057345B2 (en)
CN114409375A (en) Rapid-sintering light-weight silica crystal wallboard and preparation method thereof
JP3382702B2 (en) Setter and its manufacturing method
Kim et al. Fibrous monoliths of mullite-AlPO4 and alumina/YAG-alumina platelets
JPH057355B2 (en)
WO2000032539A2 (en) Refractory products and their manufacture