JP2642862B2 - Water temperature control method of dam lake - Google Patents

Water temperature control method of dam lake

Info

Publication number
JP2642862B2
JP2642862B2 JP4228694A JP4228694A JP2642862B2 JP 2642862 B2 JP2642862 B2 JP 2642862B2 JP 4228694 A JP4228694 A JP 4228694A JP 4228694 A JP4228694 A JP 4228694A JP 2642862 B2 JP2642862 B2 JP 2642862B2
Authority
JP
Japan
Prior art keywords
water
temperature
low
heat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4228694A
Other languages
Japanese (ja)
Other versions
JPH07251160A (en
Inventor
誠 久納
薫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO DOBOKU KENKYU SHOCHO
Original Assignee
KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO DOBOKU KENKYU SHOCHO filed Critical KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority to JP4228694A priority Critical patent/JP2642862B2/en
Publication of JPH07251160A publication Critical patent/JPH07251160A/en
Application granted granted Critical
Publication of JP2642862B2 publication Critical patent/JP2642862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ダム湖の水温制御方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a water temperature of a dam lake.

【0002】[0002]

【従来の技術】ダム湖においては、藍藻類等の好ましく
ない藻類の異常増殖によって富栄養化に起因する水の華
やかび臭を生ずるという問題がある。そこで藻類の増殖
を抑えてこのような問題を解消するために、従来はダム
湖の水温制御方法が採用され、このダム湖の水温制御方
法として、ダム湖内に間欠式揚水筒を設置して、貯水池
の深層部分にある冷たい水を表層部分に供給して、ダム
湖の表層部分に循環混合層を形成することにより、藻類
が存在する表層水の温度を低下させて、藻類の活性の低
下や貯水池全体への大きな循環を発生させることが行わ
れていた。
2. Description of the Related Art In a dam lake, there is a problem that a gorgeous odor of water is generated due to eutrophication due to abnormal growth of undesired algae such as cyanobacteria. Therefore, in order to suppress the growth of algae and solve such problems, the water temperature control method of the dam lake was conventionally adopted.As the water temperature control method of the dam lake, an intermittent pumping cylinder was installed in the dam lake. By supplying cold water in the deep part of the reservoir to the surface part and forming a circulating mixed layer in the surface part of the dam lake, the temperature of the surface water in which algae are present is lowered, and the activity of the algae is reduced. And the creation of large circulations throughout the reservoir.

【0003】しかしながら、前記のような間欠式揚水筒
により形成される循環混合層は薄いため、洪水時に大量
に流入する、藻類の栄養成分を高い濃度で含んで貯水池
の表層水より温度の低い水が、貯水池の上流端で表層水
と混合されることになる。これにより、循環している水
層内に藻類の栄養成分が大量に混入するおそれがあると
いう問題がある。
[0003] However, since the circulating mixed layer formed by the above-mentioned intermittent pumping cylinder is thin, a large amount of nutrients of algae, which flow in large quantities during floods and have a lower temperature than the surface water of the reservoir, are contained. Will be mixed with surface water at the upstream end of the reservoir. Thus, there is a problem that a large amount of nutrient components of algae may be mixed into the circulating water layer.

【0004】[0004]

【発明が解決しようとする課題】そこでこのような従来
のダム湖の水温制御方法のもつ問題を解消するために、
この出願の発明者等は特願平4-92164号に開示したよう
な貯水域内の流動制御方法を提案した。この方法は酸気
方式の曝気装置を用いてダム湖の湖水を流動し、循環混
合層を厚くすることによって、浮遊藻類への光の供給を
抑制し、同時に流入河川水を下層へ流入させることによ
って、有光層に生息する浮遊藻類への栄養物質を抑制す
るようになっている。
Therefore, in order to solve the problems of the conventional water temperature control method for dam lakes,
The inventors of the present application have proposed a flow control method in a reservoir area as disclosed in Japanese Patent Application No. 4-92164. This method controls the supply of light to suspended algae by flowing the lake water of the dam lake using an acid-type aeration device and thickening the circulating mixed layer, and at the same time, inflowing river water into the lower layer. Thus, nutrients to suspended algae inhabiting the euphotic layer are suppressed.

【0005】しかしながらこのようなダム湖内の流動制
御方法は、ダム湖の表層の水温に比べて流入河川水の水
温が高い春季や大規模の出水によってダム湖の水温の垂
直分布が均一となった場合、又は異常気象等によってダ
ム湖への熱供給量が小さい場合には、流入河川水の水温
が高く有光層よりも深い循環混合層の形成と流入河川水
の深層への流入とが困難であって、浮遊藻類の増殖を抑
制することが困難であるという問題がある。
However, such a method of controlling the flow in a dam lake makes the vertical distribution of the water temperature of the dam lake uniform during spring or large-scale flooding where the temperature of the inflowing river water is higher than the surface temperature of the dam lake. If the heat supply to the dam lake is small due to abnormal weather, etc., the temperature of the inflowing river water is high and the formation of a circulating mixed layer deeper than the luminous layer and the inflow of the inflowing river water into the deep layer However, there is a problem that it is difficult to suppress the growth of floating algae.

【0006】そこでこの発明の目的は、前記のような従
来のダム湖内の流動制御方法のもつ問題を解消し、ダム
湖の水温に比べて気温が高く、輻射熱の大きい春季や大
規模の出水によってダム湖の水温の垂直分布が均一とな
った場合、又は異常気象等によってダムへの熱供給量が
小さい場合でも、流入河川水の水温より水温が高く有光
層よりも深い循環混合層の形成と流入河川水の深層への
流入とが容易であって、浮遊藻類の増殖を抑制すること
ができるダム湖の水温制御方法を提供するにある。
Accordingly, an object of the present invention is to solve the problems of the conventional flow control method in a dam lake as described above, and to provide a spring or large-scale flooding where the temperature is higher than the water temperature of the dam lake and the radiant heat is large. Even if the vertical distribution of the water temperature of the dam lake becomes uniform due to the above, or even if the amount of heat supplied to the dam is small due to abnormal weather, etc., the temperature of the inflowing river water is higher than the water temperature of the circulating mixed layer deeper than the luminous layer. It is an object of the present invention to provide a method for controlling the temperature of water in a dam lake, which can be easily formed and flow into the deep water of an inflowing river and can suppress the growth of suspended algae.

【0007】[0007]

【課題を解決するための手段】この発明は、前記のよう
な目的を達成するために、請求項1の発明は、流入水温
制御部4において、流入河川2から放熱側の第1高温冷
水管13によって高温の冷水を取水して、第1ヒートポン
プ11に蓄熱後、放熱側の第1低温冷水管14によって低温
の冷水を流入河川2に放水する一方、流入水路3の出口
部と流出口部5との間に延びる水温躍層8の上側の循環
混合層7から受熱側の第2低温温水管17によって低温の
温水を取水して、第1ヒートポンプ11によって放熱後、
高温の温水として受熱側の第2高温温水管16によって循
環混合層7に放流し、該循環混合層7の水温を上昇させ
るとともに、ダム湖1に流入する河川水の水温を低下さ
せることを特徴とするものである。請求項2の発明は、
全層水温制御部6において、流入水路3の出口部と流出
口部5との間に延びる水温躍層8の下側の深層9から放
熱側の第4高温冷水管21によって高温の冷水を取水し
て、第2ヒートポンプ12に蓄熱後、放熱側の第4低温冷
水管22によって低温の冷水を深層9に放水する一方、循
環混合層7から受熱側の第3低温温水管18によって低温
の温水を取水して、第2ヒートポンプ12によって放熱
後、高温の温水として受熱側の第3高温温水管19によっ
て、流入水路3の出口と流出口部5との間に延びる水温
躍層8の上側の循環混合層7に放流し、該循環混合層7
の水温を上昇させるとともに、深層9の水温を低下させ
ることを特徴とするものである。請求項3の発明は、請
求項1又は2に記載の発明において、第1,2ヒートポ
ンプ11,12は、ダム湖周辺地域の冷房手段24によって発
生する廃熱を利用することを特徴とするものである。
According to the present invention, in order to achieve the above-mentioned object, the invention of claim 1 is characterized in that the inflow water temperature control section 4 includes a first high-temperature cold water pipe from the inflow river 2 to the heat radiation side. After taking in high-temperature cold water by 13 and storing heat in the first heat pump 11, low-temperature cold water is discharged to the inflow river 2 by the first low-temperature cold water pipe 14 on the heat radiation side, while the outlet and outlet of the inflow water channel 3 are discharged. The low-temperature hot water is taken from the circulating mixing layer 7 on the upper side of the thermocline 8 extending between the water-cooling layer 5 and the second low-temperature hot water pipe 17 on the heat receiving side, and after the heat is radiated by the first heat pump 11,
It is discharged as high-temperature hot water to the circulating mixing layer 7 by the second high-temperature hot water pipe 16 on the heat receiving side to raise the water temperature of the circulating mixing layer 7 and to lower the temperature of the river water flowing into the dam lake 1. It is assumed that. The invention of claim 2 is
In the all-layer water temperature control section 6, high-temperature cold water is taken from the deep layer 9 below the water temperature step 8 extending between the outlet of the inflow water channel 3 and the outlet 5 by the fourth high-temperature cold water pipe 21 on the radiation side. Then, after storing the heat in the second heat pump 12, low-temperature cold water is discharged to the deep layer 9 by the fourth low-temperature cold water pipe 22 on the heat radiation side, while low-temperature hot water is discharged from the circulation mixing layer 7 by the third low-temperature hot water pipe 18 on the heat receiving side. After water is taken out and radiated by the second heat pump 12, it is heated as high-temperature hot water by a third high-temperature hot-water pipe 19 on the heat-receiving side, on the upper side of the thermocline 8 extending between the outlet of the inflow channel 3 and the outlet 5. The effluent is discharged to the circulating mixing layer 7,
And the water temperature of the deep layer 9 is lowered. According to a third aspect of the present invention, in the first or second aspect, the first and second heat pumps 11 and 12 utilize waste heat generated by the cooling means 24 around the dam lake. It is.

【0008】[0008]

【作用】前記のようなものにおいて、流入水温制御方法
を実施するに際しては、流入河川から高温の冷水を取水
し、水温低下手段によって冷却された低温の冷水として
流入河川に放水する一方、ダム湖内の所定標高より上側
の湖から低温の温水を取水し、水温上昇手段によって加
熱された高温の温水としてダム湖内の所定標高より上側
の湖水に放流する。このようにしてダム湖内の所定標高
より上側の湖水の水温を上昇させるとともに、ダム湖に
流入する河川水の水温を低下させ、流入河川水の水温が
自然状態より低下するため、流入河川水はダム湖内の所
定標高より上側の湖水の水温を上昇させるだけの場合よ
りその下側の水深のところに流入する。またこのような
流入水温制御方法と同時に、全層水温制御方法が実施さ
れ、この全層水温制御方法においては、ダム湖の所定標
高より下側の湖水から高温の冷水を取水し、水温低下手
段によって冷却された低温の冷水としてダム湖の所定標
高より下側の湖水に放水する一方、ダム湖内の所定標高
より上側の湖水から低温の温水を取水して、水温上昇手
段によって加熱された高温の温水としてダム湖内の所定
標高より上側の湖水に放流し、ダム湖内の所定標高より
上側の湖水の水温を上昇させるとともに、ダム湖内の所
定標高より下側の湖水の水温を低下させる。このように
してダム湖内の所定標高より上側の湖水へ供給された熱
量は、流入水温制御方法によって生じた熱量とともに、
ダム湖内の所定標高より上側の全湖水に拡散してそこの
水温を上昇させるとともに、水温低下手段によってダム
湖の所定標高より下側の湖水の水温を低下させる。そし
てこれらの際、ダム湖の周辺で地域冷房が行われている
時期に冷房手段によって発生する廃熱を利用し、このよ
うにしてダム湖の湖水の水質改善と地域冷房とを両立さ
せる。
In the above-mentioned method, when implementing the inflow water temperature control method, high-temperature cold water is taken from the inflow river and discharged to the inflow river as low-temperature cold water cooled by the water temperature lowering means. In the dam lake, hot water having a low temperature is taken from a lake above a predetermined altitude, and discharged as high-temperature hot water heated by a water temperature raising means into lake water above a predetermined altitude in the dam lake. In this way, the temperature of the lake water above the predetermined altitude in the dam lake is raised, the temperature of the river water flowing into the dam lake is lowered, and the temperature of the incoming river water is lower than the natural state. Flows into the dam lake at a depth lower than the case where only the temperature of the lake water above the predetermined altitude is raised. Simultaneously with such an inflow water temperature control method, a full-layer water temperature control method is carried out. In this full-layer water temperature control method, high-temperature cold water is taken from lake water below a predetermined altitude of a dam lake, and a water temperature lowering means is provided. While discharging as low-temperature cold water to the lake water below the predetermined altitude of the dam lake, taking low-temperature hot water from the lake water above the predetermined altitude in the dam lake, and As a warm water, the water is released into the lake above the specified altitude in the dam lake, raising the temperature of the lake above the specified altitude in the dam lake and lowering the temperature of the lake below the specified altitude in the dam lake . The amount of heat supplied to the lake water above the predetermined altitude in the dam lake in this way, together with the amount of heat generated by the inflow water temperature control method,
The water diffuses into all the lake water above the predetermined altitude in the dam lake to increase the water temperature there, and the water temperature lowering means lowers the water temperature of the lake water below the predetermined altitude of the dam lake. At that time, the waste heat generated by the cooling means during the period when the district cooling is being performed around the dam lake is used, and thus the improvement of the lake water quality of the dam lake and the district cooling are both achieved.

【0009】[0009]

【実施例】図1に示すこの発明の実施例において、1は
ダム湖、2は流入河川、3は河川からダム湖1の中間底
部まで延びる流入水路、4はダム湖1の流入側の外部に
設けられた流入水温制御部、5はダム湖1の流出口部、
6はダム湖1の流出側の外部に設けられた全層水温制御
部、7はダム湖1の上方の循環混合層、8は循環混合層
7の下方に形成されている流入水路3の出口と流出口部
5との間に延びる中間の水温躍層、9はその下方の深層
を示す。流入水温制御部4は流入側に設けられた第1ヒ
ートポンプ11を有し、第1ヒートポンプ11は流入河川2
と第1高温冷水管13、第1低温冷水管14で連結する一
方、循環混合層7と第2高温温水管16、第2低温温水管
17で連結している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention shown in FIG. 1, 1 is a dam lake, 2 is an inflow river, 3 is an inflow channel extending from a river to the middle bottom of the dam lake 1, and 4 is an outside of the inflow side of the dam lake 1. The inflow water temperature control unit provided in the 5 is the outlet of dam lake 1,
6 is a full-layer water temperature control unit provided outside the outflow side of the dam lake 1, 7 is a circulating mixed layer above the dam lake 1, and 8 is an outlet of the inflow channel 3 formed below the circulating mixed layer 7. An intermediate thermocline extending between the outlet and the outlet 5, and 9 represents a deep layer below the thermocline. The inflow water temperature control unit 4 has a first heat pump 11 provided on the inflow side, and the first heat pump 11
And the first high-temperature cold water pipe 13 and the first low-temperature cold water pipe 14, while the circulating mixing layer 7, the second high-temperature hot water pipe 16, and the second low-temperature hot water pipe
Connected at 17.

【0010】全層水温制御部6は流出側に設けられた第
2ヒートポンプ12を有し、第2ヒートポンプ12は循環混
合層7と第3低温温水管18、第3高温温水管19で連結す
る一方、深層9と第4高温冷水管21、第4低温冷水管22
で連結し、この第4低温冷水管22は図示しない送気パイ
プを介して給気されるようになっており、また第4低温
冷水管22の上方において深層9内に伏碗状の蓋部材23が
設けられており、第1,第2ヒートポンプ11,12は、ダ
ム湖周辺地域の冷房手段24に管路25,26で連結されてお
り、さらに頂部が循環混合層7に開口していて、図示し
ない送気パイプを介して給気される散気部材27が湖底に
設置されている。28,29;31,32は循環混合層7及び深
層9における第1,第2循環流、33は流入河川水をそれ
ぞれ示す。
The full-layer water temperature control section 6 has a second heat pump 12 provided on the outflow side, and the second heat pump 12 is connected to the circulation mixing layer 7 by a third low-temperature hot water pipe 18 and a third high-temperature hot water pipe 19. On the other hand, the deep layer 9, the fourth high temperature cold water pipe 21, the fourth low temperature cold water pipe 22
The fourth low-temperature chilled water pipe 22 is supplied with air via an air supply pipe (not shown), and a bowl-shaped lid member is provided in the deep layer 9 above the fourth low-temperature chilled water pipe 22. 23, the first and second heat pumps 11 and 12 are connected to cooling means 24 in the area around the dam lake by pipes 25 and 26, and the top is open to the circulation mixing layer 7. A diffuser member 27 supplied through an air supply pipe (not shown) is installed at the bottom of the lake. Reference numerals 28, 29; 31, 32 denote first and second circulation flows in the circulating mixed layer 7 and the deep layer 9, respectively, and 33 denotes inflowing river water, respectively.

【0011】前記のようなものにおいて、流入水温制御
方法を実施するに際しては、流入水温制御部4におい
て、流入河川2から第1高温冷水管13によって高温の冷
水を取水して、第1ヒートポンプ11に蓄熱後、第1低温
冷水管14によって低温の冷水を流入河川2に放水する一
方、循環混合層7から第2低温温水管17によって低温の
温水を取水して、第1ヒートポンプ11によって放熱後、
高温の温水として第2高温温水管16によって循環混合層
7に放流し、ダム湖1内の所定標高より上側の循環混合
層7の水温を上昇させるとともに、流入水路3からダム
湖1に流入する河川水の水温を低下させる。このように
して流入河川水の水温が循環混合層7の水温より低下す
るため、流入河川水はダム湖1内の循環混合層7の水温
を上昇させるだけの場合より、その下側の水深のところ
に流入する。
When the inflow water temperature control method is performed in the above-described manner, the inflow water temperature control section 4 draws high-temperature cold water from the inflow river 2 by a first high-temperature cold water pipe 13 and supplies the first heat pump 11 After storing the heat, the first low-temperature cold water pipe 14 discharges low-temperature cold water to the inflowing river 2, while the second low-temperature hot water pipe 17 draws low-temperature hot water from the circulating mixed layer 7, and releases heat by the first heat pump 11. ,
The water is discharged as high-temperature hot water to the circulating mixing layer 7 through the second high-temperature hot-water pipe 16 to raise the water temperature of the circulating mixing layer 7 above a predetermined altitude in the dam lake 1 and to flow into the dam lake 1 from the inflow channel 3. Reduce the temperature of river water. In this way, the temperature of the inflowing river water is lower than the temperature of the circulating mixing layer 7. Therefore, the inflowing river water has a lower water depth than the case where the water temperature of the circulating mixing layer 7 in the dam lake 1 is merely increased. Flows into the place.

【0012】このような流入水温制御方法と同時に、全
層水温制御方法が実施され、この全層水温制御方法にお
いては、深層9から第4高温冷水管21によって高温の冷
水を取水して、第2ヒートポンプ12に蓄熱後、第4低温
冷水管22によって低温の冷水を深層9に放水する一方、
循環混合層7から第3低温温水管18によって低温の温水
を取水して、第2ヒートポンプ12によって放熱後、高温
の温水として第3高温温水管19によって循環混合層7に
放流し、ダム湖1内の循環混合層7の水温を上昇させる
とともに、深層9の水温を低下させる。このようにして
循環混合層7へ供給された熱量は、湖底に設置されてい
る散気部材27の開口から散気によって発生する第1循環
流28によって、流入水温制御方法によって生ずる循環混
合層7へ供給された熱量とともに、ダム湖1の全循環混
合層7に拡散してそこの水温を上昇させる。
Simultaneously with such an inflow water temperature control method, a full-layer water temperature control method is carried out. In this full-layer water temperature control method, high-temperature cold water is taken from the deep layer 9 by a fourth high-temperature cold water pipe 21, 2 After storing heat in the heat pump 12, low-temperature cold water is discharged to the deep layer 9 by the fourth low-temperature cold water pipe 22.
Low-temperature hot water is taken from the circulating mixing layer 7 by the third low-temperature hot water pipe 18, heat is radiated by the second heat pump 12, and then discharged as high-temperature hot water to the circulating mixing layer 7 by the third high-temperature hot water pipe 19. While raising the water temperature of the circulation mixing layer 7 inside, the water temperature of the deep layer 9 is lowered. The amount of heat supplied to the circulating mixing layer 7 in this manner is supplied to the circulating mixing layer 7 generated by the inflow water temperature control method by the first circulating flow 28 generated by the air diffusing from the opening of the diffusing member 27 installed at the lake bottom. With the amount of heat supplied to the dam lake 1, the water diffuses into the whole circulation mixed layer 7 and raises the water temperature there.

【0013】この全層水温制御方法によって生じた水温
差は、深層9でも循環混合層7と同様に流動能力を大き
くする役割を果たす。前記のようにして第4低温冷水管
22から放出された低温の冷水は気泡が混合し、これに連
行されて上昇して蓋部材23の水深に到達し、深層9の上
端の第2循環流32との間で水温差が生ずるため、深層9
においても第2循環流32は効率のよい流動能力をもつこ
とができる。さらに深層9における気泡の吐出は、深層
9の溶存酸素の改善を目的に行われるものであるが、第
4低温冷水管22から放出された低温の冷水は、深層部で
も水温が低いため、蓋部材23に到達した後にその一部
は、第1循環流31と分離して第2循環流32となり、水温
が低いことから湖底をはうようにして深層9中を拡散し
てゆく。そしてこの水は第4低温冷水管22から放出され
たときの気泡により、蓋部材23の下面に水中水面が形成
され、この水面の表面における曝気によって、ここでも
溶存酸素の改善が行われるので、深層9のうちの特に底
泥の直上部の溶存酸素の改善を効率よく行うこととな
る。
The water temperature difference generated by this full-layer water temperature control method plays a role in increasing the flow capacity in the deep layer 9 as well as in the circulation mixing layer 7. Fourth low-temperature cold water pipe as described above
The low-temperature cold water discharged from 22 is mixed with air bubbles, is entrained by this, rises and reaches the water depth of the lid member 23, and a water temperature difference occurs between the low-temperature cold water and the second circulation flow 32 at the upper end of the deep layer 9. , Deep 9
In this case, the second circulation flow 32 can have an efficient flow capacity. Further, the discharge of the bubbles in the deep layer 9 is performed for the purpose of improving the dissolved oxygen in the deep layer 9, but the low-temperature cold water discharged from the fourth low-temperature cold water pipe 22 has a low water temperature even in the deep layer. After arriving at the member 23, a part thereof is separated from the first circulating flow 31 and becomes the second circulating flow 32, and diffuses in the deep layer 9 over the lake bottom because of the low water temperature. Then, the water is released from the fourth low-temperature cold water pipe 22 to form an underwater surface on the lower surface of the lid member 23 due to the bubbles when released from the fourth low-temperature cold water pipe 22, and the aeration on the surface of the water surface also improves the dissolved oxygen. It is possible to efficiently improve the dissolved oxygen in the deep layer 9, particularly just above the bottom mud.

【0014】そして第1,第2ヒートポンプ11,12は、
流入、全層両水温制御方法において、ダム湖1の周辺で
地域冷房が行われている時期に冷房手段24によって発生
する廃熱を利用し、このようにしてダム湖の湖水の水質
改善と地域冷房とを両立させることとなる。
The first and second heat pumps 11 and 12 are:
In the inflow and all-layer water temperature control method, the waste heat generated by the cooling means 24 during the district cooling around the dam lake 1 is used. It will be compatible with cooling.

【0015】図2〜7には、ダム湖水の水温の垂直分布
と河川水の流入水深のシミュレーションの結果が示され
ており、これらの図面において、Aはこの発明方法の実
施時、Bは前記の既提案にかかる流動制御方法の実施
時、Cは無対策時における状態を示す。これから春季か
ら夏季までの各時期において、水温の鉛直分布状況は
A,B方法によって循環混合層7の水温が上昇し、流入
河川2の流入水深はA方法が最も深く、この傾向は夏季
に連続して発生した中小規模の洪水の場合でも確認する
ことができ、図2〜6からわかるようにC方法の場合
は、他の方法の場合より表層の清澄な層が10mも深く存
在していることがわかる。
FIGS. 2 to 7 show the results of a simulation of the vertical distribution of the water temperature of the dam lake and the inflow depth of the river water. C shows the state at the time of no countermeasure when the flow control method according to the already proposed method is implemented. From now on, in each season from spring to summer, the vertical temperature distribution of water temperature in the circulating mixed layer 7 rises by the A and B methods, and the inflow water depth of the inflowing river 2 is the deepest in the A method, and this tendency is continuous in summer. It can be confirmed even in the case of small- and medium-scale floods that have occurred. As can be seen from FIGS. 2 to 6, in the case of the method C, the clear surface layer exists as deep as 10 m deeper than in the case of the other methods. You can see that.

【0016】[0016]

【発明の効果】この発明は前記のように、請求項1,2
の発明は、水温上昇手段によってダム湖内の所定標高よ
り上側の湖水の水温を上昇させるとともに、水温低下手
段によってダム湖に流入する河川水又はダム湖の所定標
高より下側の湖水の水温を低下させるので、ダム湖の水
温に比べて気温が高く、輻射熱の大きい春季や大規模の
出水によってダム湖の水温の垂直分布が均一となった場
合、又は異常気象等によってダム湖への熱供給量が小さ
い場合でも、流入河川水の水温が高く有光層よりも深い
循環混合層の形成と流入河川水の深層への流入とが容易
であって、浮遊藻類の増殖を抑制することができるとい
う効果がある。請求項3の発明は、請求項1又は2の発
明において、吸熱手段によってダム湖周辺地域の冷房に
よって発生する温熱を吸収するので、ダム湖の周辺で地
域冷房が行われている時期に冷房手段によって発生する
廃熱を利用し、このようにしてダム湖の湖水の水質改善
と地域冷房とを両立させることができるという効果があ
る。
As described above, the present invention relates to claims 1 and 2.
According to the invention, the temperature of the lake water above the predetermined altitude in the dam lake is raised by the water temperature raising means, and the temperature of the river water flowing into the dam lake or the temperature of the lake water below the predetermined altitude of the dam lake is lowered by the water temperature lowering means. Since the temperature is higher than the water temperature of the dam lake and the vertical distribution of the water temperature of the dam lake becomes uniform due to spring or large-scale flooding with large radiant heat, or heat supply to the dam lake due to abnormal weather, etc. Even if the amount is small, the temperature of the inflowing river water is high and the formation of a circulating mixed layer deeper than the euphotic layer and the inflow of the inflowing river water into the deep layer are easy, and the growth of floating algae can be suppressed. This has the effect. According to a third aspect of the present invention, in the first or second aspect of the present invention, the heat generated by the cooling in the area around the dam lake is absorbed by the heat absorbing means. By utilizing the waste heat generated by this, there is an effect that it is possible to achieve both the improvement of the water quality of the dam lake and the district cooling in this way.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す概略縦断面図である。FIG. 1 is a schematic longitudinal sectional view showing an embodiment of the present invention.

【図2】この実施例による春季のダム湖水の水温の垂直
分布と河川水の流入水深のシミュレーションの結果を示
す図面である。
FIG. 2 is a diagram showing a result of a simulation of a vertical distribution of a water temperature of a dam lake in spring and a depth of inflow of river water according to this embodiment.

【図3】同初夏のダム湖水の水温の垂直分布と河川水の
流入水深のシミュレーションの結果を示す図面である。
FIG. 3 is a diagram showing the results of a simulation of the vertical distribution of the dam lake water temperature and the inflow depth of river water in the early summer.

【図4】同梅雨のダム湖水の水温の垂直分布と河川水の
流入水深のシミュレーションの結果を示す図面である。
FIG. 4 is a drawing showing a result of a simulation of a vertical distribution of a water temperature of a dam lake in the rainy season and an inflow depth of river water.

【図5】同中洪水後のダム湖水の水温の垂直分布と河川
水の流入水深のシミュレーションの結果を示す図面であ
る。
FIG. 5 is a drawing showing a result of a simulation of a vertical distribution of a water temperature of a dam lake water and a depth of inflow of river water after the middle flood.

【図7】同小洪水後のダム湖水の水温の垂直分布と河川
水の流入水深のシミュレーションの結果を示す図面であ
る。
FIG. 7 is a drawing showing the results of a simulation of the vertical distribution of the water temperature of the dam lake water and the inflow depth of river water after the small flood.

【符号の説明】[Explanation of symbols]

1 ダム湖 2 流入河川 3 流入水路 4 流入水温制御部 5 流出口部 6 全層水温制御部 7 循環混合層 8 水温躍層 9 深層 11 第1ヒートポンプ 12 第2ヒートポンプ 13 第1高温冷水管 14 第1低温冷水管 16 第2高温温水管 17 第2低温温水管 18 第3低温温水管 19 第3高温温水管 21 第4高温冷水管 22 第4低温冷水管 23 蓋部材 24 冷房手段 25 管路 26 管路 27 散気部材 28 第1循環流 29 第2循環流 31 第1循環流 32 第2循環流 33 流入河川水 DESCRIPTION OF SYMBOLS 1 Dam lake 2 Inflow river 3 Inflow waterway 4 Inflow water temperature control part 5 Outlet part 6 Full layer water temperature control part 7 Circulation mixing layer 8 Water temperature steep layer 9 Deep layer 11 1st heat pump 12 2nd heat pump 13 1st high temperature cold water pipe 14 1 Low-temperature cold water pipe 16 Second high-temperature hot water pipe 17 Second low-temperature hot water pipe 18 Third low-temperature hot water pipe 19 Third high-temperature hot water pipe 21 Fourth high-temperature cold water pipe 22 Fourth low-temperature cold water pipe 23 Cover member 24 Cooling means 25 Pipe 26 Pipe 27 Air diffuser 28 First circulation flow 29 Second circulation flow 31 First circulation flow 32 Second circulation flow 33 Inflowing river water

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流入水温制御部4において、流入河川2
から放熱側の第1高温冷水管13によって高温の冷水を取
水して、第1ヒートポンプ11に蓄熱後、放熱側の第1低
温冷水管14によって低温の冷水を流入河川2に放水する
一方、流入水路3の出口部と流出口部5との間に延びる
水温躍層8の上側の循環混合層7から受熱側の第2低温
温水管17によって低温の温水を取水して、第1ヒートポ
ンプ11によって放熱後、高温の温水として受熱側の第2
高温温水管16によって循環混合層7に放流し、該循環混
合層7の水温を上昇させるとともに、ダム湖1に流入す
る河川水の水温を低下させることを特徴とするダム湖の
水温制御方法。
In an inflow water temperature control unit, an inflow river 2 is provided.
After the high-temperature cold water is taken in by the first high-temperature cold water pipe 13 on the radiating side and stored in the first heat pump 11, low-temperature cold water is discharged to the inflowing river 2 by the first low-temperature cold water pipe 14 on the radiating side, while Low-temperature hot water is taken from the circulating mixing layer 7 above the thermocline 8 extending between the outlet part of the water channel 3 and the outlet part 5 by the second low-temperature hot water pipe 17 on the heat receiving side, and the first heat pump 11 After the heat is released, the second heat receiving side
A water temperature control method for a dam lake, comprising: discharging water to a circulating mixing layer by a high-temperature hot water pipe; raising a water temperature of the circulating mixing layer; and lowering a temperature of river water flowing into the dam lake.
【請求項2】 全層水温制御部6において、流入水路3
の出口部と流出口部5との間に延びる水温躍層8の下側
の深層9から放熱側の第4高温冷水管21によって高温の
冷水を取水して、第2ヒートポンプ12に蓄熱後、放熱側
の第4低温冷水管22によって低温の冷水を深層9に放水
する一方、循環混合層7から受熱側の第3低温温水管18
によって低温の温水を取水して、第2ヒートポンプ12に
よって放熱後、高温の温水として受熱側の第3高温温水
管19によって、流入水路3の出口と流出口部5との間に
延びる水温躍層8の上側の循環混合層7に放流し、該循
環混合層7の水温を上昇させるとともに、深層9の水温
を低下させることを特徴とするダム湖の水温制御方法。
2. The inflow water channel 3 in the all-layer water temperature control unit 6.
The high-temperature cold water is taken from the deep layer 9 below the thermocline 8 extending between the outlet part and the outlet part 5 by the heat-radiating fourth high-temperature cold water pipe 21, and stored in the second heat pump 12. The low-temperature cold water is discharged to the deep layer 9 by the fourth low-temperature cold water pipe 22 on the heat radiation side, while the third low-temperature hot water pipe 18 on the heat receiving side is discharged from the circulation mixing layer 7.
After the low-temperature hot water is taken in, the second heat pump 12 releases the heat, and the third high-temperature hot water pipe 19 on the heat receiving side as the high-temperature hot water causes a water thermocline extending between the outlet of the inflow water channel 3 and the outlet 5. 8. A method for controlling the water temperature of a dam lake, comprising: discharging water to the circulating mixing layer 7 on the upper side of 8 and increasing the water temperature of the circulating mixing layer 7 and lowering the water temperature of the deep layer 9.
【請求項3】 第1,2ヒートポンプ11,12は、ダム湖
周辺地域の冷房手段24によって発生する廃熱を利用する
ことを特徴とする請求項1又は2に記載のダム湖の水温
制御方法。
3. The dam lake water temperature control method according to claim 1, wherein the first and second heat pumps 11 and 12 utilize waste heat generated by cooling means 24 around the dam lake. .
JP4228694A 1994-03-14 1994-03-14 Water temperature control method of dam lake Expired - Lifetime JP2642862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228694A JP2642862B2 (en) 1994-03-14 1994-03-14 Water temperature control method of dam lake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228694A JP2642862B2 (en) 1994-03-14 1994-03-14 Water temperature control method of dam lake

Publications (2)

Publication Number Publication Date
JPH07251160A JPH07251160A (en) 1995-10-03
JP2642862B2 true JP2642862B2 (en) 1997-08-20

Family

ID=12631809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228694A Expired - Lifetime JP2642862B2 (en) 1994-03-14 1994-03-14 Water temperature control method of dam lake

Country Status (1)

Country Link
JP (1) JP2642862B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727350B2 (en) * 2005-08-31 2011-07-20 昭男 古川 Lake water quality control system
WO2014008619A1 (en) * 2012-07-07 2014-01-16 天津吉麦生态农业技术研究院 Solar water body purification treatment system and purification method

Also Published As

Publication number Publication date
JPH07251160A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
JP3286813B2 (en) Purification method and mixed diffusion device for closed water area by mixed diffusion
JP4903776B2 (en) Waterway structure for preventing foam generation in power plant drainage channels
KR101189783B1 (en) Apparatus for improving water quality of lake
US4346484A (en) Swimming pool inlet location control
JP2642862B2 (en) Water temperature control method of dam lake
EP1396895A3 (en) Fuel cell system and related operating method
JPS628695B2 (en)
US20090056648A1 (en) Protection for Heat Transfer Oil Boiler
JP4395822B2 (en) Circulating water supply system in pools
JPS6320913Y2 (en)
CN213114917U (en) Landscape pool design structure and circulating water flow design system thereof
CN205352127U (en) Cooling tower
JPH0677756B2 (en) Flow control equipment in the reservoir area
JPS61186757A (en) Method and device for melting snow utilizing geotherm
KR20200049355A (en) System to prevent algae
JP3032600U (en) Paddy water temperature retention device
JP2985628B2 (en) Operation method of seawater cooling system
KR100604405B1 (en) A boiler Device of A moving type
JPH0278480A (en) System for discharging and mixing surfatial hot water impounding reservoir to depth thereof
CN217806509U (en) DMF storage tank heat sink
SU1225828A1 (en) Aeration system for stratified water reservoirs of thermal power stations
JPH01284397A (en) Deep layer aeration device for storage pond or the like
JP3693808B2 (en) Aeration equipment
JPH11202088A (en) Seawater pump containing building
JPH0994599A (en) Mixing type forcible circulating apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term