JP2642812B2 - Underwater transducer - Google Patents

Underwater transducer

Info

Publication number
JP2642812B2
JP2642812B2 JP3235740A JP23574091A JP2642812B2 JP 2642812 B2 JP2642812 B2 JP 2642812B2 JP 3235740 A JP3235740 A JP 3235740A JP 23574091 A JP23574091 A JP 23574091A JP 2642812 B2 JP2642812 B2 JP 2642812B2
Authority
JP
Japan
Prior art keywords
underwater
housing
piezoelectric material
polymer piezoelectric
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3235740A
Other languages
Japanese (ja)
Other versions
JPH0556494A (en
Inventor
宏幸 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP3235740A priority Critical patent/JP2642812B2/en
Publication of JPH0556494A publication Critical patent/JPH0556494A/en
Application granted granted Critical
Publication of JP2642812B2 publication Critical patent/JP2642812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水中にある供試体の反
射能をパルス法により計測する場合の計測機器として
の、水中用送波器及び水中用受波器一体形の水中用送受
波器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater transmitter / receiver integrated with an underwater transmitter / receiver as a measuring instrument for measuring the reflectivity of a specimen in water by a pulse method. It is about a vessel.

【0002】[0002]

【従来の技術】水中にある供試体の反射能を海上等でパ
ルス法により計測する場合には、供試体のほかに計測機
器として水中用送波器及び水中用受波器のそれぞれを、
遠距離音場で定義される距離を隔た計測距離設定を行っ
た後、直線上に配列して海中の所要深度に吊下する。次
に水中用送波器からパルス音波を送波し水中にある供試
体からのエコーを水中用受波器で受波してデータを収集
するのが従来の一般的な計測法である。
2. Description of the Related Art In the case of measuring the reflectivity of a specimen underwater by a pulse method at sea or the like, each of an underwater transmitter and an underwater receiver is used as a measuring device in addition to the specimen.
After setting the measurement distance separated by the distance defined by the distant sound field, they are arranged in a straight line and suspended at the required depth in the sea. Next, a conventional general measuring method is to transmit a pulsed sound wave from an underwater transmitter and receive an echo from a specimen underwater by an underwater receiver to collect data.

【0003】[0003]

【発明が解決しようとする課題】この場合、供試体の大
きさ及び周波数によっては、計測距離を離して計測を行
う時があり、このような時には、周囲雑音レベルとの関
係上音源レベルが十分に高い水中用送波器、より高感度
な水中用受波器が望ましく、それらは、計測の精度及び
信頼性に大きく影響する。また、水中用送波器と供試体
との間に吊下してある水中用受波器の大きさによって
は、音響的に影になって供試体の正確な反射能の計測が
行えないことがある。このため、供試体から同心円上の
距離に水中用送波器と水中用受波器を配置する等の工夫
を行っているが、これでは、供試体の斜め方向の計測に
なるので正確な反射能の結果が得られない。また、海上
では穏やかな海面よりも荒天時が多く、水中用送波器、
水中用受波器及び供試体を個々に吊下、展張する作業に
は多くの作業員とクレーン船等の所要の設備を必要と
し、経費も多大となるほか安全面にも問題があるため、
計測機器としての水中用送波器の送波レベルの向上によ
る計測周波数範囲の拡大及び水中用送波器と水中用受波
器の小型・軽量化が強く望まれていた。
In this case, depending on the size and frequency of the test piece, there is a case where the measurement is performed at a long measurement distance, and in such a case, the sound source level is not sufficient due to the ambient noise level. Higher underwater transmitters and more sensitive underwater receivers are desirable, and they greatly affect the accuracy and reliability of the measurements. Also, depending on the size of the underwater receiver suspended between the underwater transmitter and the specimen, it may not be possible to accurately measure the reflectivity of the specimen due to acoustic shadow. There is. For this reason, some measures have been taken, such as placing the underwater transmitter and underwater receiver at a concentric distance from the specimen.However, this method measures the specimen in an oblique direction. No results can be obtained. Also, there are more stormy weather on the sea than on calm sea level,
The work of suspending and extending the underwater receiver and test specimen individually requires many workers and required equipment such as a crane ship, which is expensive and has safety problems.
It has been strongly desired that the measurement frequency range be expanded by improving the transmission level of the underwater transmitter as a measuring instrument and that the underwater transmitter and the underwater receiver be reduced in size and weight.

【0004】本発明は、上記の問題を解決すべく水中用
送波器の性能向上と計測機器の小型・軽量化を実現させ
る受波部一体型音源構造の水中用送受波器を提供するこ
とを目的としている。
An object of the present invention is to provide an underwater transmitter / receiver having a sound receiving unit integrated sound source structure for improving the performance of an underwater transmitter and realizing a smaller and lighter measuring instrument to solve the above problems. It is an object.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、電気音響変換素子を収納した水中用送
受波器において、水中用送受波器の金属製ハウジング1
11を断面略半楕円形に形成し、該ハウジング111内
の断面略半楕円形の長軸方向に沿って圧電セラミック2
を積層して組み込み、これに交番電圧を印加してハウジ
ングの短軸方向の弧面を励振して送波用の音響放射面1
Aとし、該送波用の音響放射面1A上に、音波の受波用
とする高分子圧電材4を装着し、同一面上に上記音響放
射面1Aよりなる送波部と上記高分子圧電材4よりなる
受波部とを重合して有する構成になり、ハウジング11
1の前記弧面と対向する平坦底面1Bの距離を隔てた位
置に設けた孔から送波信号線3と受波信号線5を格別に
導出させ、高分子圧電材4の外面及び送波信号線3と受
波信号線5の導出孔部分を含むハウジング外面の全体に
ウレタンゴムモールド8を施して水密構造としたことを
特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a submersible transducer containing an electroacoustic transducer, wherein the metallic housing of the submersible transducer is provided.
11 is formed in a substantially semi-elliptical cross section, and the piezoelectric ceramic 2
Are laminated, and an alternating voltage is applied thereto to excite the arc surface in the short axis direction of the housing to transmit the acoustic radiation surface 1 for transmitting waves.
A, a polymer piezoelectric material 4 for receiving a sound wave is mounted on the acoustic wave emitting surface 1A for wave transmission, and the wave transmitting portion including the acoustic emitting surface 1A and the polymer piezoelectric material 4 are mounted on the same surface. And a wave receiving portion made of the material 4 is superimposed.
The transmission signal line 3 and the reception signal line 5 are specially led out from holes provided at a distance from the flat bottom surface 1B facing the arc surface of the piezoelectric element 1. It is characterized in that a urethane rubber mold 8 is applied to the entire outer surface of the housing including the lead-out portions of the line 3 and the reception signal line 5 to form a watertight structure.

【0006】低周波で小型軽量のハイパワ音源の実現の
ためには、音響放射面を大振幅で駆動する必要があり、
断面略半楕円シェル型送波器が適している。すなわち、
金属性ハウジィングよりなる断面略半楕円形のシェル内
にその長軸方向に沿って積層する構造の圧電セラミック
を組み込み、これに交番電圧を印加して励振し、断面略
半楕円形のシェルの短軸方向の弧面を大振幅で屈曲振動
させる機構部により、高出力の小型軽量の音源を得るも
のである。また、高感度の受波器としては、断面略半楕
円形のシェルの短軸方向の音響放射面1A上に音波の受
波用とする高分子圧電材4を装着する事によって実現さ
せるものである。高分子圧電材4は、音響的に透明、高
感度である。また、軽量で可とう性があり容易に切り張
りができ、音響放射面1Aの形状にしたがって重合して
装着ができる。
In order to realize a small, lightweight, high-power sound source with a low frequency, it is necessary to drive the acoustic radiation surface with a large amplitude.
A shell-type transmitter having a substantially semi-elliptical cross section is suitable. That is,
A piezoelectric ceramic having a structure that is laminated along the major axis direction is incorporated in a shell having a substantially semi-elliptical cross section made of metallic housing, and an alternating voltage is applied to the piezoelectric ceramic to excite the shell, thereby shortening the shell having a substantially semi-elliptical cross section. A high-output small and lightweight sound source is obtained by a mechanism for bending and vibrating an axial arc surface with a large amplitude. A high-sensitivity receiver is realized by mounting a polymer piezoelectric material 4 for receiving sound waves on the acoustic emission surface 1A in the short axis direction of a shell having a substantially semi-elliptical cross section. is there. The polymer piezoelectric material 4 is acoustically transparent and highly sensitive. Moreover, it is lightweight and flexible, can be easily cut, and can be mounted by overlapping according to the shape of the sound emitting surface 1A.

【0007】[0007]

【作用】本発明の水中用送受波器は、受波部一体型音源
の構成になり、高感度受波器及び小型軽量の高出力音源
が得られるほか、従来の供試体の反射能測定では、水中
用送波器、水中用受波器及び供試体の3式の吊下で大掛
かりな仕掛けと準備が必要であったが、本発明では小型
軽量の受波部一体型音源と供試体の2式だけの吊下とな
って、作業性や計測の制限は大幅に軽減されることにな
る。本発明の受波部一体型音源によって、供試体の反射
能を計測する場合には、供試体との配置間隔は従来の水
中用受波器の位置にセットすればよく、これによって、
供試体と受波部一体型音源との間隔が狭まることによ
り、S/N(信号対雑音)比が高くなり、精度のより高
い計測が可能となる。また、送波音源の送波レベルの監
視のために、従来の送波器では音源の周辺部に補強等を
行ってモニタ用の受波器を別個に取り付ける煩雑さがあ
った。本発明の水中用送受波器では、高分子圧電材によ
って容易にモニタができるので、その煩雑さはない。
The underwater transmitter / receiver of the present invention has a structure of an integrated sound source of a receiving part, so that a high-sensitivity receiver and a small and lightweight high-output sound source can be obtained. The underwater transmitter, the underwater receiver, and the suspension of the specimen required large-scale setup and preparation under three types of suspensions. However, in the present invention, a small and light-weighted receiver integrated sound source and the specimen are required. With only two sets of suspension, workability and measurement limitations are greatly reduced. In the case of measuring the reflectivity of a test object by the sound receiving unit integrated sound source of the present invention, the arrangement interval between the test object and the test object may be set to the position of the conventional underwater receiver.
By reducing the distance between the test sample and the sound source integrated with the receiving unit, the S / N (signal-to-noise) ratio increases, and higher-precision measurement becomes possible. In addition, in order to monitor the transmission level of the transmitted sound source, the conventional transmitter has the trouble of reinforcing the peripheral portion of the sound source and separately mounting a monitor receiver. The underwater transducer according to the present invention can be easily monitored by the piezoelectric polymer material, so that there is no complexity.

【0008】[0008]

【実施例】以下本発明に係わる水中用送受波器の実施例
を図面に従って説明する。図1及び図2は、本発明の実
施例に係る水中用送受波器の1部切欠斜視図と横断面図
であって、これにより実施例を説明する。実施例の水中
用送受波器では、金属製ハウジィング111を構成する
断面略半楕円形のシェル1の内部に、その長軸方向に沿
って組み込んだ送波用素子すなわち電気音響変換素子と
しての積層圧電セラミック2へ送波信号線3から交番電
圧を印加して励振させる事によって、短軸方向のシェル
1の弧面を大振幅で屈曲振動させてシェル1の弧面とな
る音響放射面1Aから音波を送出する。また、シェル1
の平坦底面1Bから受波信号線5と送波信号線3を導出
させた。7は、積層圧電セラミック2の両端をシェル1
の長軸方向の内壁に結合する結合部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an underwater transducer according to the present invention will be described below with reference to the drawings. 1 and 2 are a partially cutaway perspective view and a cross-sectional view of an underwater transducer according to an embodiment of the present invention, which will be used to explain the embodiment. In the underwater transducer according to the embodiment, a wave transmitting element, that is, an electroacoustic transducer, which is built in a shell 1 having a substantially semi-elliptical cross section and constituting a metal housing 111 along a longitudinal direction thereof. By applying an alternating voltage from the transmission signal line 3 to the piezoelectric ceramic 2 to excite it, the arc surface of the shell 1 in the short-axis direction bends and vibrates with a large amplitude, and the acoustic emission surface 1A which becomes the arc surface of the shell 1 Transmits sound waves. Also shell 1
The receiving signal line 5 and the transmitting signal line 3 were derived from the flat bottom surface 1B of the above. Reference numeral 7 denotes a shell 1 at both ends of the laminated piezoelectric ceramic 2.
Is a connecting member that is connected to the inner wall in the long axis direction.

【0009】供試体からのエコーを受波するため、音響
放射面1A上に、音波の受波用とする高分子圧電材4を
装着し、受波信号線5から出力電圧を検出する。なお、
送波信号線3は、金属製ハウジィング111を貫通して
積層圧電セラミック2へ、受波信号線5は、高分子圧電
材4のリード線に各々接続されている。また、外周面の
受波用素子としての高分子圧電材4は接着等により装着
されているほか、金属製ハウジィング111を含めた全
体は、防水等のためにウレタンゴムモールド8してあ
る。高分子圧電材4及びウレタンゴムモールド8は、音
響的に透明であり、供試体からのエコーによる到来音波
はウレタンゴムモールド8を透過し高分子圧電材4に捕
捉され、音波に比例した電圧が誘起される。さらに、高
分子圧電材4を透過した音波は、短軸方向のシェル1に
も伝わり到来音波に比例した振動が起こる。それに伴っ
てさらに高分子圧電材4には機械的歪を発生する。それ
らは、電気的出力に変換されリード線を介して受波信号
線5から出力電圧が得られる。図において、矢印aは、
短軸方向振動変位、矢印bは長軸方向振動変位である。
このようにして、音波の送波と受波を別個にし、かつ、
送波、受波を同一面にしたことを特徴とする受波部一体
型音源としての水中用送受波器が得られる。
In order to receive an echo from a test sample, a polymer piezoelectric material 4 for receiving a sound wave is mounted on the acoustic radiation surface 1A, and an output voltage is detected from a reception signal line 5. In addition,
The transmission signal line 3 is connected to the laminated piezoelectric ceramic 2 through the metal housing 111, and the reception signal line 5 is connected to a lead wire of the polymer piezoelectric material 4. Further, the polymer piezoelectric material 4 as a wave receiving element on the outer peripheral surface is mounted by bonding or the like, and the entirety including the metal housing 111 is formed of a urethane rubber mold 8 for waterproofing or the like. The polymer piezoelectric material 4 and the urethane rubber mold 8 are acoustically transparent, and sound waves arriving by echoes from the specimen pass through the urethane rubber mold 8 and are captured by the polymer piezoelectric material 4, and a voltage proportional to the sound waves is generated. Induced. Further, the sound wave transmitted through the polymer piezoelectric material 4 is also transmitted to the shell 1 in the short-axis direction, and a vibration proportional to the incoming sound wave occurs. Along with this, mechanical strain is further generated in the polymer piezoelectric material 4. They are converted into electrical outputs, and an output voltage is obtained from the reception signal line 5 via a lead wire. In the figure, arrow a
The short axis vibration displacement, the arrow b is the long axis vibration displacement.
In this way, the transmission and reception of sound waves are separated, and
An underwater transmitter / receiver as a sound source integrated with a receiving unit, wherein the transmitting and receiving waves are on the same plane is obtained.

【0010】この実施例に係る水中用送受波器は、複数
の水中用送受波器を、その底面1Bの側を架台上面に設
置させるようにして取り付けることにより、総合された
高出力の送受波信号を得るのに適している。
The underwater transducer according to this embodiment is provided with a plurality of underwater transducers such that the bottom surface 1B of the underwater transducer is mounted on the top of the gantry, so that a high-output integrated transducer is provided. Suitable for getting signals.

【0011】[0011]

【発明の効果】以上説明したように、本発明の水中用送
受波器によれば、送波用の音響放射面1A上に音波の受
波用とする高分子圧電材4を重合状に装着して、同一面
上に送波部(音源)と受波部を一体的に有する構成とし
たので、計測時には、この受波部一体型音源と供試体の
2式だけの吊下となって、作業性や計測の制限は大幅に
軽減されることになる。さらに、エコーの音波により高
分子圧電材4に印加された圧力変化及び同エコー音波に
よる金属製ハウジングの振動歪みによって高分子圧電材
4で誘起される出力電圧の両方の重畳された出力電圧が
得られる。従って、高感度となるほか、S/N(信号対
雑音)比が向上することによって、信号処理に大して好
結果をもたらす大きな利点がある。また、供試体と受波
部一体型音源との間隔が狭まることにより、S/N比が
高くなり、精度のより高い計測が可能となる優れた効果
がある。さらに、複数の水中用送受波器を、その底面1
Bの側を架台上面に設置させるようにして取り付けるこ
とにより、総合された高出力の送受波信号を得ることが
できる。さらにまた、ハウジングの平坦底面の距離を隔
てた位置に設けた孔から送波信号線と受波信号線を格別
に導出させるようにしたので、電気的誘導が避けられ、
この導出孔の径も最小となり、しかも、高分子圧電材の
外面及び送波信号線と受波信号線の導出孔部分を含むハ
ウジング外面の全体にウレタンゴムモールドを施して水
密構造としたので、水槽や試験船でケーブルによって水
中に吊り下げて単独で使用する水中用送受波器として適
しており、特に、耐水圧強度を必要とする深深度での計
測用水中用送受波器として優れている。
As described above, according to the underwater transducer of the present invention, the high-molecular piezoelectric material 4 for receiving sound waves is mounted on the acoustic radiation surface 1A for transmission in a superposed state. Since the transmitting unit (sound source) and the receiving unit are integrally provided on the same surface, only two sets of the receiving unit-integrated sound source and the sample are suspended during measurement. In addition, restrictions on workability and measurement are greatly reduced. Further, a superimposed output voltage of both the pressure change applied to the polymer piezoelectric material 4 by the echo sound wave and the output voltage induced by the polymer piezoelectric material 4 due to the vibration distortion of the metal housing by the echo sound wave is obtained. Can be Therefore, in addition to high sensitivity, there is a great advantage that the S / N (signal-to-noise) ratio is improved, so that the signal processing is greatly improved. In addition, since the distance between the test sample and the sound receiving unit integrated sound source is reduced, the S / N ratio is increased, and there is an excellent effect that measurement with higher accuracy is possible. Further, a plurality of underwater transducers are connected to the bottom 1
By attaching the B side so as to be installed on the top of the gantry, it is possible to obtain an integrated high-output transmitted / received signal. Furthermore, since the transmission signal line and the reception signal line are led out from the hole provided at a position spaced apart from the flat bottom surface of the housing, electrical induction is avoided,
Since the diameter of this lead-out hole is also minimized, and the entire outer surface of the housing including the outer surface of the polymer piezoelectric material and the lead-out hole portion of the transmission signal line and the reception signal line is formed with a urethane rubber mold to have a watertight structure, Suitable for underwater transducers that can be used alone by hanging them in water in a water tank or test boat using cables, and are particularly excellent as underwater transducers for measurement at deep depths that require water pressure resistance. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る水中用送受波器の1部切
欠斜視図である。
FIG. 1 is a partially cutaway perspective view of an underwater transducer according to an embodiment of the present invention.

【図2】上同横断面図である。FIG. 2 is a transverse sectional view of the same.

【符号の説明】[Explanation of symbols]

1 シェル、1A 音響放射面、1B 平
坦底面、2 積層圧電セラミック、3 送波信
号線、4 高分子圧電材、5 受波信号線、7
結合部材、8 ウレタンゴムモールド、11
1 ハウジング。
DESCRIPTION OF SYMBOLS 1 Shell, 1A sound emission surface, 1B flat bottom, 2 laminated piezoelectric ceramics, 3 transmission signal lines, 4 polymer piezoelectric materials, 5 reception signal lines, 7
Coupling member, 8 urethane rubber mold, 11
1 Housing.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気音響変換素子を収納した水中用送受
波器において、水中用送受波器の金属製ハウジングを断
面略半楕円形に形成し、該ハウジング内の断面略半楕円
形の長軸方向に沿って圧電セラミックを積層して組み込
み、これに交番電圧を印加してハウジングの短軸方向の
弧面を励振して送波用の音響放射面とし、該送波用の音
響放射面上に、音波の受波用とする高分子圧電材を装着
し、同一面上に上記音響放射面よりなる送波部と上記高
分子圧電材よりなる受波部とを重合して有する構成にな
り、ハウジングの前記弧面と対向する平坦底面の距離を
隔てた位置に設けた孔から送波信号線と受波信号線を格
別に導出させ、高分子圧電材の外面及び送波信号線と受
波信号線の導出孔部分を含むハウジング外面の全体にウ
レタンゴムモールドを施して水密構造としたことを特徴
とする水中用送受波器。
1. An underwater transducer in which an electroacoustic transducer is accommodated, wherein a metal housing of the underwater transducer is formed in a substantially semi-elliptical cross section, and a major axis of the semi-elliptical cross section in the housing is provided. Piezoelectric ceramics are laminated and assembled along the direction, and an alternating voltage is applied thereto to excite the arc surface in the short axis direction of the housing to provide an acoustic radiation surface for transmitting waves, and on the acoustic radiation surface for transmitting waves Is mounted with a polymer piezoelectric material for receiving acoustic waves, and has a configuration in which a wave transmitting portion made of the acoustic radiation surface and a wave receiving portion made of the polymer piezoelectric material are superimposed on the same surface. , The distance of the flat bottom surface facing the arc surface of the housing
Transmit and receive signal lines are separated from holes provided at separate locations.
Separately , and connected to the outer surface of the polymer piezoelectric material and the transmission signal line.
The entire outer surface of the housing including the outgoing hole for the
An underwater transmitter / receiver characterized by having a watertight structure by applying a rubber mold .
JP3235740A 1991-08-23 1991-08-23 Underwater transducer Expired - Lifetime JP2642812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3235740A JP2642812B2 (en) 1991-08-23 1991-08-23 Underwater transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3235740A JP2642812B2 (en) 1991-08-23 1991-08-23 Underwater transducer

Publications (2)

Publication Number Publication Date
JPH0556494A JPH0556494A (en) 1993-03-05
JP2642812B2 true JP2642812B2 (en) 1997-08-20

Family

ID=16990524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3235740A Expired - Lifetime JP2642812B2 (en) 1991-08-23 1991-08-23 Underwater transducer

Country Status (1)

Country Link
JP (1) JP2642812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929791B2 (en) * 2006-03-30 2012-05-09 日本電気株式会社 Underwater acoustic transmitter
JP5275833B2 (en) * 2009-01-29 2013-08-28 大成建設株式会社 Oscillator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123297A (en) * 1979-03-16 1980-09-22 Nec Corp Composite vibrator
JPS57190278A (en) * 1981-05-20 1982-11-22 Canon Inc Method and apparatus for measuring magnetic anisotropy
JPS59108891A (en) * 1982-12-11 1984-06-23 Nippon Piston Ring Co Ltd Rotary compressor
GB2141902B (en) * 1983-05-23 1986-09-17 Raytheon Co Composite transducer
JPH01277787A (en) * 1988-04-30 1989-11-08 Nec Corp Underwater ultrasonic transmitter/receiver
JPH03133300A (en) * 1989-10-19 1991-06-06 Fuji Electric Co Ltd Composite piezoelectric ultrasonic wave probe
JPH02186800A (en) * 1989-11-29 1990-07-23 Hitachi Ltd Elliptic cylinder bending type echo sounder transmitter-receiver

Also Published As

Publication number Publication date
JPH0556494A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US4305141A (en) Low-frequency directional sonar systems
JP5802886B1 (en) Spherical ultrasonic transducer, underwater measuring device
US3713086A (en) Hydrophone
JP4544285B2 (en) Ultrasonic sensor
US4709359A (en) End weighted reed sound transducer
JP2642812B2 (en) Underwater transducer
US3221296A (en) Spherical hydrophone
CA2257584C (en) Acoustic transducer system
CN110058213B (en) Adjustable acoustic isolation testing system and method
CN110523608B (en) Integrated double-frequency transducer
US4131874A (en) Inertial balanced dipole hydrophone
JP3906338B2 (en) Optical receiver integrated underwater transducer
JP3030428B2 (en) Cylindrical hydrophone
US4188609A (en) Low frequency hydrophone
CN110850476A (en) Underwater sound positioning and underwater sound detection integrated sensor for ocean seismic node
CN215932137U (en) Ultrasonic sensor
JP3002722B2 (en) Cylindrical cardioid hydrophone
GB2120902A (en) Underwater acoustic devices
SU1749870A1 (en) Probe of down-hole logging instrument for wave acoustic logging
JP2985817B2 (en) Multi-frequency acoustic buoy
JPH02141685A (en) Transducer attitude detection type sonobuoy
RU18866U1 (en) HYDROACOUSTIC ANTENNA SECTION
CN115077680A (en) Internal suspension acoustic vector sensor
RU151669U1 (en) ANTENNA SYSTEM OF FISHING UNDER SIDE REVIEW AND HYDROLOCATOR
CN116184416A (en) High-integration multifunctional underwater acoustic transducer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term