JP2641274B2 - Liquid crystal-forming polymer and method for producing the same - Google Patents

Liquid crystal-forming polymer and method for producing the same

Info

Publication number
JP2641274B2
JP2641274B2 JP63279478A JP27947888A JP2641274B2 JP 2641274 B2 JP2641274 B2 JP 2641274B2 JP 63279478 A JP63279478 A JP 63279478A JP 27947888 A JP27947888 A JP 27947888A JP 2641274 B2 JP2641274 B2 JP 2641274B2
Authority
JP
Japan
Prior art keywords
polymer
liquid crystal
monomer
acid
forming polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63279478A
Other languages
Japanese (ja)
Other versions
JPH02129149A (en
Inventor
直之 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63279478A priority Critical patent/JP2641274B2/en
Publication of JPH02129149A publication Critical patent/JPH02129149A/en
Application granted granted Critical
Publication of JP2641274B2 publication Critical patent/JP2641274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、表示素子、光記録媒体、非線形光学素子な
どの分野に有用な高速応答性を示す新規液晶形成性高分
子を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention provides a novel liquid crystal-forming polymer exhibiting high-speed response, which is useful in fields such as display devices, optical recording media, and nonlinear optical devices. is there.

<従来の技術> 従来、液晶化合物は代表的な表示材料として知られ、
時計、電卓、小型テレビジョンなどの分野に使われてい
る。近年、表示機能の進歩に伴い、素子材料の固体化に
対する要請が高まっており、かかる観点から従来の低分
子液晶に加えて液晶高分子に対する溶請も高まってい
る。また、液晶高分子に関しては、表示素子への応用の
他に、光記録材料への応用も期待がよせられている。
<Conventional technology> Conventionally, liquid crystal compounds are known as typical display materials,
It is used in fields such as watches, calculators, and small televisions. In recent years, with the progress of display functions, demands for solidification of element materials have been increasing, and from such a viewpoint, the demand for liquid crystal polymers in addition to conventional low molecular liquid crystals has also increased. In addition to liquid crystal polymers, application to optical recording materials is expected in addition to application to display elements.

しかしながら、一般に知られている液晶高分子は、高
分子であるが故に電気光学効果による応答性が低い欠点
を内包している。その欠点を回避するために、高分子鎖
の大きな変位に伴わないでも液晶相転移を起こす強誘電
性カイラル液晶が提案されているが、まだ十分に要求性
能を満足するような実用域には至っていない。
However, the generally known liquid crystal polymer has a disadvantage that the response due to the electro-optic effect is low because it is a polymer. To avoid the drawbacks, ferroelectric chiral liquid crystals have been proposed that cause a liquid crystal phase transition even without a large displacement of the polymer chain, but have yet to reach a practical range where the required performance can be sufficiently satisfied. Not in.

一方、液晶高分子は電場や磁場により配向する性質が
あり、その性質を利用することによりその双極子を揃え
ることができるために非線形光学材料としての期待も高
まっている。この材料は、光通信や光IC分野において面
として薄膜導波路の形態で用いられる。しかしながら一
般に、非線形光学特性を示す高分子はパターン形成性が
ないために微細回路を形成することは困難であった。
On the other hand, liquid crystal polymers have the property of being oriented by an electric or magnetic field, and their dipoles can be aligned by utilizing the property, so that expectations as a nonlinear optical material are increasing. This material is used in the form of a thin film waveguide as a surface in the optical communication and optical IC fields. However, in general, it is difficult to form a fine circuit because a polymer exhibiting non-linear optical characteristics has no pattern-forming property.

<問題を解決するための手段> 本発明者らは、上記の問題を解決すべく鋭意検討した
結果、感光性を示すケイヒ酸のカイラルなアルキルエス
テル構造を(メタ)アクリル酸重合体側鎖のメソーゲン
成分として導入することにより、カイラル基を有する高
分子を得、この高分子がSc液晶を形成し、かつ、この
薄膜に活性光線を照射することにより照射部分が架橋し
導波路が形成されることを見いだし、本発明に到達し
た。
<Means for Solving the Problem> The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have found that a chiral alkyl ester structure of cinnamic acid exhibiting photosensitivity is converted into a mesogen of a (meth) acrylic acid polymer side chain. By introducing as a component, a polymer having a chiral group is obtained, and this polymer forms Sc * liquid crystal, and when this thin film is irradiated with actinic rays, the irradiated portion is cross-linked to form a waveguide. This has led to the present invention.

すなわち、本発明は、 1.下記一般式: で示される液晶形成性重合体製造要単量体、 2.下記一般式: で示される繰り返し単位(A)から成る液晶形成性重合
体(II)、 3.前記一般式(I)で示される単量体をラジカル重合開
始剤の存在下、加熱重合することを特徴とする液晶形成
重合体(II)の製造法、及び 4.前記重合体(II)から成る膜に活性光線を照射するこ
とを特徴とするパターン形成法 である。
That is, the present invention relates to: 1. The following general formula: A monomer required for producing a liquid crystal-forming polymer represented by the formula: 2. The following general formula: A liquid crystal-forming polymer (II) comprising a repeating unit (A) represented by the following formula: 3. characterized in that the monomer represented by the general formula (I) is polymerized by heating in the presence of a radical polymerization initiator. A method for producing a liquid crystal-forming polymer (II); and 4. a pattern forming method, which comprises irradiating actinic rays to a film made of the polymer (II).

以下に本発明を詳述する。 Hereinafter, the present invention will be described in detail.

前記一般式(I)で示される単量体(以下単量体
(I)とする)および(A)で示される繰り返し単位を
有する重合体(II)(以下単量体(II)とする)におい
て、R1は水素原子、塩素原子またはメチル基である。ま
た、R2は液晶高分子において主鎖と則鎖のメソーゲン基
とを結合する柔軟(フレキシブル)基であり、炭素数2
〜20、好ましくは4〜15の直鎖および分岐鎖のアルキレ
ン基から選ばれる。その役割は、液晶を示すメソーゲン
基に主鎖の影響を及ぼさないように遮断する役割をす
る。
A polymer (II) having a monomer represented by the general formula (I) (hereinafter referred to as monomer (I)) and a repeating unit represented by (A) (hereinafter referred to as monomer (II)) In the formula, R 1 is a hydrogen atom, a chlorine atom or a methyl group. R 2 is a flexible (flexible) group that links the main chain and the regular mesogen group in the liquid crystal polymer, and has 2 carbon atoms.
-20, preferably 4-15 linear and branched alkylene groups. Its role is to block the mesogen group representing the liquid crystal from affecting the main chain.

nは0または1であり、また、Xは水素原子、塩素原
子、メチル基またはシアノ基である。nとXは吸収スペ
クトルに影響を及ぼし、nは0よりも1、またRはHよ
りもCNである単量体(I)および重合体(II)がより長
波長の最大吸収波長を示し、かつ、より長波長の光に感
光る。
n is 0 or 1, and X is a hydrogen atom, a chlorine atom, a methyl group or a cyano group. n and X affect the absorption spectrum, where n is 1 more than 0 and R is CN than H, monomer (I) and polymer (II) exhibit the longer maximum absorption wavelength; In addition, it is sensitive to longer wavelength light.

本発明において、重合体に用いられる、R1、R2、nお
よびXは一種であってもよいし二種以上であってもよ
い。これらの適宜組み合わせることにより、液晶性や液
晶相転移温度を制御することができる。
In the present invention, R 1 , R 2 , n and X used in the polymer may be one kind or two or more kinds. By appropriately combining these, the liquid crystallinity and the liquid crystal phase transition temperature can be controlled.

R3 は、炭素原子数4から15の不整炭素原子を有する
に光学活性の一価の鎖状または環状のアルキル基であ
る。一般に、不整炭素原子を有するアルキル基でも光学
不活性、いいかえれば、ラセミ体では、Scを示すカイ
ラルな液晶は得られないので好ましくない。具体的な例
としてR−およびS−2−ブチル基、R−およびS−2
−ヘプチル基、R−およびS−3−メチル−2−ブチル
基、R−およびS−2−オクチル基、R−およびS−1
−ペンチル基、メンチル基などが挙げられる。
R 3 * is an optically active monovalent linear or cyclic alkyl group having an asymmetric carbon atom having 4 to 15 carbon atoms. In general, even an alkyl group having an asymmetric carbon atom is optically inactive. In other words, a racemic form is not preferable because a chiral liquid crystal showing Sc * cannot be obtained. As specific examples, R- and S-2-butyl groups, R- and S-2
-Heptyl group, R- and S-3-methyl-2-butyl group, R- and S-2-octyl group, R- and S-1
-A pentyl group and a menthyl group.

また、本発明の特徴を損わない範囲で、前記式(II)
で示される繰り返し単位を有する重合体中には、(II)
の繰り返し単位以外の液晶性を示す、繰り返し単位が含
まれていてもよい。
In addition, as long as the characteristics of the present invention are not impaired, the formula (II)
In the polymer having the repeating unit represented by the formula (II),
And repeating units exhibiting liquid crystal properties other than the repeating units described above.

これらの単量体(I)の製造法は特に限定はないが、
次式に示すように、ヒドロキシアルキルオキシ安息香酸
の水酸基を(メタ)アクリル酸でアシル化した後、酸ク
ロリドに誘導することにより活性化し、ついで、これと
p−ヒドロキシケイヒ酸、p−ヒドロキシシンナミリデ
ン酢酸あるいはそれらのシアノ誘導体とをカップリング
し、最後に光学活性アルコールによりエステル化する方
法が好ましい。
The method for producing these monomers (I) is not particularly limited,
As shown in the following formula, after the hydroxyl group of hydroxyalkyloxybenzoic acid is acylated with (meth) acrylic acid, it is activated by derivatization to an acid chloride, and then activated with p-hydroxycinnamic acid and p-hydroxycinnamate. A method of coupling mylideneacetic acid or a cyano derivative thereof and finally esterifying with an optically active alcohol is preferred.

また、(メタ)アクリロイルオキシアルキルオキシ安
息香酸クロリドとp−ヒドロキシケイヒ酸、p−ヒドロ
キシシンナミリデン酢酸あるいはそれらのシアノ誘導体
の光学活性アルキルエステルとをカップリングする方法
も好適に用いられる。
Further, a method of coupling (meth) acryloyloxyalkyloxybenzoic acid chloride with an optically active alkyl ester of p-hydroxycinnamic acid, p-hydroxycinnamylideneacetic acid, or a cyano derivative thereof is also preferably used.

重合体(II)は単量体(I)をラジカル重合すること
により製造することができる。
The polymer (II) can be produced by subjecting the monomer (I) to radical polymerization.

ラジカル重合開始剤としては特に限定はないが、過酸
化ジ第三ブチル、過酸化ベンゾイルなどの過酸化物、ア
ゾビスイソブチロニトリルなどのアゾ化合物などが好ま
しく用いられる。反応は通常有機溶媒中で行われる。好
ましい例として、ベンゼン、ヘキサン、シクロヘキサ
ン、エーテル、ジオキサン、酢酸メチル、メチルエチル
ケトン、クロロホルム、ジメチルホルムアミド、ジメチ
ルアセトアミド等の有機溶媒が挙げられる。重合温度は
一般に30〜200℃、好ましくは50〜120℃が用いられる。
The radical polymerization initiator is not particularly limited, but peroxides such as di-tert-butyl peroxide and benzoyl peroxide, and azo compounds such as azobisisobutyronitrile are preferably used. The reaction is usually performed in an organic solvent. Preferred examples include organic solvents such as benzene, hexane, cyclohexane, ether, dioxane, methyl acetate, methyl ethyl ketone, chloroform, dimethylformamide, and dimethylacetamide. The polymerization temperature is generally 30 to 200 ° C, preferably 50 to 120 ° C.

本発明で得られる単量体(I)および重合体(II)の
構造解析は、例えば元素分析、赤外吸収スペクトル、紫
外−可視吸収スペクトル、概磁気共鳴吸収スペクトル等
で行うことができる。
The structural analysis of the monomer (I) and the polymer (II) obtained in the present invention can be performed by, for example, elemental analysis, infrared absorption spectrum, ultraviolet-visible absorption spectrum, near magnetic resonance absorption spectrum and the like.

重合体(II)からなる膜は、それに活性光線を照射す
ることによりパターンを形成することができる。この場
合、前記式(A)で示される繰り返し単位中の二重結合
が光化学反応することにより架橋硬化する。塗工法とし
ては、特に限定はないが、一般に有機溶剤に溶解してド
クターナイフ法、バーコーター法、スピンコーター法、
グラビアコーティング法等により乾式製膜される。その
際、安定剤、増感剤などを添加しても差し支えない。回
路形成のための活性光線としては、紫外線、可視光線、
電子線などが好ましく使われる。
The film made of the polymer (II) can form a pattern by irradiating it with actinic rays. In this case, the double bond in the repeating unit represented by the formula (A) undergoes a photochemical reaction to be crosslinked and cured. The coating method is not particularly limited, but is generally dissolved in an organic solvent and then applied to a doctor knife method, a bar coater method, a spin coater method,
A dry film is formed by a gravure coating method or the like. At that time, a stabilizer, a sensitizer and the like may be added. Active rays for forming a circuit include ultraviolet rays, visible rays,
An electron beam or the like is preferably used.

<作用> かくして得られた液晶形成性重合体は、表示素子、記
録媒体、非線形光学素子などとして、情報記録分野、通
信分野に有用な材料を提供するものである。
<Function> The liquid crystal-forming polymer thus obtained provides a material useful in the information recording field and the communication field as a display element, a recording medium, a nonlinear optical element, and the like.

<実施例> 以下、本発明を実施例により説明する。但し、本発明
は、これに限定されない。
<Example> Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to this.

実施例1 単量体(I)および重合体(II)の内、R1=H、R2
−(CH211−、n=0、X=CNおよびR3 =−CH2CH
(CH3)C2H5について述べる。
Example 1 Among the monomer (I) and the polymer (II), R 1 = H and R 2 =
- (CH 2) 11 -, n = 0, X = CN and R 3 * = -CH 2 CH
(CH 3 ) C 2 H 5 will be described.

p−ヒドロキシ安息香酸(1)27.6部を触媒量のヨウ
化カリウムを含む当モルのアルコール性水酸化カリウム
溶液に加えた。ついで、ω−ブロモウンデカノール50.2
部を添加して5時間加熱還流した。反応混合物を酸析し
て、得られた固体を濾別し、エタノール/水混合溶媒か
ら再結晶してω−ヒドロキシウンデシルオキシ安息香酸
(2)を52.4部得た。
27.6 parts of p-hydroxybenzoic acid (1) were added to an equimolar alcoholic potassium hydroxide solution containing a catalytic amount of potassium iodide. Then, ω-bromoundecanol 50.2
The mixture was heated at reflux for 5 hours. The reaction mixture was subjected to acid precipitation, and the obtained solid was separated by filtration and recrystallized from a mixed solvent of ethanol / water to obtain 52.4 parts of ω-hydroxyundecyloxybenzoic acid (2).

得られた化合物(2)31.0部およびアクリル酸7.2部
をクロロホルムに加え、p−トルエンスルホン酸0.6部
を触媒として添加し、18時間加熱還流した。反応中に副
生した水はベンゼンとともに共沸留去した。反応後、溶
媒を留去し、得られた固形物を水洗し、化合物(3)を
30部得た。
31.0 parts of the obtained compound (2) and 7.2 parts of acrylic acid were added to chloroform, 0.6 parts of p-toluenesulfonic acid was added as a catalyst, and the mixture was heated under reflux for 18 hours. Water by-produced during the reaction was distilled off azeotropically with benzene. After the reaction, the solvent was distilled off, and the obtained solid was washed with water to give compound (3).
30 copies were obtained.

化合物(3)18部を塩化チオニル7.0部に加え、1時
間加熱還流した。反応終了後、溶媒および副生成物を留
去し、これをα−シアノ−p−ヒドロキシケイヒ酸9.0
部を含む当モルのトリエチルアミンを含むテトラヒドロ
フラン溶液に冷却下で添加した。反応混合物を水中に投
入し、析出した沈殿を濾別し、テトラヒドロフランから
再結晶またはクロマト分離して化合物(4)20.0部を得
た。
18 parts of the compound (3) was added to 7.0 parts of thionyl chloride, and the mixture was heated under reflux for 1 hour. After completion of the reaction, the solvent and by-products were distilled off, and this was treated with α-cyano-p-hydroxycinnamic acid 9.0.
Was added under cooling to a solution of equimolar triethylamine in tetrahydrofuran. The reaction mixture was poured into water, and the deposited precipitate was separated by filtration, and recrystallized or separated by chromatography from tetrahydrofuran to obtain 20.0 parts of compound (4).

化合物(4)20.0部を塩化チオニル6.0部を含むベン
ゼン溶液に加え、5時間加熱還流した。溶媒、未反応物
および副生成物を留去後、(+)−2−メチル−1−ブ
タノール4.0部を含むピリジン溶液に冷却下で添加し
た。反応混合物を水に投入し、精製固体をテトラヒドロ
フランから再結晶することにより目的物単量体(I)を
15部得た。
20.0 parts of compound (4) was added to a benzene solution containing 6.0 parts of thionyl chloride, and the mixture was heated under reflux for 5 hours. After evaporating the solvent, unreacted materials and by-products, the mixture was added to a pyridine solution containing 4.0 parts of (+)-2-methyl-1-butanol under cooling. The reaction mixture was poured into water, and the purified solid was recrystallized from tetrahydrofuran to obtain the desired monomer (I).
I got 15 parts.

単量体(I)の元素分析値はC71.15%、H7.90%、N2.
21%であり、理論値C71.62%、H7.51%、N2.32%と良好
な一致を示した。また、この物質の赤外吸収スペクトル
は1710cm-1近傍にエステル結合の伸縮振動に基づく特性
吸収を、1610cm-1近傍にケイヒ酸エステル結合のC=C
二重結合に基づく特性吸収を、また、2220cm-1にシアノ
基の特性吸収を示した。また、紫外−可視吸収スペクト
ルは340cmにα−シアノケイヒ酸結合に基づく特性吸収
を示した。
The elemental analysis values of the monomer (I) were C71.15%, H7.90%, N2.
This was 21%, which was in good agreement with the theoretical values of C 71.62%, H 7.51%, and N 2.32%. Further, the infrared absorption spectrum characteristic absorption based on the stretching vibration of ester bond near 1710 cm -1 of this material, the cinnamic acid ester bond near 1610 cm -1 C = C
The characteristic absorption based on the double bond and the characteristic absorption of the cyano group at 2220 cm −1 were exhibited. Further, the ultraviolet-visible absorption spectrum showed a characteristic absorption at 340 cm based on the α-cyanocinnamic acid bond.

単量体(I)、1.0部をベンゼンに溶解し、アゾビス
イソブチロニトリル0.01部を添加し、60℃で18時間加熱
重合した。重合後、再沈殿精製することにより重合体
(II)を0.95部得た。
1.0 part of the monomer (I) was dissolved in benzene, 0.01 part of azobisisobutyronitrile was added, and the mixture was heated and polymerized at 60 ° C. for 18 hours. After the polymerization, reprecipitation purification was performed to obtain 0.95 part of a polymer (II).

得られた重合体のゲルパーミエーションクロマグラフ
法によるスチレン換算の分子量は15,000であった。この
重合体は75℃にガラスに転移点を示し、104℃にスメチ
ックのC(S)の液晶構造からネマチック(N)の
液晶構造への転移点を、また143℃にネマチック(N)
の液晶構造から等方性(I)構造への転移点を示した。
The molecular weight of the obtained polymer in terms of styrene by gel permeation chromatography was 15,000. This polymer exhibits a transition point in glass at 75 ° C., a transition point from a smectic C * (S * ) liquid crystal structure to a nematic (N) liquid crystal structure at 104 ° C., and a nematic (N) transition at 143 ° C.
The transition point from the liquid crystal structure to the isotropic (I) structure was shown.

この重合体をクロロホルムに溶解しスピンコーティン
グ法により塗工し2.5μmの塗膜を得た。得られた塗膜
に2KW高圧水銀灯により1分紫外線照射を行ったとこ
ろ、照射部分は不溶化した。不溶化した部分の赤外吸収
スペクトルには、α−シアノケイヒ酸結合のC=C二重
結合に基づく1610cm-1の特性吸収の強度が著しく低下
し、光架橋が起こっていることが確認された。
This polymer was dissolved in chloroform and applied by a spin coating method to obtain a 2.5 μm coated film. When the obtained coating film was irradiated with ultraviolet light for 1 minute using a 2KW high-pressure mercury lamp, the irradiated portion was insolubilized. In the infrared absorption spectrum of the insolubilized portion, it was confirmed that the intensity of the characteristic absorption at 1610 cm -1 based on the C = C double bond of the α-cyanocinnamic acid bond was significantly reduced, and that photocrosslinking had occurred.

実施例2 単量体(I)および重合体(II)の内、R1=H、R2
−(CH211−、n=0、X=HおよびR3 =−CH2CH
(CH3)C2H5について述べる。
Example 2 Among the monomer (I) and the polymer (II), R 1 = H and R 2 =
- (CH 2) 11 -, n = 0, X = H and R 3 * = -CH 2 CH
(CH 3 ) C 2 H 5 will be described.

実施例1のα−シアノ−p−ヒドロキシケイヒ酸をp
−ヒドロキシケイヒ酸に代えただけで、同様の方法によ
り単量体(I)を得た。この化合物の元素分析値は、C7
2.15%、H8.30%であり、理論値C72.64%、H8.01%と良
好な一致を示した。赤外吸収スペクトルは1710cm-1近傍
にエステル結合の特性吸収、1630cm-1にケイヒ酸エステ
ル結合のC=C二重結合に基づく特性吸収を示した。紫
外−可視吸収スペクトルは310cmに吸収極大を示した。
The α-cyano-p-hydroxycinnamic acid of Example 1 was replaced with p
-Monomer (I) was obtained in the same manner except that hydroxycinnamic acid was replaced. Elemental analysis of this compound gave C7
The values were 2.15% and H 8.30%, showing good agreement with the theoretical values of C 72.64% and H 8.01%. The infrared absorption spectrum showed a characteristic absorption at 1710 cm -1 near the ester bond and a characteristic absorption at 1630 cm -1 based on the C = C double bond of the cinnamate bond. The ultraviolet-visible absorption spectrum showed an absorption maximum at 310 cm.

単量体(I)、1.0部をベンゾイルペルオキシド0.01
部をベンゼンに溶解し70℃で24時間加熱反応した。得ら
れた重合体を再沈殿精製することにより重合体(II)を
0.83部得た。この重合体の分子量は17,000であった。こ
の重合体は液晶相を示した。また、この重合体を実施例
1と同様の方法により塗工し、得られた塗膜に紫外線照
射を行ったところ、照射部分は不溶化した。
Monomer (I), 1.0 part was added to benzoyl peroxide 0.01
A part was dissolved in benzene and reacted by heating at 70 ° C for 24 hours. The polymer (II) is purified by reprecipitation purification of the obtained polymer.
0.83 parts were obtained. The molecular weight of this polymer was 17,000. This polymer showed a liquid crystal phase. This polymer was applied in the same manner as in Example 1, and the resulting coating film was irradiated with ultraviolet light, whereby the irradiated portion was insolubilized.

実施例3 単量体(I)および重合体(II)の内、R1=CH3、R2
=−(CH2−、n=1、X=CNおよびR3 =−CH(C
H3)C6H13について述べる。
Example 3 Among the monomer (I) and the polymer (II), R 1 CHCH 3 , R 2
= - (CH 2) 6 - , n = 1, X = CN and R 3 * = -CH (C
H 3 ) C 6 H 13 will be described.

実施例1のω−ブロモウンデカノールをω−ブロモヘ
キサノールに、α−シアノ−p−ヒドロキシケイヒ酸を
p−ヒドロキシシンナミリデン酢酸に、また、2−メチ
ル−1−ブタノールを(+)−2−オクタノールに代え
て、実施例1と同様の方法で単量体(I)を得た。
In Example 1, ω-bromoundecanol was used as ω-bromohexanol, α-cyano-p-hydroxycinnamic acid was used as p-hydroxycinnamylideneacetic acid, and 2-methyl-1-butanol was used as (+)-. Monomer (I) was obtained in the same manner as in Example 1 in place of 2-octanol.

この化合物の赤外吸収スペクトルは1710cm-1にエステ
ルに基づく特性吸収を、2230cm-1にエステルに基づく特
性吸収、1610cm-1近傍にシンナミリデン酢酸エステル結
合のC=C二重結合に基づく特性吸収を示した。元素分
析値は、C71.15%、H7.53%、N2.15%を示し、理論値C7
1.85%、H7.20%、N2.33%と良好な一致を示した。
The infrared absorption spectrum of this compound shows the characteristic absorption based on the ester at 1710 cm −1 , the characteristic absorption based on the ester at 2230 cm −1 , and the characteristic absorption based on the C = C double bond of the cinnammylidene acetate bond near 1610 cm −1. Indicated. Elemental analysis values were as follows: C 71.15%, H 7.53%, N 2.15%, theoretical value C7
1.85%, H7.20% and N2.33% showed good agreement.

単量体(I)1.0部とアゾビスイソブチロニトリル0.0
1部とをベンゼンに溶解し60℃で24時間加熱重合し、重
合体(II)を得た。この重合体の分子量は12,000であっ
た。得られた重合体を塗工して、塗膜にネガフイルムを
覆いその上から紫外線照射をしたところパターンが得ら
れた。
1.0 part of monomer (I) and 0.0 of azobisisobutyronitrile
One part was dissolved in benzene and polymerized by heating at 60 ° C. for 24 hours to obtain a polymer (II). The molecular weight of this polymer was 12,000. The obtained polymer was applied, the coating film was covered with a negative film, and the film was irradiated with ultraviolet light to obtain a pattern.

実施例4 単量体(I)および重合体(II)の内、R1=H、R2
−(CH2−、n=1、X=HおよびR3 =メンチル
基について述べる。
Example 4 Among the monomer (I) and the polymer (II), R 1 = H and R 2 =
— (CH 2 ) 4 —, n = 1, X = H and R 3 * = menthyl group will be described.

実施例1のω−ブロモウンデカノールをω−ブロモブ
タノールに、α−シアノ−p−ヒドロキシケイヒ酸をp
−ヒドロキシシンナミリデン酢酸に、2−メチル−1−
ブタノールを(+)−メントールに代えて、実施例1と
同様の方法で単量体(I)を得た。
The ω-bromoundecanol of Example 1 was replaced with ω-bromobutanol, and α-cyano-p-hydroxycinnamic acid was replaced with p.
-Hydroxycinnamylideneacetic acid to 2-methyl-1-
Monomer (I) was obtained in the same manner as in Example 1, except that butanol was replaced with (+)-menthol.

この化合物の赤外吸収スペクトルは1710cm-1にエステ
ル結合に基づく吸収を、1620cm-1近傍にシンナミリデン
酢酸エステル結合に基づく特性吸収を示した。紫外−可
視吸収は、350nmにシンナミリデン酢酸エステル結合に
基づく特性吸収を示した。元素分析値はC73.56%、H7.9
3%であり、理論値C73.73%、H7.669と良好な一致を示
した。
Infrared absorption spectrum of this compound an absorption based on an ester bond to 1710 cm -1, showing a characteristic absorption based on cuminic acid ester bond near 1620 cm -1. Ultraviolet-visible absorption showed a characteristic absorption at 350 nm based on cinnamylidene acetate bond. Elemental analysis: C 73.56%, H 7.9
3%, which is in good agreement with the theoretical value of C73.73% and H7.669.

単量体(I)、1.0部をアゾビスイソブチロニトリル
0.01部とをベンゼンに溶解し60℃で24時間加熱重合し、
重合体(II)を得た。このものの分子量は15,000であっ
た。重合体を実施例1と同様の方法で塗工して、紫外線
照射を行ったところ、照射部分は不溶化した。
Monomer (I), 1.0 part was azobisisobutyronitrile
0.01 parts and dissolved in benzene and polymerized by heating at 60 ° C for 24 hours.
Polymer (II) was obtained. Its molecular weight was 15,000. When the polymer was applied in the same manner as in Example 1 and irradiated with ultraviolet light, the irradiated portion was insolubilized.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09K 19/38 C09K 19/38 G02F 1/13 500 G02F 1/13 500 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C09K 19/38 C09K 19/38 G02F 1/13 500 G02F 1/13 500

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式: で示される液晶形成性重合体製造用単量体。(1) The following general formula: And a monomer for producing a liquid crystal-forming polymer. 【請求項2】下記一般式: で示される繰り返し単位(A)から成る液晶形成性重合
体(II)。
2. The following general formula: A liquid crystal-forming polymer (II) comprising a repeating unit (A) represented by the formula:
【請求項3】前記一般式(I)で示される単量体をラジ
カル重合開始剤の存在下、加熱重合することを特徴とす
る液晶形成重合体(II)の製造法。
3. A process for producing a liquid crystal-forming polymer (II), comprising subjecting the monomer represented by the general formula (I) to heat polymerization in the presence of a radical polymerization initiator.
【請求項4】前記重合体(II)から成る膜に活性光線を
照射することを特徴とするパターン形成法。
4. A pattern forming method comprising irradiating a film comprising the polymer (II) with actinic rays.
JP63279478A 1988-11-07 1988-11-07 Liquid crystal-forming polymer and method for producing the same Expired - Fee Related JP2641274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279478A JP2641274B2 (en) 1988-11-07 1988-11-07 Liquid crystal-forming polymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279478A JP2641274B2 (en) 1988-11-07 1988-11-07 Liquid crystal-forming polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02129149A JPH02129149A (en) 1990-05-17
JP2641274B2 true JP2641274B2 (en) 1997-08-13

Family

ID=17611607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279478A Expired - Fee Related JP2641274B2 (en) 1988-11-07 1988-11-07 Liquid crystal-forming polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2641274B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465116B2 (en) * 2010-12-23 2019-11-05 Rolic Ag Photoactive polymer materials
CN103619803B (en) 2011-05-31 2016-01-20 Dic株式会社 Cinnamic acid derivative and polymkeric substance thereof and the liquid crystal aligning layer be made up of its cured article

Also Published As

Publication number Publication date
JPH02129149A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US5567349A (en) Photo cross-linkable liquid crystals
KR100779368B1 (en) Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
JP3228348B2 (en) Polymer liquid crystal compound, liquid crystal composition and liquid crystal element
JP4900632B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
KR101411898B1 (en) Polymerizable compound and polymerizable composition
JP3948799B2 (en) Trifunctional compounds and polymer liquid crystals
US5427828A (en) Cholesteric liquid crystal and polymer dispersed liquid crystal display device utilizing the same
US4696990A (en) Novel photocrosslinkable liquid crystalline polymers
JPS63113526A (en) Side chain type liquid crystalline high polymer medium showing 3-d non-linear optical response
KR100850630B1 (en) Composition for liquid crystal aligning layers and liquid crystal display
JP2786918B2 (en) Ferroelectric liquid crystal polymer, method of manufacture and use in electro-optical elements
US5635576A (en) Crosslinkable material which may be used in opto-electronics, process for producing this material, and monomer allowing this material to be obtained
EP0731084B1 (en) Photocrosslinkable naphthyl derivatives
KR20070029100A (en) Polymer for liquid crystal aligning and liquid crystal display using the same
US5496899A (en) Crosslinkable polymer material which may be used in non-linear optics and process for obtaining it
JPH11116534A (en) Di(meth)acrylate compound
JP2641274B2 (en) Liquid crystal-forming polymer and method for producing the same
US5846451A (en) Crosslinking type liquid crystal polymer and oriented crosslinking film thereof
EP1055721A2 (en) Liquid crystal polymer composition, oriented film and process for producing the film
JP2000154380A (en) Spirooxazine derivative containing optically active group and optically functional medium containing the same
JP2003012762A (en) Polymerizable liquid crystal compound, composition, and optically anisotropic product
JP2004091646A (en) New compound, polymer, optical element containing it, and method for manufacturing polymer
JPH0632761A (en) Polymerizable compound having side chain and liquid crystal device containing the compound
JPS6399204A (en) Polymer
JP2000319527A (en) Unsaturated alicyclic compound, addition-based liquid crystal polymer and production of oriented film of liquid crystal polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees