JP2639759B2 - Multi-sensor weigh scale - Google Patents

Multi-sensor weigh scale

Info

Publication number
JP2639759B2
JP2639759B2 JP22357391A JP22357391A JP2639759B2 JP 2639759 B2 JP2639759 B2 JP 2639759B2 JP 22357391 A JP22357391 A JP 22357391A JP 22357391 A JP22357391 A JP 22357391A JP 2639759 B2 JP2639759 B2 JP 2639759B2
Authority
JP
Japan
Prior art keywords
sensor
load
output
sensors
weighing scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22357391A
Other languages
Japanese (ja)
Other versions
JPH0658801A (en
Inventor
祐史 小町
順史 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP22357391A priority Critical patent/JP2639759B2/en
Publication of JPH0658801A publication Critical patent/JPH0658801A/en
Application granted granted Critical
Publication of JP2639759B2 publication Critical patent/JP2639759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】電子式ディジタル表示重量計に関
し、特に重量計の載置台の大きさの割には高さが低い重
量計(偏平型重量計)及び大型の重量計に適した、複数
のセンサの出力の合計値として計量する重量計に関す
る。 【0002】 【従来の技術】載置台に負荷された荷重を一点に集中し
て、一個のセンサで計測する方法が一般的であるが、重
量計の載置台の大きさの割には高さが低い、所謂偏平型
の重量計では、偏置荷重による測定誤差の対策や荷重を
一点に集中する方法、荷重伝達機構の機械的強度等に問
題があり、高精度の大型及び偏平型の重量計において
は、多点式重量計と称される、負荷を分散して複数のセ
ンサに加重し、各センサの出力を合計する方式が採用さ
れている。 【0003】前記多点式重量計においては、荷重の載置
台の載置位置により各センサに荷重が負荷される割合が
異なり、各センサの出力特性が同一で無い場合には、正
しい計量が出来ないと言う、所謂偏置荷重誤差が生じる
問題を含んでいる。 【0004】この偏置荷重誤差の対策は、当初は一台の
重量計に使用される各センサの基準負荷による出力特性
が全て同一になるようセンサの起歪部を削り取る等、各
センサを個別に機械的に調整していた。 【0005】しかし、センサ個々の出力を機械的に高精
度に同一にすることは、熟練を要し、調整工数も大きい
ことから、個々のセンサのそれぞれに増幅器を接続し、
機械的には基準負荷に対して違いのあるセンサ出力を個
々に増幅器に入力し、増幅率を調整し増幅器からの出力
値が同じになるよう電子的に補正を施し、その出力を加
算する方法が採られるようになった。 【0006】何れにしろ、アナログ出力値を個々のセン
サにつき調整することは多くの工数を要するので、個々
のセンサ出力毎にA/Dコンバータを接続し、ディジタ
ル変換後のディジタル量の加算時に、個々のセンサ特性
に応じた補正を施す方法が提案され、この方法が普及し
ている。(図3) 【0007】しかしこの方法はA/Dコンバータがセン
サの数だけ必要となり、コストに直接影響するので、一
個のA/Dコンバータに全センサを切り替えて交互に接
続し、一個のA/Dコンバータで個々のセンサにA/D
コンバータを接続することと等価にする方法(以下スキ
ャニング方式)が考えられるが(図2)、この方法で
は、負荷が安定している場合には問題を生じないが、負
荷が揺動している場合には、一測定周期内でそれぞれの
センサの負荷の負担割合が変化しているので、異なった
時間の各センサの出力の合計は測定周期毎に変動し、正
確な測定は出来ない。 【0008】 【発明が解決しようとする課題】以上述べたような時間
のかかる困難な個々のセンサの調整をなくし、コストの
増加を伴わずに揺動する負荷の測定においても正確な重
量計にすることにある。 【0009】 【課題を解決するための手段】複数のセンサを適切に配
設し、全センサの出力を一個の積分型A/Dコンバータ
に同時に入力し、それぞれのセンサの出力の入力積分時
間を、それぞれのセンサの基準負荷における出力の逆数
に比例して制御する。 【0010】 【作用】基準負荷W(g)の時のセンサの標準出力Vを、
入力積分期間のクロック数:N、クロック周期:T、基
準積分電圧:VRの積分型A/Dコンバータに入力した
とき得られる基準積分期間のクロック数をnとすると n=V/VR*N で表される。任意のセンサに基準負荷W(g)を荷重した
時の出力Viを前記のA/Dコンバータに入力したとき
の基準積分期間のクロック数をniとすると ni=Vi/VR*N で表され、両辺にn/niを掛けると上式は n=Vi/VR*N*n/ni となる。以上は、任意のセンサの出力を積分型A/Dコ
ンバータでディジタル値に変換するに際し、入力積分時
間のクロック数をそのセンサの出力の逆数に比例する数
であるn/niを掛けることで標準のnが得られること
であり、入力積分時間の調整で補正出来ることを示して
いる。 【0011】即ち、複数のセンサを同一の積分型A/D
コンバータに接続し、それぞれのセンサの入力積分時間
をそれぞれのセンサの基準負荷における出力の逆数に比
例した時間(NT*n/ni)で切り離した時の入力積分
期間終了時の出力電圧は、それぞれに補正された値の合
計となる。以下実施例に基づきその詳細を説明する。 【0012】 【実施例】図4に示す如く4個のセンサ(ロードセル)
を長方形の頂点とする位置に配設し、図1に示すブロッ
ク図の通り、各センサの出力をマイクロコンピュータで
制御されるスイッチを介して二重積分型A/Dコンバー
タに接続し、各センサの入力積分時間の短いものから順
に切り離し、全センサの入力積分が終了した時、基準電
圧積分を行い、基準電圧積分期間のクロック数を求め
る。 【0013】各センサに対する入力積分時間は以下で説
明する手順で決定する。無負荷時のそれぞれのセンサの
出力(V0i)を記憶する。次に基準負荷の4倍の負荷4
W(g)を載置台の中央に荷重し(各センサに均等にW(g)
荷重する)、それぞれのセンサの出力(Vfi)から前記
無負荷時の出力(V0i)を減算して各センサの基準負荷
W(g)に対する出力:Vi=Vfi−V0iを求める。 【0014】各センサの基準負荷に対する出力の和:A
=ΣViを演算し、A/4(4個のセンサの基準負荷に
対する出力の平均)をそれぞれの出力で除算し、各セン
サの積分時間の補正係数A/4Viを求める。前記4個
のセンサの基準負荷に対する出力の和Aが総負荷4W
(g)の時の標準出力4Vと等しくなる数、4V=A*Nと
なる基準の入力積分時間のクロック数:Nを求める。 【0015】上記は各センサの入力積分時間の補正係数
を重量計単位で決定する方法の説明であるが、各個に基
準負荷を荷重し、出力:Viを求め、基準負荷での標準
電圧:VにViの逆数を掛けることで各センサに対する
補正係数:V/Viを求めることもできる。 【0016】以下本発明の作用を詳細に説明する。説明
の都合上センサの取付位置とは関係なく基準負荷に対す
る出力の大きいものから順に、S1,S2,S3,S4と
し、各センサの基準負荷W(g)における出力をそれぞれ
V1,V2,V3,V4(V1≧V2≧V3≧V4)であるとす
る。 ΣVi=A=V1+V2+V3+V4であり、各センサの入
力積分時間補正係数のそれぞれ S1の入力積分時間補正係数:A/4V1をα S2の入力積分時間補正係数:A/4V2をβ S3の入力積分時間補正係数:A/4V3をγ S4の入力積分時間補正係数:A/4V4をδ とする。(α≦β≦γ≦δの関係にある)また、積分回
路の抵抗の抵抗値を:R、コンデンサの容量を:C、クロ
ックの周期を:Tとする。 【0017】4W(g)の負荷を載置台の中央部に載せた
とき(各センサに均等に基準負荷W(g)が荷重され
る。)の入力積分期間終了時の出力電圧Vは で表される。展開し、α,β,γ,δに元の形を代入す
ると V=−(V1α+V2β+V3γ+V4δ)/CR*NT =−(V1A/4V1+V2A/4V2+V3A/4V3+V4A/4V4)/CR* NT =−A/CR*NT となる。 【0018】4W(g)の負荷が載置台の任意の位置に載
せられたとき(各センサの負荷負担率 S1の負荷負
担率=s S2の負荷負担率=t S3の負荷負担率=u S4の負荷負担率=v (s+t+u+v=1)とす
る)の入力積分期間終了時の出力電圧Vhは Vh =−(4V1s+4V2t+4V3u+4V4v)/CR*αNT − (4V2t+4V3u+4V4v)/CR*(β−α)NT − (4V3u+4V4v)/CR*(γ−β)NT − 4V4v /CR*(δ−γ)NT で表され、前式と同様の展開を行うと Vh =−(4V1sα+4V2tβ+4V3uγ+4V4vδ)/CR*NT =−(4V1sA/4V1+4V2tA/4V2+4V3uA/4V3+4V4 vA/4V4)/CR*NT =−(sA+tA+uA+vA)/CR*NT =−(s+t+u+v)A/CR*NT ここでs+t+u+v=1であるからVh=−A/CR*N
Tであり、V=Vhとなる。 【0019】上記は、全センサの出力を一個の二重積分
方式A/Dコンバータに同時に入力し、各センサの出力
の入力積分時間をそれぞれのセンサの基準負荷における
出力の逆数に比例して制御する(入力積分時間の短いも
のから順に切り離す)ことは荷重の載置位置に影響され
ず、常に正確に測定されることを示している。 【0020】一方、負荷が揺動し、測定周期内で各セン
サの負荷負担率が変化する場合について考察する。 【0021】負荷が揺動している時は、一測定周期内で
の各センサの負荷負担率:s,t,u,vはs+t+u
+v=1を満たしながら個々の負担率はそれぞれ0から
1までの値を取り得る(0≦s,t,u,v≦1)。ス
キャニング方式は測定周期の1/4づつの時間移動した
時点の出力を加算することになり、測定周期内での各セ
ンサの負荷負担率の変化に対応できず、測定値の平均化
及び異常値の切捨て等の処理では対応出来ない程度に不
安定な値となる。 【0022】本発明の方法では、測定時間の大部分は
(各センサの、基準負荷に対する出力V1〜V4のバラツ
キは数パーセント)、各センサの負荷負担率が変化して
も計測値に影響を与えない、全センサの出力を計測し加
算しており、一部のセンサ出力のみを計測し加算する補
正期間は測定周期の10パーセント以下である。 【0023】一方、一部のセンサ出力のみを計測し加算
する補正期間が短時間(スキャニング方式の数十分の
一)であることは、この期間での各センサの負荷負担率
の変化も少なくなり、負荷負担率の変化が計測値に与え
る影響は微細な物となり、従来のスキャニング方式とは
格段に安定した正確な計測値を得ることができ、計測値
の平均化処理で充分に満足した測定値を得ることが出来
る。 【0024】 【発明の効果】以上述べた如く本発明によれば、揺動す
る負荷にも充分に対応した高精度の偏平型重量計を、生
産コストの増加を伴わず、特殊技能を必要とせずに作成
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic digital display weighing scale, and in particular to a weighing scale having a low height in relation to the size of a mounting table of the weighing scale (flat weighing scale). And a weighing scale suitable for a large weighing scale that weighs as a total value of outputs of a plurality of sensors. 2. Description of the Related Art In general, a method of concentrating a load applied to a mounting table at one point and measuring the load with one sensor is used. The so-called flat-type weighing scale has a problem in the measure of the measurement error due to the eccentric load, the method of concentrating the load at one point, the mechanical strength of the load transmission mechanism, etc. In the scale, a method called a multi-point weighing scale, in which the load is distributed and weighted to a plurality of sensors, and the outputs of the respective sensors are summed, is adopted. In the above-mentioned multi-point weighing scale, the ratio of the load applied to each sensor varies depending on the position of the load mounting table. If the output characteristics of each sensor are not the same, correct weighing cannot be performed. That is, there is a problem that a so-called eccentric load error occurs. [0004] The countermeasure against this eccentric load error is to individually remove each strain sensor, such as by removing the strain-generating portion of the sensor so that the output characteristics of each sensor used for one weighing scale under the reference load are all the same. Was adjusted mechanically. However, making the outputs of the individual sensors identical mechanically with high precision requires skill and requires a large number of adjustment steps. Therefore, an amplifier is connected to each of the individual sensors.
Mechanically, a sensor output that differs from the reference load is individually input to the amplifier, the amplification factor is adjusted, electronically corrected so that the output value from the amplifier becomes the same, and the output is added. Has been adopted. In any case, since adjusting the analog output value for each sensor requires a lot of man-hours, an A / D converter is connected for each sensor output, and when adding a digital amount after digital conversion, A method of performing correction according to individual sensor characteristics has been proposed, and this method has become widespread. However, this method requires as many A / D converters as the number of sensors, which directly affects the cost. Therefore, all the sensors are switched to one A / D converter and connected alternately, and one A / D converter is connected. A / D converter for each sensor with / D converter
A method of making the connection equivalent to connecting a converter (hereinafter referred to as a scanning method) is conceivable (FIG. 2). In this method, no problem occurs when the load is stable, but the load fluctuates. In such a case, the load ratio of each sensor changes within one measurement period, so that the total output of each sensor at different times fluctuates for each measurement period, and accurate measurement cannot be performed. [0008] The time-consuming and difficult adjustment of individual sensors as described above is eliminated, and an accurate weighing scale can be obtained even when measuring a swinging load without increasing the cost. Is to do. Means for Solving the Problems A plurality of sensors are appropriately arranged, the outputs of all the sensors are simultaneously input to one integrating A / D converter, and the input integration time of the output of each sensor is determined. The control is performed in proportion to the reciprocal of the output of each sensor at the reference load. The standard output V of the sensor at the time of the reference load W (g) is
Assuming that the number of clocks in the reference integration period obtained when inputting to the integration type A / D converter having the number of clocks in the input integration period: N, the clock cycle: T, and the reference integration voltage: VR is n, n = V / VR * N. expressed. When the output Vi when an arbitrary sensor is loaded with the reference load W (g) is input to the A / D converter, and the number of clocks in the reference integration period is ni, it is represented by ni = Vi / VR * N. By multiplying both sides by n / ni, the above equation becomes n = Vi / VR * N * n / ni. Above, when converting the output of an arbitrary sensor into a digital value by an integrating A / D converter, the number of clocks of the input integration time is multiplied by n / ni which is a number proportional to the reciprocal of the output of the sensor. Is obtained, indicating that the correction can be made by adjusting the input integration time. That is, a plurality of sensors are connected to the same integral type A / D
The output voltage at the end of the input integration period when the input integration time of each sensor is disconnected at a time (NT * n / ni) proportional to the reciprocal of the output at the reference load of each sensor when connected to the converter and Is the sum of the values corrected to The details will be described below based on embodiments. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Four sensors (load cells) as shown in FIG.
Are arranged at positions where the vertices of a rectangle are formed, and as shown in the block diagram of FIG. 1, the output of each sensor is connected to a double integral type A / D converter via a switch controlled by a microcomputer. Are separated in ascending order of input integration time, and when input integration of all sensors is completed, reference voltage integration is performed to determine the number of clocks in the reference voltage integration period. The input integration time for each sensor is determined by the procedure described below. The output (V0i) of each sensor under no load is stored. Next, a load 4 that is four times the reference load
Apply W (g) to the center of the mounting table (W (g)
Then, the output (V0i) at the time of no load is subtracted from the output (Vfi) of each sensor to obtain the output: Vi = Vfi-V0i for the reference load W (g) of each sensor. Sum of outputs of each sensor with respect to the reference load: A
= ΣVi, and A / 4 (average output of four sensors with respect to the reference load) is divided by each output to obtain a correction coefficient A / 4Vi for the integration time of each sensor. The sum A of the outputs of the four sensors with respect to the reference load is a total load of 4 W
In the case of (g), a number equal to the standard output 4V, and a reference input integration time clock number N where 4V = A * N are obtained. The above is a description of a method for determining the correction coefficient of the input integration time of each sensor in units of weighing scale. A reference load is applied to each sensor, an output: Vi is obtained, and a standard voltage at the reference load: V Is multiplied by the reciprocal of Vi to obtain a correction coefficient: V / Vi for each sensor. Hereinafter, the operation of the present invention will be described in detail. For convenience of description, S1, S2, S3, and S4 are set in order from the one with the largest output to the reference load regardless of the mounting position of the sensor, and the outputs at the reference load W (g) of each sensor are V1, V2, V3, and V3, respectively. It is assumed that V4 (V1≥V2≥V3≥V4). ΣVi = A = V1 + V2 + V3 + V4, where S1 is the input integration time correction coefficient of each sensor: A / 4V1 is α S2 input integration time correction coefficient: A / 4V2 is β S3 input integration time correction coefficient Coefficient: A / 4V3 is γ S4 Input integration time correction coefficient: A / 4V4 is δ. (It has a relationship of α ≦ β ≦ γ ≦ δ) Further, the resistance value of the resistor of the integration circuit is: R, the capacitance of the capacitor is: C, and the cycle of the clock is: T. When a load of 4 W (g) is placed on the center of the mounting table (a reference load W (g) is equally applied to each sensor), the output voltage V at the end of the input integration period is It is represented by Expanding and substituting the original form for α, β, γ and δ, V = − (V1α + V2β + V3γ + V4δ) / CR * NT = − (V1A / 4V1 + V2A / 4V2 + V3A / 4V3 + V4A / 4V4) / CR * NT = −A / CR * NT. When a load of 4 W (g) is placed at an arbitrary position on the mounting table (load load ratio of each sensor S1 load load ratio = s S2 load load ratio = t S3 load load ratio = u S4 The output voltage Vh at the end of the input integration period of the load sharing ratio = v (s + t + u + v = 1) is Vh = − (4V1s + 4V2t + 4V3u + 4V4v) / CR * αNT− (4V2t + 4V3u + 4V4v) / CR * (β−α) NT− ( 4V3u + 4V4v) / CR * ([gamma]-[beta]) NT-4V4v / CR * ([delta]-[gamma]) NT, and if the same expansion as in the previous equation is performed, Vh =-(4V1s [alpha] + 4V2t [beta] + 4V3u [gamma] + 4V4v [delta]) / CR * NT =-(4V1sA / 4V1 + 4V2tA / 4V2 + 4V3uA / 4V3 + 4V4 vA / 4V4) / CR * NT =-(sA + tA + uA + vA) / CR * NT =-(s + t + u + v) A / CR * NT where s + t + u + v = 1 Therefore, Vh = −A / CR * N
T and V = Vh. In the above, the outputs of all the sensors are simultaneously input to one double-integration type A / D converter, and the input integration time of the output of each sensor is controlled in proportion to the reciprocal of the output at the reference load of each sensor. (Separating in order from the one with the shortest input integration time) indicates that the measurement is always performed accurately without being affected by the load placement position. On the other hand, consider the case where the load fluctuates and the load share of each sensor changes within the measurement period. When the load is oscillating, the load share ratio of each sensor in one measurement cycle: s, t, u, v is s + t + u
While satisfying + v = 1, each burden ratio can take a value from 0 to 1 (0 ≦ s, t, u, v ≦ 1). In the scanning method, the output at the time of moving by 1/4 of the measurement period is added, and it is not possible to cope with the change of the load burden ratio of each sensor within the measurement period. It is an unstable value that cannot be handled by processing such as truncation. In the method of the present invention, most of the measurement time (variation of the outputs V1 to V4 with respect to the reference load of each sensor is several percent) does not affect the measured value even if the load burden ratio of each sensor changes. The outputs of all the sensors, which are not provided, are measured and added, and the correction period for measuring and adding only some of the sensor outputs is 10% or less of the measurement cycle. On the other hand, the fact that the correction period for measuring and adding only some of the sensor outputs is short (several tenths of the scanning method) means that the change in the load burden ratio of each sensor during this period is small. The effect of the change in the load sharing ratio on the measured value is minute, and it is possible to obtain a much more stable and accurate measured value than the conventional scanning method, and the measurement value averaging process was fully satisfactory. Measurements can be obtained. As described above, according to the present invention, a high-precision flat weighing scale sufficiently coping with a oscillating load requires special skills without increasing production costs. You can create without.

【図面の簡単な説明】 【図1】本発明の実施例のブロック図 【図2】従来例(スキャニング方式)のブロック図 【図3】別の従来例(個別A/D変換方式)のブロック
図 【図4】(a) 本発明実施例の重量計要部の平面図 (b) 図4(a)のA−A断面図 (c) 図4(a)の側面図 【図5】実施例における二重積分型A/Dコンバータ回
路図 【図6】実施例における二重積分型A/Dコンバータの
入力積分期間の時間−電圧の関係を説明する図 【符号の説明】 1 基台 2 載置台 3 センサ 4 重点 5 ストレンゲージ 6 脚 7 止めネジ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 is a block diagram of a conventional example (scanning method). FIG. 3 is a block of another conventional example (individual A / D conversion method). 4A is a plan view of a main part of the weighing scale according to the embodiment of the present invention. FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A. FIG. 4C is a side view of FIG. FIG. 6 is a diagram illustrating a time-voltage relationship during an input integration period of the double integration type A / D converter in the embodiment. [Description of References] 1 Base 2 Mounting table 3 Sensor 4 Focused point 5 Strain gauge 6 Leg 7 Set screw

Claims (1)

(57)【特許請求の範囲】 載置台上の被計量物の重量を複数のセンサで計測し、そ
れぞれのセンサの出力の合計を積分型A/Dコンバータ
でディジタル値に変換し、被計量物の重量をディジタル
表示する重量計において、全センサの出力を一個の積分
型A/Dコンバータに同時に入力し、それぞれのセンサ
に対する入力積分時間を、それぞれのセンサの基準負荷
における出力の逆数に比例して制御することを特徴とす
る複数センサ重量計。
(57) [Claims] The weight of an object to be weighed on a mounting table is measured by a plurality of sensors, and the total output of each sensor is converted to a digital value by an integrating A / D converter, and the weight of the object to be weighed is measured. In a weighing scale that digitally displays the weight of a sensor, the outputs of all the sensors are simultaneously input to one integrating A / D converter, and the input integration time for each sensor is proportional to the reciprocal of the output of each sensor at the reference load. A multi-sensor weighing scale characterized in that the weighing scale is controlled.
JP22357391A 1991-08-09 1991-08-09 Multi-sensor weigh scale Expired - Fee Related JP2639759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22357391A JP2639759B2 (en) 1991-08-09 1991-08-09 Multi-sensor weigh scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22357391A JP2639759B2 (en) 1991-08-09 1991-08-09 Multi-sensor weigh scale

Publications (2)

Publication Number Publication Date
JPH0658801A JPH0658801A (en) 1994-03-04
JP2639759B2 true JP2639759B2 (en) 1997-08-13

Family

ID=16800285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22357391A Expired - Fee Related JP2639759B2 (en) 1991-08-09 1991-08-09 Multi-sensor weigh scale

Country Status (1)

Country Link
JP (1) JP2639759B2 (en)

Also Published As

Publication number Publication date
JPH0658801A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
US4437164A (en) Ridge circuit compensation for environmental effects
EP0124356B1 (en) Span adjusting method and apparatus
US4796212A (en) Load cell type, weight-measuring device
JPH0325325A (en) Method and equipment for calibration and weighing of scale
CN111366221A (en) Weighing method and system of strain type pressure sensor
US5644492A (en) Method for compensation of weighing errors in an electronic scale
JP2639759B2 (en) Multi-sensor weigh scale
JPH06103212B2 (en) Weight detector
JP3244212B2 (en) Digital measuring instrument
JP3953592B2 (en) Load cell span temperature compensation device
JPS6118828A (en) Method and device for operating electromagnetic type force compensating balance
CN211824650U (en) Pressure sensing device for adjusting and calibrating four-corner balance, circuit and electronic weighing instrument
JPH11125555A (en) Load cell balance
JP3465946B2 (en) Load cell temperature compensation method and apparatus
CN111323103A (en) Pressure sensing device for adjusting and calibrating four-corner balance, circuit and electronic weighing instrument
JP3765915B2 (en) Amplifier temperature zero point correction device
JP3722525B2 (en) Load cell type balance including double integration type A / D converter
CN215338567U (en) Weighing circuit for no-object self-adaptive calibration
JPS61138133A (en) Load cell unit
JPS6039521A (en) Force measuring device provided with temperature compensation
JPH11311565A (en) Load cell balance
JP2819499B2 (en) Double integral type analog-digital converter
JPH0531729B2 (en)
JP2518966B2 (en) Electronic scales
JPH076828B2 (en) Automatic zero point correction method for combination weighing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees