JP2639371B2 - Liquid crystal material and method for synthesizing the same - Google Patents
Liquid crystal material and method for synthesizing the sameInfo
- Publication number
- JP2639371B2 JP2639371B2 JP7013071A JP1307195A JP2639371B2 JP 2639371 B2 JP2639371 B2 JP 2639371B2 JP 7013071 A JP7013071 A JP 7013071A JP 1307195 A JP1307195 A JP 1307195A JP 2639371 B2 JP2639371 B2 JP 2639371B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal material
- hydrophilic
- hydrophobic
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 34
- 239000000463 material Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 11
- 230000002194 synthesizing effect Effects 0.000 title claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 239000002041 carbon nanotube Substances 0.000 claims description 35
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 35
- 239000002904 solvent Substances 0.000 claims description 19
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 239000000084 colloidal system Substances 0.000 claims description 6
- 125000001165 hydrophobic group Chemical group 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000012071 phase Substances 0.000 description 8
- 239000002071 nanotube Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000004988 Nematic liquid crystal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004976 Lyotropic liquid crystal Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical compound ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Substances (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は表示素子に用いられる
液晶材料に関するもので、カーボンナノチューブを用い
た液晶材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal material used for a display device, and more particularly to a liquid crystal material using carbon nanotubes.
【0002】[0002]
【従来の技術】従来の液晶材料では、屈折率の異方性や
等方性液体相−液晶相の相転移温度を、散乱体となる液
晶分子の構成要素を変えて新たに合成したり、特性の異
なる複数種の液晶を調合することにより制御していた。2. Description of the Related Art In a conventional liquid crystal material, the anisotropy of the refractive index and the phase transition temperature between the isotropic liquid phase and the liquid crystal phase are newly synthesized by changing the components of the liquid crystal molecules serving as scatterers. It is controlled by blending a plurality of types of liquid crystals having different characteristics.
【0003】[0003]
【発明が解決しようとする課題】従来の通常のネマチッ
ク液晶の分子は、2個のベンゼン環を連結基で繋いだ主
要部と分子の両端の末端基をもち、主要部にはターフェ
ニル、アジキシベンゼン、ニトロンが用いられる。ベン
ゼン環の水素をハロゲンやメチル基、エチル基等で置換
し、主要部の体積を大きくすると転移温度が下がる傾向
があるが、はっきりとした法則性はない。末端基は形状
の柔軟性にとむアルキル基かアルコキシル基であり、こ
の部分の長さが転移温度に影響をあたえるが、基の長さ
と転移温度の間に法則性はない。この為に転移温度が制
御された液晶分子の合成は試行錯誤によるしかない。さ
らに、液晶分子の屈折率異方性は分極率で決まり、特定
の化学結合がもつ分極率が既にあたえられているので、
それをもとに分子の分極率を予想することができるとは
いえ、転移温度と屈折率異方性の両方が制御された液晶
の合成には数多くの試行錯誤の過程が必要である。また
溶媒との作用で液晶の性質を示すライオトロピックなネ
マチック液晶であるpoly−p−phenylene
terephthalamide/H2 SO4 は、主
要部の長さと相転移温度の間に単調な関係があるため
に、相転移温度をある程度制御して分子を合成すること
が可能であるが、誘電率の異方性も主要部の長さと単調
に相関するため、相転移温度を決めると誘電率の異方性
も同時に決まってしまい、両方を制御した分子を合成す
ることはできなかった。A conventional ordinary nematic liquid crystal molecule has a main part in which two benzene rings are connected by a linking group and end groups at both ends of the molecule, and the main part has terphenyl and azide. Xybenzene and nitrone are used. When the hydrogen of the benzene ring is replaced with a halogen, a methyl group, an ethyl group, or the like and the volume of the main part is increased, the transition temperature tends to decrease, but there is no clear law. The terminal group is an alkyl group or an alkoxyl group for flexibility in shape, and the length of this portion affects the transition temperature, but there is no law between the group length and the transition temperature. For this reason, the synthesis of liquid crystal molecules whose transition temperature is controlled is limited to trial and error. Furthermore, the refractive index anisotropy of liquid crystal molecules is determined by the polarizability, and the polarizability of a specific chemical bond has already been given.
Although it is possible to predict the polarizability of a molecule based on this, synthesis of a liquid crystal in which both the transition temperature and the refractive index anisotropy are controlled requires many trial and error processes. In addition, poly-p-phenylene which is a lyotropic nematic liquid crystal exhibiting liquid crystal properties by the action of a solvent.
Terephthalamide / H 2 SO 4 has a monotonic relationship between the length of the main part and the phase transition temperature, so that it is possible to synthesize molecules by controlling the phase transition temperature to some extent. Since the anisotropy monotonically correlates with the length of the main part, when the phase transition temperature is determined, the anisotropy of the dielectric constant is determined at the same time, and it is not possible to synthesize a molecule in which both are controlled.
【0004】本願発明は、従来には存在しなかったカー
ボンナノチューブを用いた液晶材料を提供するととも
に、カーボンナノチューブの径と長さと多重度(チュー
ブが何重の構成かということ)などをパラメータとし
て、誘電率の異方性と転移温度を制御できる液晶材料を
提供することを目的とする。The present invention provides a liquid crystal material using carbon nanotubes, which has not existed in the past, and uses parameters such as the diameter, length, and multiplicity (how many tubes are formed) of the carbon nanotubes as parameters. It is another object of the present invention to provide a liquid crystal material capable of controlling the dielectric anisotropy and the transition temperature.
【0005】[0005]
【課題を解決するための手段】本発明の第1の発明は、
親水基でチューブ表面が修飾されたカーボンナノチュー
ブを散乱体とし、前記散乱体が親水性溶媒に展開された
コロイド溶液からなることを特徴とする液晶材料であ
る。Means for Solving the Problems A first invention of the present invention is:
A liquid crystal material characterized in that carbon nanotubes whose tube surface is modified with a hydrophilic group are used as scatterers, and the scatterers are formed of a colloid solution developed in a hydrophilic solvent.
【0006】第2の発明は、疎水基でチューブ表面が修
飾されたカーボンナノチューブを散乱体とし、前記散乱
体が疎水性溶媒に展開されたコロイド溶液からなること
を特徴とする液晶材料である。A second aspect of the present invention is a liquid crystal material characterized in that carbon nanotubes having a tube surface modified with a hydrophobic group are used as scatterers, and the scatterers comprise a colloid solution developed in a hydrophobic solvent.
【0007】第3の発明は、前記カーボンナノチューブ
が、チューブの長さと径と多重度が揃ったカーボンナノ
チューブであることを特徴とする第1の発明または第2
の発明に記載の液晶材料である。A third invention is the first invention or the second invention, wherein the carbon nanotube is a carbon nanotube having the same length, diameter and multiplicity of the tube.
Liquid crystal material according to the invention.
【0008】第4の発明は、カーボンナノチューブを減
圧で親水性ガス雰囲気下で加熱してチューブ表面を親水
基で修飾した後、その工程後に得られたカーボンナノチ
ューブを親水性の溶媒に展開する工程からなることを特
徴とする液晶材料の合成方法である。[0008] A fourth invention is a process for heating a carbon nanotube under reduced pressure in a hydrophilic gas atmosphere to modify the tube surface with a hydrophilic group, and then developing the carbon nanotube obtained after the process in a hydrophilic solvent. A method for synthesizing a liquid crystal material, comprising:
【0009】第5の発明は、カーボンナノチューブを減
圧で疎水性ガス雰囲気下で加熱してチューブ表面を疎水
基で修飾した後、その工程後に得られたカーボンナノチ
ューブを疎水性の溶媒に展開する工程からなることを特
徴とする液晶材料の合成方法である。A fifth aspect of the present invention is a method of heating a carbon nanotube in a hydrophobic gas atmosphere under reduced pressure to modify the tube surface with a hydrophobic group, and then developing the carbon nanotube obtained after the step in a hydrophobic solvent. A method for synthesizing a liquid crystal material, comprising:
【0010】[0010]
【作用】転移温度や誘電率の異方性の制御は、誘電率の
異方性が系統的に変化する分子を溶媒中に展開したライ
オトロピック(lyotropic)液晶で実現でき
る。カーボンナノチューブは、厚さ数原子層のグラファ
イト状炭素原子面を丸めた円筒が、1個または複数個入
れ子になったものであり、nmオーダーの外径の極めて微
小な物質である。カーボンナノチューブは、チューブの
直径、管の多重度(何重の管かということ)、チューブ
の長さ、および溶媒中のカーボンナノチューブの濃度に
より、誘電率の異方性を制御できる。径が小さく、長さ
が長く、濃度が大きいほど、また多重度が小さいほど誘
電率の異方性を大きくすることができる。一方、相転移
温度は、チューブの径に対する長さの比(アスペクト
比)、および濃度で決まる。アスペクト比(長さ/直
径)、濃度が大きいほど、転移温度を高くすることがで
きる。本発明によれば、上記特性を生かし、長さ、径、
多重度が揃ったカーボンナノチューブを散乱体として用
い、溶媒中に展開し、誘電率の異方性と相転移温度がよ
く制御されたネマチック液晶をつくることができる。The control of the transition temperature and the anisotropy of the dielectric constant can be realized by a lyotropic liquid crystal in which molecules in which the anisotropy of the dielectric constant changes systematically are developed in a solvent. A carbon nanotube is a very small substance having an outer diameter of nm order, in which one or a plurality of cylinders each having a rounded graphitic carbon atom surface having a thickness of several atomic layers are nested. The anisotropy of the dielectric constant of the carbon nanotube can be controlled by the diameter of the tube, the multiplicity of the tube (how many tubes), the length of the tube, and the concentration of the carbon nanotube in the solvent. The smaller the diameter, the longer the length, the higher the concentration, and the smaller the multiplicity, the greater the anisotropy of the dielectric constant. On the other hand, the phase transition temperature is determined by the ratio of the length to the diameter of the tube (aspect ratio) and the concentration. The higher the aspect ratio (length / diameter) and concentration, the higher the transition temperature. According to the present invention, taking advantage of the above characteristics, length, diameter,
By using carbon nanotubes of uniform multiplicity as a scatterer and developing in a solvent, a nematic liquid crystal with well controlled dielectric anisotropy and phase transition temperature can be produced.
【0011】なお、カーボンナノチューブは、不活性ガ
ス雰囲気下で、炭素棒を電極としてアーク放電による方
法などで合成されるが、反応チャンバーの温度を正確に
制御すること、つまりナノチューブ生成の反応系の温度
を一定温度に保持することによって、ナノチューブの直
径と長さを制御でき、アスペクト比も向上させることが
できる。詳しくは特開平6−157016号公報に示さ
れ、ナノチューブの平均長は、反応系の温度が高くなる
につれて長くなり、反応温度を変えることにより長さと
直径の異なるカーボンナノチューブを合成できる。The carbon nanotubes are synthesized by an arc discharge method using a carbon rod as an electrode in an inert gas atmosphere. However, accurate control of the temperature of the reaction chamber, that is, the reaction system for producing nanotubes, is required. By maintaining the temperature at a constant temperature, the diameter and length of the nanotubes can be controlled and the aspect ratio can be improved. The details are disclosed in JP-A-6-157016. The average length of the nanotubes increases as the temperature of the reaction system increases. By changing the reaction temperature, carbon nanotubes having different lengths and diameters can be synthesized.
【0012】また、管の多重度が単層に制御されたカー
ボンナノチューブは、電極の一方に炭素棒を、他方の電
極に炭素棒に穴をあけ金属線を挿入したものを用い、原
料ガスに炭化水素を用いたアーク放電により合成でき、
特願平5−337937号出願明細書に示されている。A carbon nanotube in which the multiplicity of the tube is controlled to a single layer is obtained by using a carbon rod on one of the electrodes and a metal rod with a hole on the carbon rod on the other electrode. It can be synthesized by arc discharge using hydrocarbon,
This is disclosed in the specification of Japanese Patent Application No. 5-337937.
【0013】[0013]
【実施例】本発明の一実施例を以下に示す。An embodiment of the present invention will be described below.
【0014】まず、親水性溶媒を用いた本発明の液晶の
一実施例を示す。カーボンナノチューブ単体は親水基を
持たないため、そのままでは親水性の溶媒中に展開する
ことができない。そこでカーボンナノチューブを500
℃の減圧水素雰囲気下に40時間以上曝してチューブ表
面を水素化する。なお、この際に水素の反応性を高める
ため、水素雰囲気下で高圧電極による放電を行い、水素
の化学的活性化を行う。この手順で処理したナノチュー
ブは親水性をもち、水、酸やアルカリの水溶液、エタノ
ールなどの親水性の溶媒中でコロイドとなる。直径10
オングストロームで長さ1000オングストロームのシ
ングル(単層)カーボンナノチューブを水に展開した場
合には、偏向顕微鏡を用いて観察したところ、水100
0CC中のナノチューブの数が0.00098mol以
上にならないと非等方な誘電率をもつ液晶相は出現しな
かった。転移温度は濃度が0.0010mol/Lのと
き13℃で、0.0011mol/Lで80℃、0.0
012mol/L以上では0℃〜100℃の温度範囲で
液晶であった。濃度が0.004mol/L以下の場合
ではナノチューブの濃度が薄いため、光の散乱が少なく
溶液がやや濁った程度で表示素子としては実用的ではな
い。0.05mol/Lで誘電率異方性が約7程度にな
り実用に供することができる。同様にエタノール中でも
コロイドになり、0.02mol/Lで誘電率異方性が
8程度となって実用に供することができた。First, an embodiment of the liquid crystal of the present invention using a hydrophilic solvent will be described. Since a single carbon nanotube has no hydrophilic group, it cannot be developed in a hydrophilic solvent as it is. So 500 carbon nanotubes
The tube surface is hydrogenated by exposing it to a reduced pressure hydrogen atmosphere at 40 ° C. for 40 hours or more. At this time, in order to increase the reactivity of hydrogen, electric discharge is performed by a high-voltage electrode in a hydrogen atmosphere to chemically activate hydrogen. The nanotubes treated in this procedure have hydrophilic properties and become colloids in hydrophilic solvents such as water, aqueous solutions of acids and alkalis, and ethanol. Diameter 10
When a single (single-walled) carbon nanotube having a length of 1000 angstroms and a length of 1000 angstroms was developed in water, it was observed using a polarizing microscope that water 100
Unless the number of nanotubes in OCC became 0.00098 mol or more, a liquid crystal phase having an anisotropic dielectric constant did not appear. The transition temperature is 13 ° C. when the concentration is 0.0010 mol / L, and 80 ° C. at 0.0011 mol / L.
At 012 mol / L or more, it was a liquid crystal in the temperature range of 0 ° C to 100 ° C. When the concentration is 0.004 mol / L or less, the concentration of the nanotube is low, so that the light scattering is small and the solution is slightly turbid, which is not practical as a display element. At 0.05 mol / L, the dielectric anisotropy becomes about 7 and can be put to practical use. Similarly, it became a colloid even in ethanol, and the dielectric anisotropy was about 8 at 0.02 mol / L, so that it could be put to practical use.
【0015】図1に、水中濃度が0.05mol/Lの
本発明の親水性液晶の温度に対する誘電率の変化を示
す。FIG. 1 shows the change of the dielectric constant with respect to the temperature of the hydrophilic liquid crystal of the present invention having a concentration of 0.05 mol / L in water.
【0016】次に疎水性溶媒を用いた本発明の液晶の一
実施例を示す。カーボンナノチューブ単体は疎水基を持
たないため、そのままでは疎水性の溶媒中に展開するこ
とができない。そこでカーボンナノチューブを500℃
の減圧メタン雰囲気下に40時間以上曝してチューブ表
面にメチル基をつけた。この場合も反応性をあげるため
メタン雰囲気中でアーク放電を行った。この際用いたカ
ーボンナノチューブは4重で直径37オングストロー
ム、長さ420オングストロームである。トルエンを溶
媒とした場合には0.010mol/L以上で液晶とな
り、0.073mol/Lで誘電率異方性が6程度にな
った。転移温度は0.013mol/Lで7℃で、0.
015mol/L以上では全温度域(溶媒の沸点の11
0℃まで)で液晶であった。Next, an embodiment of the liquid crystal of the present invention using a hydrophobic solvent will be described. Since a single carbon nanotube has no hydrophobic group, it cannot be developed in a hydrophobic solvent as it is. Then, carbon nanotubes
The tube was exposed to a reduced pressure methane atmosphere for 40 hours or more to form a methyl group on the tube surface. Also in this case, arc discharge was performed in a methane atmosphere to increase the reactivity. The carbon nanotubes used at this time had a thickness of 37 angstroms and a length of 420 angstroms in four layers. When toluene was used as the solvent, the liquid crystal was obtained at 0.010 mol / L or more, and the dielectric anisotropy became about 6 at 0.073 mol / L. The transition temperature is 0.013 mol / L at 7 ° C.
In the case of 015 mol / L or more, the entire temperature range (11.
(Up to 0 ° C.).
【0017】図2に、トルエン中濃度が0.013mo
l/Lの本発明の疎水性液晶の温度に対する誘電率の変
化を示す。FIG. 2 shows that the concentration in toluene is 0.013 mol.
1 shows the change of the dielectric constant with respect to the temperature of the hydrophobic liquid crystal of the present invention of 1 / L.
【0018】[0018]
【発明の効果】本発明によれば、従来には存在しなかっ
たカーボンナノチューブを用いた液晶材料を提供するこ
とができるとともに、カーボンナノチューブの径と長さ
と多重度(チューブが何重の構成かということ)、およ
び溶媒中のカーボンナノチューブの濃度やチューブの径
に対する長さの比(アスペクト比)をパラメータとし
て、誘電率の異方性と転移温度が制御された液晶材料を
提供することができる。According to the present invention, it is possible to provide a liquid crystal material using carbon nanotubes, which has not existed conventionally, and to provide the diameter, length and multiplicity of carbon nanotubes (how many tubes are formed). And the ratio of length to aspect ratio (aspect ratio) of the carbon nanotubes in the solvent and the diameter of the tube can be used as parameters to provide a liquid crystal material with controlled anisotropy of dielectric constant and transition temperature. .
【図1】本発明の親水性液晶0.05mol/Lの水中
濃度の誘電率の温度変化を示す図である。FIG. 1 is a diagram showing a temperature change of a dielectric constant of a hydrophilic liquid crystal of the present invention at a concentration of 0.05 mol / L in water in water.
【図2】本発明の疎水性液晶0.013mol/Lのト
ルエン中濃度の誘電率の温度変化を示す図である。FIG. 2 is a graph showing a temperature change of a dielectric constant at a concentration of 0.013 mol / L of a hydrophobic liquid crystal of the present invention in toluene.
Claims (5)
ンナノチューブを散乱体とし、前記散乱体が親水性溶媒
に展開されたコロイド溶液からなることを特徴とする液
晶材料。1. A liquid crystal material comprising a carbon nanotube having a tube surface modified with a hydrophilic group as a scatterer, wherein the scatterer comprises a colloid solution developed in a hydrophilic solvent.
ンナノチューブを散乱体とし、前記散乱体が疎水性溶媒
に展開されたコロイド溶液からなることを特徴とする液
晶材料。2. A liquid crystal material comprising a carbon nanotube having a tube surface modified with a hydrophobic group as a scatterer, wherein the scatterer comprises a colloid solution developed in a hydrophobic solvent.
ブの長さと径と多重度が揃ったカーボンナノチューブで
あることを特徴とする請求項1または請求項2記載の液
晶材料。3. The liquid crystal material according to claim 1, wherein the carbon nanotube is a carbon nanotube having the same length, diameter and multiplicity as the tube.
雰囲気下で加熱し前記チューブ表面を前記親水基で修飾
した後、得られた前記カーボンナノチューブを親水性の
溶媒に展開する工程からなることを特徴とする液晶材料
の合成方法。4. A step of heating the carbon nanotubes under reduced pressure in a hydrophilic gas atmosphere to modify the tube surface with the hydrophilic group, and then developing the obtained carbon nanotubes in a hydrophilic solvent. Method of synthesizing liquid crystal material.
雰囲気下で加熱し前記チューブ表面を前記疎水基で修飾
した後、得られた前記カーボンナノチューブを疎水性の
溶媒に展開する工程からなることを特徴とする液晶材料
の合成方法。5. The method according to claim 1, further comprising the step of heating the carbon nanotubes under reduced pressure in a hydrophobic gas atmosphere to modify the surface of the tube with the hydrophobic groups, and then developing the obtained carbon nanotubes in a hydrophobic solvent. Method of synthesizing liquid crystal material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7013071A JP2639371B2 (en) | 1995-01-30 | 1995-01-30 | Liquid crystal material and method for synthesizing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7013071A JP2639371B2 (en) | 1995-01-30 | 1995-01-30 | Liquid crystal material and method for synthesizing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209126A JPH08209126A (en) | 1996-08-13 |
JP2639371B2 true JP2639371B2 (en) | 1997-08-13 |
Family
ID=11822927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7013071A Expired - Lifetime JP2639371B2 (en) | 1995-01-30 | 1995-01-30 | Liquid crystal material and method for synthesizing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2639371B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005272184A (en) * | 2004-03-23 | 2005-10-06 | Honda Motor Co Ltd | Method for manufacturing hydrophilic carbon nanotube |
-
1995
- 1995-01-30 JP JP7013071A patent/JP2639371B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08209126A (en) | 1996-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xia et al. | Direct visualization of chiral amplification of chiral aggregation induced emission molecules in nematic liquid crystals | |
EP1612586B1 (en) | Method of manufacturing a polarizing element | |
Yashima | Synthesis and structure determination of helical polymers | |
KR100549103B1 (en) | Method for Fabricating a Carbon Nanotube Array | |
Oberhauser et al. | Single protein misfolding events captured by atomic force microscopy | |
Akagi et al. | Helical polyacetylene synthesized with a chiral nematic reaction field | |
Koziol et al. | Carbon nanotubes with catalyst controlled chiral angle | |
Seki et al. | Inherent and cooperative photomechanical motions in monolayers of an azobenzene containing polymer at the air− water interface | |
JPH11505550A (en) | Liquid crystal composition and its alignment layer | |
US4207188A (en) | Open tubular capillary column for high-speed micro liquid chromatography | |
JP2639371B2 (en) | Liquid crystal material and method for synthesizing the same | |
Liu et al. | Helical Self-Assembly of Amphiphilic Chiral Azobenzene Alternating Copolymers | |
Fawcett et al. | Kinetics and thermodynamics of the electroreduction of buckminsterfullerene in benzonitrile | |
Orzechowski et al. | Achiral nanoparticle-enhanced chiral twist and thermal stability of blue phase liquid crystals | |
JP6996817B2 (en) | Polymerizable compounds and their use | |
Figueiredo Neto et al. | Temperature and concentration range of the biaxial nematic lyomesophase in the mixture potassium laurate/1-decanol/deuterium oxide | |
KR101069555B1 (en) | New rod-type reactive mesogens with high birefringence | |
JP4131296B2 (en) | Nematic liquid crystal composition and liquid crystal display device using the same | |
KR100430120B1 (en) | Chemically adsorbable substance for thin film formation and process for producing the same | |
KR20040107000A (en) | Method for fabricating a carbon nanotube array using the nanopattern of supramolecules | |
Goto et al. | Three-dimensional self-folding assembly of multi-layer graphene at the interface with a polymeric film | |
JP4003242B2 (en) | Novel liquid crystal compound, nematic liquid crystal composition, and liquid crystal display device using the same | |
CN109153564A (en) | It is combined to by the template of the controlled shape polymer nanofiber of the chemical vapor deposition (CVD) in liquid crystal | |
JP2001100028A (en) | Optical compensation sheet and production method of optical compensation sheet | |
JPH0859220A (en) | Fullerene polmer, fullerene polymer film, fullerene polymer-containing material, and their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970325 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 17 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |