JP2639200B2 - 3D heterogeneous correction dose distribution simulation method - Google Patents

3D heterogeneous correction dose distribution simulation method

Info

Publication number
JP2639200B2
JP2639200B2 JP26137890A JP26137890A JP2639200B2 JP 2639200 B2 JP2639200 B2 JP 2639200B2 JP 26137890 A JP26137890 A JP 26137890A JP 26137890 A JP26137890 A JP 26137890A JP 2639200 B2 JP2639200 B2 JP 2639200B2
Authority
JP
Japan
Prior art keywords
radiation
sectors
tar
scattered
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26137890A
Other languages
Japanese (ja)
Other versions
JPH04138173A (en
Inventor
容子 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP26137890A priority Critical patent/JP2639200B2/en
Publication of JPH04138173A publication Critical patent/JPH04138173A/en
Application granted granted Critical
Publication of JP2639200B2 publication Critical patent/JP2639200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radiation-Therapy Devices (AREA)
  • Nuclear Medicine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、3次元不均質補正線量分布シミュレーショ
ン方法に関し、特に最適な放射線照射法を計画するに当
り、人体の放射線量の吸収状態をシミュレーションする
3次元不均質補正線量分布シミュレーション方法に関す
る。
Description: BACKGROUND OF THE INVENTION The present invention relates to a three-dimensional heterogeneous correction dose distribution simulation method, and more particularly, to simulating the radiation state absorption of a human body when planning an optimal radiation irradiation method. To a three-dimensional heterogeneous correction dose distribution simulation method.

〔従来の技術〕[Conventional technology]

従来、この種の3次元不均質補正線量分布シミュレー
ション方法は、等価TAR法(=The Equivalent Tissue−
Air Ratio Method)(出典、Radiation Physics Decemb
er1978 p787〜)及びこれをプログラミング化のため改
良した修正等価TAR法(=Modified Equivalent TAR Met
hod)(出典「準乱数法によるEquivalent TAR三次元不
均質補正の高速化」放射線治療システム研究1987年2月
No.4特集号)とがある。
Conventionally, this kind of three-dimensional heterogeneous correction dose distribution simulation method is based on an equivalent TAR method (= The Equivalent Tissue-
Air Ratio Method) (Source: Radiation Physics Decemb
er1978 p787 ~) and the modified equivalent TAR method (= Modified Equivalent TAR Met)
hod) (Source: "Rapid Equivalent TAR 3D heterogeneity correction by quasi-random number method", Radiotherapy System Research, February 1987)
No.4 special issue).

以下、2者の方法の概略を述べる。 The outline of the two methods will be described below.

まず、等価TAR法とは、水と等価でない物質に対し
て、適切な方法で深さd照射野サイズrを一定の割合で
組み合せることにより、等価なTARを決める方法であ
る。TARが求まれば、水ファントム中での吸収線量を求
めることができるので、この方法によって、水ファント
ムでの吸収線量から、密度が一定でなく不均質な体組織
中での吸収線量を求めることができる。
First, the equivalent TAR method is a method of determining an equivalent TAR by combining a depth d irradiation field size r at a fixed ratio by an appropriate method for a substance not equivalent to water. Once the TAR is determined, the absorbed dose in the water phantom can be determined, and this method can be used to determine the absorbed dose in the non-uniform and non-uniform body tissue from the absorbed dose in the water phantom. Can be.

均質なファントムに限って考えると、均質な密度pを
もつファントム内でのTARはTAR(d,r)pで表す(1)
式のようになる。
Considering only a homogeneous phantom, TAR in a phantom having a uniform density p is represented by TAR (d, r) p (1)
It looks like an expression.

TAR(d,r)p=TAR(d・p,r・p) ……(1) (1)式を拡張し、一般的な体組織中でのTAR、すな
わちTAR(d″,)は以下の方法で求める。
TAR (d, r) p = TAR (dp, rp) (1) By expanding the equation (1), TAR in general body tissue, that is, TAR (d ",) is In the manner described above.

TAR(d″,) =TAR(d″,0)+SAR(d′,) ……(2) SARとは散乱空中組織線量比(Scatter Air Ratio)の
ことであり、ここでは、深さd′、半径rの円状の照射
野における散乱線量を示す。
TAR (d ″,) = TAR (d ″, 0) + SAR (d ′,) (2) SAR is the scattered air tissue dose ratio (Scatter Air Ratio), and here, the depth d ′ , The scattered dose in a circular irradiation field of radius r.

d″とはファントム中の計算点までのパスレングスに
そって密度を考慮しながら長さを加算した実効深度で
(3)式に示される。
d ″ is the effective depth obtained by adding the length along the path length to the calculation point in the phantom while taking the density into consideration, and is shown in Expression (3).

ただし、pjはパスレングスにそった長さdjに対する各
々のボリューム・エレメントの(体積素子)の電子密度
である。なお、やは(4),(5)式で求められ、
は実効電子密度と呼ばれる。
Here, p j is the electron density of each volume element (volume element) for the length d j along the path length. In addition, haya is obtained by the formulas (4) and (5),
Is called the effective electron density.

=r・ ……(4) また、ボリューム・エレメントとは、吸収線量を計算
する点に、散乱の影響を与える微小体積をいう。
= R · · · · (4) The term “volume element” refers to a small volume that has an effect of scattering when calculating the absorbed dose.

ここで、wijkは、各々ボリューム・エレメントが計算
点へ与える散乱線量と、他のボリューム・エレメントが
pへ与えられる散乱線量との関係を示したもので、ウエ
イティング・ファクター(重み係数)と呼ぶ、また、
は(5)式の により、照射されているボリューム全体をカバーしてい
る。そのボリュームを構成する各々のボリューム・エレ
メント(密度pijk)に対し、wijkが定義される。を求
める際、ボリューム全体を、積分するかわりとして、あ
る一面を積分することにより代用させる。
Here, w ijk represents the relationship between the scattered dose given to the calculation point by the volume element and the scattered dose given to p by the other volume element, and the weighting factor (weighting factor) Call,
Is the expression (5) Covers the entire irradiated volume. For each volume element (density p ijk ) constituting the volume, w ijk is defined. Is obtained, instead of integrating the entire volume, a certain surface is substituted.

その方法は、何枚かのCT(コンピュータ・トモグラフ
ィ)スライスがあり、ボリューム・エレメント1つ1つ
は、電子密度pijkをもっているとする。Y軸がビーム中
心軸と平行で座標原点が計算部分の中心で、iはX座
標、jはY座標、kはCTスライス番号でZ座標の方向を
示すよう配置する。かようにして実効散乱線等価面の電
子密度ijが(6)式で得られる。
The method assumes that there are several CT (computer tomography) slices and that each volume element has an electron density p ijk . The Y axis is parallel to the beam center axis, the coordinate origin is the center of the calculation part, i is the X coordinate, j is the Y coordinate, k is the CT slice number, and it is arranged to indicate the direction of the Z coordinate. Thus, the electron density ij of the effective scattered radiation equivalent surface is obtained by the equation (6).

wkは、各々のCTスライスの効果を示すウエイティング
・ファクターで(6)式により、ijで数枚のCTスライ
スからの散乱線を、ある面(計算面からある距離Zeffを
もった実効散乱線等価面)からだけの散乱線とみなすこ
とにより、ボリューム全体の積分を各々のCTスライスの
効果を示すウエイティング・ファクターを用いて、実効
散乱線等価面の積分で代用させる。そして、実効電子密
度は(7)式で示される。
w k is a weighting factor indicating the effect of each CT slice, and according to equation (6), ij is used to calculate the scattered radiation from several CT slices in a certain plane (effective scattering having a certain distance Zeff from the calculation plane). By considering the scattered radiation only from the (line equivalent surface), the integral of the entire volume is substituted by the integral of the effective scattered radiation equivalent surface using a weighting factor indicating the effect of each CT slice. Then, the effective electron density is expressed by equation (7).

ただし、wij(Zeff)は、計算面からZeffの距離に実
効散乱線等価面があるとき、その計算点に対するpij
ウエイティング・ファクターである。
Here, w ij (Zeff) is a weighting factor of p ij for the calculation point when there is an effective scattered radiation equivalent plane at a distance of Zeff from the calculation plane.

以上のように、等価TAR法では、ボリューム全体から
の散乱線の影響を、ある面からの影響に置き換えて計算
を行うことができる。
As described above, in the equivalent TAR method, calculation can be performed by replacing the influence of scattered radiation from the entire volume with the influence of a certain surface.

次に、修正等価TAR法の概略を述べる。考え方は、等
価TAR法にほぼ準じているが、実効電子密度を求める
際に、ボリューム全体のボリューム・エレメントをCTス
ライスと平行な一面に代表させるのではなく。乱数によ
り、ボリューム・エレメントを確率論的に選び、このボ
リューム・エレメントの影響をビーム軸と垂直な面に代
表させるところに特長がある。
Next, an outline of the modified equivalent TAR method will be described. The idea is almost the same as the equivalent TAR method, but when calculating the effective electron density, the volume element of the whole volume is not represented by a plane parallel to the CT slice. The feature is that the volume element is selected stochastically by random numbers, and the effect of the volume element is represented by a plane perpendicular to the beam axis.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の修正等価TAR法は、TAR(Tissue Air R
atio)を用い、3次元線量分布計算を行うので、高エネ
ルギーX線(例えば6MV以上)では、TARの実測が困難で
あるため使用し難いという欠点がある。
The conventional modified equivalent TAR method described above uses a TAR (Tissue Air R
atio), and a three-dimensional dose distribution calculation is performed. Therefore, it is difficult to use a high-energy X-ray (for example, 6 MV or more) because it is difficult to actually measure the TAR.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の3次元不均質補正線量分布シミュレーション
方法は、生体の密度と実効原子番号に近似した体積を持
つ3次元不均質物質に対して、放射線の照射したとき前
方散乱を抽出するステップと、 前記生体中の代表点を照射面に投影するステップと、 前記照射面を複数個のセクタに分割するステップと、 前記各セクタについて放射線に対する散乱係数と生体
最大比とを使用し、散乱線の成分を求めるステップと、 すべてのセクタの散乱線成分の総和を求めるステップ
と、 放射線源からの一次線成分について、前記生体最大比
とを使用し、一次線成分を求めるステップと、 前記すべてのセクタの散乱線成分の総和と、 前記一次線成分との和を求めるステップとを備えて構
成される。
The three-dimensional heterogeneity-corrected dose distribution simulation method of the present invention includes a step of extracting forward scatter when a radiation is applied to a three-dimensional heterogeneous substance having a density close to the density of a living body and an effective atomic number; Projecting a representative point in a living body onto an irradiation surface, dividing the irradiation surface into a plurality of sectors, using a scattering coefficient and a biological maximum ratio for radiation for each of the sectors, and calculating a scattered radiation component. Determining the sum of the scattered radiation components of all sectors; determining, for the primary radiation component from the radiation source, the primary biological component using the biological maximum ratio; and scattering of the all sectors. A step of obtaining a sum of line components and a sum of the primary line components.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

シミュレーションをする前準備として、TMRと、散乱
係数Fsを測定する必要がある。TMR(TMRは組織ピーク線
量比:Tissue Maximum Ratioと呼ばれており、本明細書
の請求範囲に記載の「生体最大比」に該当し、放射線が
生体に入るとその深さに従って次第に減衰するが直線的
ではなく、例えば、深さ2センチメートル前後のところ
で吸収線量が最大となる。この深さの線量を基準線量と
し、任意の深さの線量との比を示す。TMR=D(d,A)/D
r(A)で表され、Dr(A)は基準のピークの深さrに
おける照射野Aの基準点吸収線量を示す;D(d,A)は深
さdにおける照射野Aの吸収線量を示す。このTMRの値
は高エネルギーに至るまで測定値が公開されている)の
測定については、問題はない。しかし、散乱係数Fsは高
エネルギーX線については、測定困難とされている。そ
こで、Fsについては、Rosenwald J.Cによって提唱され
ているmini−phantomを用い測定する。(出典 The Use
of Computers in Radiation Therapy)もし仮に、mini
−phantomでの測定も困難である場合は、ある値一例え
ば、すべて散乱係数Fsを1と仮定しても、計算精度にさ
ほど影響を与えないことが、シミュレーションで確認さ
れている。
It is necessary to measure the TMR and the scattering coefficient Fs as a preparation before the simulation. TMR (TMR is referred to as a tissue peak dose ratio: Tissue Maximum Ratio, which corresponds to the “biological maximum ratio” described in the claims of the present specification. When radiation enters a living body, the radiation gradually attenuates according to its depth. For example, the absorbed dose becomes maximum at a depth of about 2 centimeters, not linearly.The dose at this depth is set as a reference dose, and the ratio with the dose at an arbitrary depth is shown.TMR = D (d, A) / D
r (A), where Dr (A) indicates the reference point absorbed dose of irradiation field A at the reference peak depth r; D (d, A) indicates the absorbed dose of irradiation field A at depth d. Show. This TMR value is publicly available up to high energies). However, the scattering coefficient Fs is considered difficult to measure for high energy X-rays. Therefore, Fs is measured using a mini-phantom proposed by Rosenwald JC. (Source The Use
of Computers in Radiation Therapy)
When it is difficult to perform measurement with a phantom, it has been confirmed by simulation that even if it is assumed that the scattering coefficient Fs is set to a certain value, for example, the scattering coefficient Fs is 1, the calculation accuracy is not significantly affected.

以下、ある計算点の吸収線量を、計算する際の、手順
を述べる。
A procedure for calculating the absorbed dose at a certain calculation point will be described below.

第1図は、シミュレーション方法の流れを表したもの
である。まず、散乱線成分の求め方を述べる。第2図
は、散乱線とし、前方散乱のみを考慮する前方散乱抽出
手段(ステップ1)を示したもので、乱数法により不整
形照射領域内であり、かつ人体内であり、さらに、計算
点より線源側である領域からランダムに散乱線の寄与を
考慮する代表点をN点選ぶ。
FIG. 1 shows the flow of the simulation method. First, a method of obtaining a scattered ray component will be described. FIG. 2 shows forward scatter extraction means (step 1) which considers only forward scatter as scattered radiation. N representative points that randomly consider the contribution of scattered radiation are selected from a region closer to the source.

次に、第3図のように、線源とアイソセンタを結ぶ直
線に垂直で計算点Pを含む平面を仮定する。この平面内
で(不整形)照射野に入り、かつ人体内の領域を照射面
と定義する。第1図のステップ1で選んだ代表点、N点
をそれぞれ線源とその代表点とを結ぶ直線と照射面とが
交わる点に投影する(ステップ2)。以上で、計算点に
散乱線を与える空間の電子密度分布を、平面、すなわち
照射面の電子密度分布として押しこめ、しかも照射面上
のN点で代表させたことになる。
Next, as shown in FIG. 3, a plane perpendicular to a straight line connecting the source and the isocenter and including the calculation point P is assumed. An area within the (irregular) irradiation field within this plane and within the human body is defined as an irradiation surface. The representative point and the N point selected in step 1 of FIG. 1 are projected onto a point where a straight line connecting the source and the representative point intersects the irradiation surface (step 2). As described above, the electron density distribution in the space that gives scattered rays to the calculation points is pressed down as a plane, that is, the electron density distribution on the irradiation surface, and is represented by N points on the irradiation surface.

更に、不整形照射野の計算精度を上げるため、照射面
をドーナツ型のセクタに分割して、それぞれのセクタご
とに散乱成分を計算する。第4図のごとく、計算点Pを
中心に例えば1cm間隔の円を描きドーナツ型のセクタに
分ける(ステップ3)。
Furthermore, in order to improve the calculation accuracy of the irregular irradiation field, the irradiation surface is divided into donut-shaped sectors, and the scatter component is calculated for each sector. As shown in FIG. 4, circles at intervals of, for example, 1 cm are drawn around the calculation point P and divided into donut-shaped sectors (step 3).

ここで、それぞれのセクタの散乱線計算方法を記述す
る。まず、セクタIrの電子密度を代表する電子密度は、
実効電子密度と呼び、セクタIrの実効電子密度Irは次
式で表される。Ir =Σ(e−μtijk・pijk)/Σe−μtijk ……(1) Σは、セクタIr内に投影された全代表点に対してと
る。
Here, a method of calculating the scattered radiation of each sector will be described. First, the electron density representing the electron density of the sector Ir is
This is called an effective electron density, and the effective electron density Ir of the sector Ir is represented by the following equation. Ir = { (e− μtijk · p ijk ) / {e− μtijk ... (1) } is taken for all representative points projected in the sector Ir.

pijk:代表点ijkの電子密度 tijk:代表点ijkと計算点との距離 μ:散乱線の線減衰係数 次にセクタIrの実効半径rIrを式(2)で求める。IrIr・rIr ……(2) rIr:第5図を参照した上のセクタIrの半径 最後に、セクタIrが計算点に与える散乱線量DIrをTMR
とFsを使い求める。(ステップ4)すなわち、 DIr=DΔm(A′)・Δ(Fs(Ir) ・TMR(d″,Ir)・S(Ir)/(2πr) ……(3) DΔm(A′)d:深度dの位置での照射野A′の空中線
量(mini−phantomで求めたFsを使い求める) d″:計算点の実効深度 Δ(Fs(Ir)・TMR(d″,Ir)) =Fs(Ir)・TMR(d″,Ir) −Fs(Ir-1)・TMR(d″,Ir-1) S(Ir):セクタIrの面積をΔrで割ったもの 以上により各セクタが計算点に与える散乱線量が計算
された。そして、最後に、全てのセクタの散乱線量の総
和をとり全散乱線成分Dsを求める(ステップ5)。
p ijk : the electron density at the representative point ijk t ijk : the distance between the representative point ijk and the calculation point μ: the linear attenuation coefficient of the scattered radiation Next, the effective radius r Ir of the sector Ir is obtained by equation (2). Ir = Ir · r Ir (2) r Ir : radius of the upper sector Ir with reference to FIG. 5 Finally, the scattered dose D Ir given by the sector Ir to the calculation point is calculated by TMR.
And Fs. (Step 4) That is, D Ir = D Δm (A ′) d · Δ (Fs ( Ir ) · TMR (d ″, Ir ) · S (Ir) / (2πr)... (3) D Δm (A ′) D ) Air dose of irradiation field A 'at depth d (calculated using Fs obtained by mini-phantom) d ": Effective depth of calculation point Δ (Fs ( Ir ) .TMR (d", Ir ) ) = Fs ( Ir ) .TMR (d ", Ir ) -Fs ( Ir-1 ) .TMR (d", Ir-1 ) S (Ir): The area of sector Ir divided by .DELTA.r. Then, the scattered dose given to the calculation point is calculated, and finally, the sum of the scattered doses of all the sectors is obtained to obtain a total scattered ray component Ds (step 5).

かようにして、(5)式で散乱線成分を求めることが
できた。一次線成分DΔm(A′)d・TMR(d″,0)
を求め(ステップ6)、散乱線成分と一次線成分の和を
とることにより、計算点Pの吸収線量を算出する(ステ
ップ7)。
Thus, the scattered radiation component could be obtained by the equation (5). Primary line component D Δm (A ′) d · TMR (d ″, 0)
Is calculated (step 6), and the absorbed dose at the calculation point P is calculated by taking the sum of the scattered ray component and the primary ray component (step 7).

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、TMRと散乱係数Fsを
用いることにより、高エネルギー(6MV以上)X線、線
源において、3次元的に、人体の不均質な電子密度も考
察した線量分布シミュレーションを行えるという効果が
ある。
As described above, the present invention uses the TMR and the scattering coefficient Fs to provide a three-dimensional dose distribution that considers the heterogeneous electron density of the human body in high-energy (6 MV or more) X-rays and radiation sources. There is an effect that a simulation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の構成を示す流れ図、第2図
は代表点の選び方を示す説明図、第3図は空間の代表点
を1平面に投影した状況を示した説明図、第4図は照射
面をいくつかのセクタに分割した様子を示した説明図、
第5図は各セクタの散乱成分を求める際の説明図、第6
図は実効散乱等価面の説明図。 1……前方散乱抽出手段、2……投影手段、3……セク
タ分割手段、4……散乱線成分取得手段、5……総和手
段、6……一次線成分取得手段、7……加算手段。
FIG. 1 is a flowchart showing the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram showing how to select representative points, FIG. 3 is an explanatory diagram showing a situation where representative points of space are projected on one plane, FIG. 4 is an explanatory diagram showing a state in which the irradiation surface is divided into several sectors,
FIG. 5 is an explanatory diagram for obtaining a scattering component of each sector, and FIG.
The figure is an explanatory view of the effective scattering equivalent surface. DESCRIPTION OF SYMBOLS 1 ... Forward scattering extraction means, 2 ... Projection means, 3 ... Sector division means, 4 ... Scattered ray component acquisition means, 5 ... Summation means, 6 ... Primary ray component acquisition means, 7 ... Addition means .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】生体の密度と実効原始番号に近似した体質
を持つ3次元不均質物資に対して、放射線を照射したと
き前方散乱を抽出するステップと、前記生体中の代表点
を照射面に投影するステップと、 前記照射面を複数個のセクタに分割するステップと、前
記各セクタについて放射線に対する散乱係数と生体最大
比とを使用し、散乱線の成分を求めるステップと、 すべてのセクタの散乱線成分の総和を求めるステップ
と、放射線源からの一次線成分について前記生体最大比
とを使用し一次線成分を求めるステップと、 前記すべてのセクタの散乱線成分の総和と前記一次線成
分との和を求めるステップとを備えて成ることを特徴と
する3次元不均質補正線量分布シミュレーション方法。
A step of extracting forward scatter when irradiating a three-dimensional inhomogeneous material having a constitution similar to the density of a living body and an effective primitive number, and irradiating a representative point in the living body with an irradiation surface; Projecting; dividing the irradiation surface into a plurality of sectors; using a scattering coefficient for radiation and a biological maximum ratio for each of the sectors to obtain a scattered ray component; and Calculating the sum of the line components, obtaining the primary line component using the biological maximum ratio for the primary line component from the radiation source, and the sum of the scattered ray components of all the sectors and the primary line component Obtaining a sum. 3. A three-dimensional heterogeneous correction dose distribution simulation method, comprising:
JP26137890A 1990-09-28 1990-09-28 3D heterogeneous correction dose distribution simulation method Expired - Lifetime JP2639200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26137890A JP2639200B2 (en) 1990-09-28 1990-09-28 3D heterogeneous correction dose distribution simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26137890A JP2639200B2 (en) 1990-09-28 1990-09-28 3D heterogeneous correction dose distribution simulation method

Publications (2)

Publication Number Publication Date
JPH04138173A JPH04138173A (en) 1992-05-12
JP2639200B2 true JP2639200B2 (en) 1997-08-06

Family

ID=17361019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26137890A Expired - Lifetime JP2639200B2 (en) 1990-09-28 1990-09-28 3D heterogeneous correction dose distribution simulation method

Country Status (1)

Country Link
JP (1) JP2639200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213663A (en) * 1997-01-29 1998-08-11 Mitsubishi Electric Corp Local dosemeter

Also Published As

Publication number Publication date
JPH04138173A (en) 1992-05-12

Similar Documents

Publication Publication Date Title
Jarry et al. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models
US6345114B1 (en) Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
US6636622B2 (en) Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
US8515011B2 (en) System and method for dose verification radiotherapy
Pönisch et al. The modelling of positron emitter production and PET imaging during carbon ion therapy
Sievinen et al. AAA photon dose calculation model in Eclipse
Zygmanski et al. The measurement of proton stopping power using proton-cone-beam computed tomography
US20170128749A1 (en) System design and method for verifying 3d dosimetric imaging of charged particles in media
US8897857B2 (en) Method and apparatus for generating proton therapy treatment planning images
US10674973B2 (en) Radiation therapy system and methods of use thereof
Sadrozinski et al. Toward proton computed tomography
Martínez‐Rovira et al. Monte Carlo‐based treatment planning system calculation engine for microbeam radiation therapy
Caon et al. A comparison of radiation dose measured in CT dosimetry phantoms with calculations using EGS4 and voxel-based computational models
Pönisch et al. Attenuation and scatter correction for in-beam positron emission tomography monitoring of tumour irradiations with heavy ions
Tsuruta et al. Use of a second-dose calculation algorithm to check dosimetric parameters for the dose distribution of a first-dose calculation algorithm for lung SBRT plans
Samuelsson et al. Dose accuracy check of the 3D electron beam algorithm in a treatment planning system
Di Lillo et al. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle
Zhang et al. Investigation of real tissue water equivalent path lengths using an efficient dose extinction method
Shimozato et al. Scattered radiation from dental metallic crowns in head and neck radiotherapy
El-Khatib et al. Evaluation of lung dose correction methods for photon irradiations of thorax phantoms
JP2639200B2 (en) 3D heterogeneous correction dose distribution simulation method
Choi et al. Patient-specific quality assurance using a 3D-printed chest phantom for intraoperative radiotherapy in breast cancer
Samuelsson et al. Practical implementation of enhanced dynamic wedge in the CadPlan treatment planning system
Li et al. Dosimetric evaluation of a widely used kilovoltage x‐ray unit for endocavitary radiotherapy
Sapundani et al. Monte Carlo Simulation-Based BEAMnrc Code of a 6 MV Photon Beam Produced by a Linear Accelerator (LINAC)