JP2638345B2 - Flying object guidance control method - Google Patents
Flying object guidance control methodInfo
- Publication number
- JP2638345B2 JP2638345B2 JP3200317A JP20031791A JP2638345B2 JP 2638345 B2 JP2638345 B2 JP 2638345B2 JP 3200317 A JP3200317 A JP 3200317A JP 20031791 A JP20031791 A JP 20031791A JP 2638345 B2 JP2638345 B2 JP 2638345B2
- Authority
- JP
- Japan
- Prior art keywords
- flying object
- trajectory
- aircraft
- laser pulse
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ミサイル等の誘導飛し
ょう体の誘導制御方法とりわけビームライディング方式
の誘導制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a guidance control method for a guided flying object such as a missile and, more particularly, to a beam riding type guidance control method.
【0002】[0002]
【従来の技術】ビームライディング方式の誘導制御方法
としては、例えば特開平2−242098号公報に示さ
れているように、誘導レーザビームと飛しょう体とのず
れの方向を機体後部のレーザレシーバで検知し、そのず
れの方向に応じて対応するインパルススラスタ等の軌道
修正手段を作動させることによって、飛しょう体が常に
誘導レーザビームの中心に沿うよう経路を修正しながら
飛しょうさせるようにしたものが知られている。2. Description of the Related Art As a guidance control method of a beam riding system, for example, as disclosed in Japanese Patent Application Laid-Open No. 22402098, the direction of deviation between a guidance laser beam and a flying object is determined by a laser receiver at the rear of the aircraft. Detects and activates the trajectory correcting means such as the impulse thruster corresponding to the direction of the deviation, so that the flying object can fly while correcting the path so that it always follows the center of the guided laser beam It has been known.
【0003】[0003]
【発明が解決しようとする課題】上記のような従来の方
式では、誘導レーザビームを飛しょう体の後端部に向け
て照射するようにしているため、飛しょう体が加速のた
めに後方に排出するロケットモータ噴煙の中を誘導レー
ザビームを透過させる必要がある。しかも、ロケットモ
ータの噴煙は誘導レーザビームを吸収散乱させる特性を
有しているため、誘導レーザビームを飛しょう体側に確
実に伝達するためには、 (a)強力な誘導レーザビームを照射する。In the conventional method as described above, since the guide laser beam is irradiated toward the rear end of the flying object, the flying object is moved backward for acceleration. It is necessary to transmit the induced laser beam through the discharged rocket motor plume. In addition, since the plume of the rocket motor has a characteristic of absorbing and scattering the induced laser beam, in order to reliably transmit the induced laser beam to the flying object side, (a) irradiate a strong induced laser beam.
【0004】(b)誘導レーザビームを吸収散乱しにく
い特性の噴煙を排出するロケットモータを採用する。(B) A rocket motor is used which discharges a plume having a characteristic of hardly absorbing and scattering the induced laser beam.
【0005】(c)飛しょう体の飛しょう経路を初期段
階で曲げておき、ロケットモータ噴煙を終末誘導時の誘
導レーザビームを遮らない空間に排出させる。(C) The flight path of the flying object is bent at an early stage, and the rocket motor plume is discharged into a space where the guiding laser beam at the time of terminal guidance is not blocked.
【0006】等の種々の性能、運用上の制約を伴い、実
用化の上でなおも多くの課題を残している。[0006] There are various problems such as performance and operational restrictions, and many problems still remain in practical use.
【0007】さらに飛しょう体を軽量化する目的で多段
式とすることも可能ではあるが、分離後の使用済みロケ
ットモータが誘導レーザビームを遮ることになるため
に、上記と同様に性能、運用上の課題を有している。Although it is possible to use a multistage type for the purpose of further reducing the weight of the flying object, since the used rocket motor after separation will block the induced laser beam, the performance and operation will be similar to the above. It has the above problems.
【0008】加えて、従来の方式では、慣性基準に対す
るロール角が計測不能であるため、より高度な誘導のた
めにロール角制御まで行おうとするとロールジャイロ等
の機器を搭載しなければならず、コストおよび重量の増
加を招くこととなって好ましくない。In addition, in the conventional method, since the roll angle with respect to the inertia reference cannot be measured, if a roll angle control is to be performed for more advanced guidance, a device such as a roll gyro must be mounted. This leads to an increase in cost and weight, which is not preferable.
【0009】本発明は以上のような課題に着目してなさ
れたもので、特にロケットモータからの噴煙の影響を受
けることなくビームライディング方式を実現できるよう
にした誘導制御方法を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and aims to provide a guidance control method capable of realizing a beam riding system without being affected by smoke from a rocket motor. It is.
【0010】[0010]
【課題を解決するための手段】本発明の飛しょう体の誘
導制御方法においては、機体外周面の等分位置に機体の
外側に向かって放射状の視野をもつ複数の光検出器を備
えるとともに軌道修正手段を備えた飛しょう体を所定方
向に向けて発射させ、機体の外周には飛しょう指令方向
を中心にもち且つ機体を取り囲む正多角形の頂部に相当
する部位にそれぞれ機体後方から誘導レーザパルスを照
射し、前記誘導レーザパルスからの散乱光を前記複数の
光検出器でとらえて所定の演算を行うことにより、前記
飛しょう指令方向と機軸とのずれを修正するのに必要な
飛しょう体の軌道修正方向を求め、この軌道修正方向情
報に基づいて前記軌道修正手段を作動させることにより
飛しょう体を飛しょう指令方向に誘導することを特徴と
している。According to the flying object guidance control method of the present invention, a plurality of photodetectors having a radial view toward the outside of the aircraft are provided at equal positions on the outer peripheral surface of the aircraft, and the orbit is controlled. A flying object equipped with correction means is fired in a predetermined direction, and guided lasers are applied to the outer periphery of the aircraft from the rear of the aircraft to portions corresponding to the top of a regular polygon surrounding the aircraft with the flight command direction as the center. By irradiating a pulse, and performing a predetermined calculation by capturing the scattered light from the induced laser pulse with the plurality of photodetectors, a flight required to correct a deviation between the flight command direction and the aircraft axis. It is characterized in that a trajectory correction direction of the body is obtained, and the trajectory is guided in a flight command direction by operating the trajectory correction means based on the trajectory correction direction information.
【0011】上記の軌道修正手段としては、例えば機体
の外周の円周方向に沿ってジェット式のインパルススラ
スタ(サイドスラスタ)を複数列にわたって配置する。As the trajectory correcting means, for example, jet impulse thrusters (side thrusters) are arranged in a plurality of rows along the circumferential direction of the outer periphery of the body.
【0012】[0012]
【作用】この方法によると、例えば機体の外側を取り囲
む正多角形を正三角形とし、この正三角形のそれぞれの
頂部に誘導レーザパルスが照射されるものとすると、誘
導レーザパルスは機体の側部を通過するために機体後方
に噴射されるロケットモータ噴煙によって誘導レーザパ
ルスが遮られることがない。According to this method, for example, assume that a regular polygon surrounding the outside of the fuselage is a regular triangle, and that the top of each of the regular triangles is irradiated with a guide laser pulse, the guide laser pulse is applied to the side of the body. The induced laser pulse is not interrupted by the rocket motor plume that is jetted to the rear of the fuselage to pass.
【0013】そして、上記の誘導レーザパルスはロケッ
トモータの噴煙を受けなくても、大気中に存在する微粒
子(エアロゾル)によって吸収散乱することから、誘導
レーザパルスが光検出器の側方を通過するときに、その
誘導レーザパルスからの散乱光のうち各光検出器の方向
を指向する散乱光を各光検出器でとらえる。The above-mentioned induced laser pulse is absorbed and scattered by fine particles (aerosol) existing in the atmosphere without receiving the smoke of the rocket motor, so that the induced laser pulse passes on the side of the photodetector. Sometimes, among the scattered light from the induced laser pulse, scattered light directed in the direction of each photodetector is captured by each photodetector.
【0014】一方、光検出器の受光面のどの部分で散乱
光を受光したかによって各光検出器の光軸中心(視野角
の中心線)に対する散乱光の入射角が特定され、この入
射角をもとに所定の演算を行うことで現在の飛しょう体
の機軸位置が特定され、さらには上記の正三角形の中心
すなわち飛しょう指令方向と機軸とのずれの方向が求め
られる。したがって、この情報を軌道修正手段に与えて
作動させることにより飛しょう体の機軸が飛しょう指令
方向に向けて軌道修正される。On the other hand, the incident angle of the scattered light with respect to the center of the optical axis (the center line of the viewing angle) of each photodetector is specified according to which part of the light receiving surface of the photodetector has received the scattered light. By performing a predetermined calculation on the basis of the above, the current aircraft position of the aircraft is specified, and furthermore, the center of the above-mentioned equilateral triangle, that is, the direction of the deviation between the flight command direction and the aircraft axis is obtained. Therefore, by giving this information to the trajectory correcting means and operating it, the trajectory of the flying object is corrected in the flying command direction.
【0015】[0015]
【実施例】図1および図2は本発明の一実施例を示す概
略説明図で、1はレーザパルス照射器2を含んでなる目
標捜索追尾装置3を有する発射機、4は発射機1から発
射されてビームライディング方式によって誘導されるミ
サイル等の誘導飛しょう体、5は目標である。1 and 2 are schematic explanatory views showing one embodiment of the present invention. Reference numeral 1 denotes a launcher having a target search and tracking device 3 including a laser pulse irradiator 2; A guided flying object 5 such as a missile that is launched and guided by a beam riding method is a target.
【0016】目標捜索追尾装置3の目標追尾センサ6が
目標5をとらえると、目標捜索追尾装置3は目標5に対
して追尾ビーム7を照射して目標5の追尾を開始し、時
々刻々と変化する目標5の位置、速度等を計測してそれ
らの情報を未来位置(予想会合点)計算部8に送信す
る。未来位置計算部8では上記の目標5の位置、速度等
の情報をもとに未来位置を計算し、飛しょう体誘導のた
めの誘導レーザパルスを照射すべき方向の指示をレーザ
パルス照射器2に送るとともに、発射機1に対して飛し
ょう体4を発射すべき方向の指示を与える。そして、レ
ーザパルス照射器2から飛しょう指令方向aに向けて誘
導レーザパルスP1,P2,P3が照射されるのに続いて
発射機1から飛しょう体4が発射され、飛しょう体4は
ビームライディング方式によって誘導される。When the target tracking sensor 6 of the target search and tracking device 3 captures the target 5, the target search and tracking device 3 irradiates the target 5 with the tracking beam 7 and starts tracking the target 5, and changes every moment. The position, speed, and the like of the target 5 to be measured are measured, and the information is transmitted to the future position (estimated meeting point) calculation unit 8. The future position calculation unit 8 calculates a future position based on the information on the position, speed, and the like of the target 5, and instructs the laser pulse irradiator 2 to irradiate the guidance laser pulse for guiding the flying object. And instruct the launcher 1 in the direction in which the flying object 4 should be launched. Then, following the irradiation of the guidance laser pulses P 1 , P 2 , and P 3 in the flying command direction a from the laser pulse irradiator 2 , the flying object 4 is launched from the launcher 1 and the flying object 4 is guided by a beam riding scheme.
【0017】上記の誘導レーザパルス照射器2は、図3
に示すように例えばYAGレーザのレーザ発振器9とそ
の前段側に配置されたレーザパルス分配器10とから構
成されており、図1および図4にも示すように飛しょう
体4の機体直径よりも十二分に大きく且つ飛しょう指令
方向aを中心にもつ正三角形の頂部に相当する位置のそ
れぞれに誘導レーザパルスP1,P2,P3を断続的に放
射状に照射するものである。The above-described induction laser pulse irradiator 2 is shown in FIG.
As shown in FIG. 1, it is composed of a laser oscillator 9 of, for example, a YAG laser and a laser pulse distributor 10 arranged in front of the laser oscillator 9. As shown in FIGS. The guide laser pulses P 1 , P 2 , and P 3 are intermittently and radially applied to positions each corresponding to the top of an equilateral triangle having a center which is larger than the flight command direction a.
【0018】一方、飛しょう体4の機体11の頭胴部に
は、図1および図5に示すようにその円周上の三等分位
置に2現象方式の光検出器(以下、受光センサという)
12,13,14が設けられている。この受光センサ1
2,13,14は、図8にも示すように機体外側に向か
って120度ずつの放射状の視野角Eを有するもので、
図5および図6に示すように半割状の二つの受光面15
A,15Bをもつ受光部15と集光レンズ16とから構
成されている。On the other hand, as shown in FIG. 1 and FIG. 5, a two-phenomenon type photodetector (hereinafter referred to as a light-receiving sensor) That)
12, 13, and 14 are provided. This light receiving sensor 1
As shown in FIG. 8, 2, 13, and 14 have radial viewing angles E of 120 degrees each toward the outside of the fuselage.
As shown in FIGS. 5 and 6, two half-shaped light receiving surfaces 15 are provided.
A light receiving section 15 having A and 15B and a condenser lens 16 are provided.
【0019】そして、各受光センサ12,13,14は
その視野角E内で光をとらえた場合、受光面15A,1
5Bの光軸中心方向からの光をとらえた時には図6の
(A)に示すように双方の受光面15A,15Bの受光
量が変わらないものの、図6の(B)に示すように光軸
中心bに対してθなる角度の方向からの光をとらえた時
には一方の受光面15Aの受光量と他方の受光面15B
の受光量とが異なり、この受光量変化と光の入射角との
間に相関があることから、この受光量変化を光電変換し
て図2の信号処理器17にて処理することにより入射角
θ(θ1,θ2,θ3)を出力するようになっている。When each of the light receiving sensors 12, 13, and 14 captures light within the viewing angle E, the light receiving surface 15A, 1
When the light from the center of the optical axis of 5B is captured, the light receiving amounts of both light receiving surfaces 15A and 15B do not change as shown in FIG. 6A, but the optical axis as shown in FIG. When light from the direction of an angle θ with respect to the center b is captured, the amount of light received on one light receiving surface 15A and the other light receiving surface 15B
Since there is a correlation between the change in the amount of received light and the incident angle of light, the change in the amount of received light is photoelectrically converted and processed by the signal processor 17 in FIG. θ (θ 1 , θ 2 , θ 3 ) is output.
【0020】また、前記飛しょう体4は図1および図5
に示すように機体円周方向に数列にわたって配設された
軌道修正手段としての多数のインパルススラスタ18を
備えている。これらのインパルススラスタ18はその一
つ一つが独立した火工品あるいはガスボトルタイプのジ
ェット式のもので、個別に点火作動させることで小型ロ
ケットモータとして機能するものである。The flying object 4 is shown in FIGS.
As shown in FIG. 1, there are provided a number of impulse thrusters 18 as trajectory correcting means arranged in several rows in the circumferential direction of the fuselage. Each of these impulse thrusters 18 is an independent pyrotechnic or gas bottle type jet type, and functions as a small rocket motor by individually igniting.
【0021】以上のようなシステムにおいては、図1に
示すように飛しょう中の飛しょう体4の外側を飛しょう
指令方向aを中心にもつとともに飛しょう体4を内包す
る正三角形のそれぞれの頂部に相当する部位を誘導レー
ザパルスP1,P2,P3が断続的に通過する。In the above-described system, as shown in FIG. 1, each of the equilateral triangles having the center in the flight command direction a outside the flying object 4 in flight and including the flying object 4 is included. The guiding laser pulses P 1 , P 2 , and P 3 intermittently pass through a portion corresponding to the top.
【0022】そして、図7に示すように大気中を伝播す
るレーザ光は、一搬に大気中に存在する微粒子(エアロ
ゾル)eにより吸収散乱して強度が減衰するので、各誘
導レーザパルスP1,P2,P3が各受光センサ12,1
3,14の視野角E内を通過する際に、その誘導レーザ
パルスP1,P2,P3からの散乱光dのうち各受光セン
サ12,13,14の方向を指向する強度の大きい散乱
光d1,d2,d3を図5に示すように各受光センサ1
2,13,14でとらえる。つまり、本実施例では、大
気中での吸収散乱によってレーザ光の強度が著しく減衰
することは、同時にレーザ光路周辺の散乱ビームの強度
が強いことを意味するものと解してこの性質を積極的に
利用したものである(なお、上記の現象は例えば、「T
HE INFRARED HANDBOOK」,Env
ironmental Research Insti
tute of Michigan,1985(Rev
isd Edition)等で説明されている)。[0022] Then, the laser light propagating through the atmosphere, as shown in FIG. 7, the absorption scattered by the intensity is attenuated by particles (aerosols) e present in the atmosphere at a transportable, each guided laser pulses P 1 , P 2 , P 3 are the light receiving sensors 12, 1
When passing through the viewing angle in E of 3, 14, a large scattering intensity directed to the direction of the respective light receiving sensors 12, 13 and 14 of scattered light d from the guided laser pulses P 1, P 2, P 3 The light d 1 , d 2 , and d 3 are applied to each light receiving sensor 1 as shown in FIG.
2,13,14. In other words, in the present embodiment, the fact that the intensity of the laser beam is significantly attenuated by absorption and scattering in the atmosphere implies that the intensity of the scattered beam around the laser beam path is simultaneously high, and this property is positively considered. (Note that the above phenomenon is, for example, “T
HE INFRARED HANDBOOK ", Env
ironmental Research Insti
Tute of Michigan, 1985 (Rev.
isd Edition) etc.).
【0023】上記のように各誘導レーザパルスP1,
P2,P3からの散乱光d1,d2,d3を各受光センサ1
2,13,14がとらえると、図6のほか図8に示すよ
うに各受光センサ12,13,14の二つの受光面15
A,15B同士の受光量の差と散乱光d1,d2,d3の
入射角θとの間に相関があることから、各受光センサ1
2,13,14の光軸中心をbとすると、各光軸中心b
と各誘導レーザパルスP1,P2,P3の散乱光d1,
d2,d3とのなす角度すなわちそれぞれの受光センサ1
2,13,14に対する入射角θ1,θ2,θ3が求めら
れる。As described above, each guided laser pulse P 1 ,
The scattered light d 1 , d 2 , d 3 from P 2 , P 3 is applied to each light receiving sensor 1.
6, 13 and 14, two light receiving surfaces 15 of each of the light receiving sensors 12, 13, and 14, as shown in FIG.
Since there is a correlation between the difference in the amount of received light between A and 15B and the incident angle θ of the scattered lights d 1 , d 2 and d 3 , each light receiving sensor 1
Assuming that the optical axis centers of 2, 13, and 14 are b, each optical axis center b
And the scattered light d 1 of each induced laser pulse P 1 , P 2 , P 3 ,
The angle between d 2 and d 3 , that is, each light receiving sensor 1
The incident angles θ 1 , θ 2 and θ 3 with respect to 2 , 13, and 14 are obtained.
【0024】そして、図2の円周角算出回路部19では
上記の各入射角θ1,θ2,θ3の値をもとに(1),
(2)式の演算を行って、図8に示す散乱光d1,d2同
士およびd2,d3同士の角度θ12,θ23を求める。The circumferential angle calculating circuit 19 shown in FIG. 2 calculates (1), (2) based on the values of the incident angles θ 1 , θ 2 and θ 3 .
The angles θ 12 and θ 23 between the scattered lights d 1 and d 2 and between d 2 and d 3 shown in FIG. 8 are obtained by performing the calculation of the equation (2).
【0025】ここで、θFOVは各受光センサ12,1
3,14の視野角Eそのもので既知の値であるから、上
記の入射角θ1,θ2,θ3の値が特定されれば角度
θ12,θ23が求められる。Here, θ FOV is the value of each light receiving sensor 12, 1
Since the viewing angles E themselves of 3, 14 are known values, if the values of the incident angles θ 1 , θ 2 , θ 3 are specified, the angles θ 12 , θ 23 can be obtained.
【0026】 θ12=θ1+θFOV/2+θFOV/2−θ3 =θ1+θFOV−θ3 ‥‥‥‥‥(1) θ23=θFOV/2−θ1+θFOV/2+θ2 =θFOV−θ1+θ2 ‥‥‥‥‥(2) 上記の角度θ12,θ23が求められたならば、図2の航法
計算回路部20では、慣性位置として飛しょう体4の現
在の位置を算出する。すなわち、図9に示すように前述
した角度θ12,θ23のほか正三角形の各頂点に相当する
誘導レーザパルスP1,P2,P3の位置が既知であるこ
とから、所定の演算を行うことにより飛しょう体4の機
軸位置Mが求められ、飛しょう指令方向(各誘導レーザ
パルスP1,P2,P3の位置を頂点とする正三角形の中
心位置)aに対して飛しょう体4の機軸Mを一致させる
のに必要な軌道修正方向、すなわち例えば受光センサ1
3がとらえた散乱光d2に対して角度ψをもった軌道修
正方向Fが求められる。Θ 12 = θ 1 + θ FOV / 2 + θ FOV / 2−θ 3 = θ 1 + θ FOV −θ 3 (1) θ 23 = θ FOV / 2−θ 1 + θ FOV / 2 + θ 2 = θ FOV −θ 1 + θ 2 2 (2) Once the above angles θ 12 and θ 23 are obtained, the navigation calculation circuit unit 20 in FIG. Calculate the position. That is, as shown in FIG. 9, since the positions of the guided laser pulses P 1 , P 2 , and P 3 corresponding to the vertices of the equilateral triangle are known in addition to the angles θ 12 and θ 23 described above, the predetermined calculation is performed. By doing this, the axis position M of the flying object 4 is obtained, and the flying command direction (the center position of the equilateral triangle having the positions of the respective guided laser pulses P 1 , P 2 , and P 3 as vertices) a The trajectory correction direction required to match the machine axis M of the body 4, that is, for example, the light receiving sensor 1
A trajectory correction direction F having an angle に 対 し て with respect to the scattered light d 2 captured by the third light source 3 is obtained.
【0027】こうして軌道修正方向Fが求められると、
さらに航法計算回路部20では図10に示すように例え
ば受光センサ13の光軸中心bをロール方向の機体基準
軸とした場合に、その機体基準軸bに対する上記の軌道
修正方向Fの角度φをψ−θ1によって求める。When the trajectory correction direction F is obtained,
Further, as shown in FIG. 10, for example, as shown in FIG. 10, when the optical axis center b of the light receiving sensor 13 is set as the body reference axis in the roll direction, the navigation calculation circuit section 20 calculates the angle φ of the trajectory correction direction F with respect to the body reference axis b. determined by ψ-θ 1.
【0028】そこで、機体基準軸bを基準とした軌道修
正方向Fが求められると、航法計算回路部20では、前
述した複数のインパルススラスタ18のなかから機体1
1を軌道修正方向Fに修正するのに必要ないずれかのイ
ンパルススラスタ18を特定し、そのインパルススラス
タ18を点火作動させる。その結果、飛しょう体4はイ
ンパルススラスタ18の推力により軌道修正方向Fに移
動してその機軸Mが飛しょう指令方向aと一致する方向
に軌道修正される。Then, when the trajectory correction direction F based on the body reference axis b is obtained, the navigation calculation circuit section 20 calculates the body 1 from the plurality of impulse thrusters 18 described above.
Any one of the impulse thrusters 18 necessary for correcting 1 in the trajectory correction direction F is specified, and the impulse thrusters 18 are activated. As a result, the flying object 4 is moved in the trajectory correction direction F by the thrust of the impulse thruster 18 and the trajectory is corrected in the direction in which the aircraft axis M coincides with the flight command direction a.
【0029】このような動作を、各受光センサ12,1
3,14が誘導レーザパルスP1,P2,P3からの散乱
光d1,d2,d3をとらえるごとに順次繰り返すことに
よって、飛しょう体4は飛しょう指令方向aに沿って誘
導されながら目標5に向かって飛しょうする。Such an operation is performed by each of the light receiving sensors 12, 1
The flying object 4 is guided along the flight command direction a by sequentially repeating the scattered light d 1 , d 2 , and d 3 from the guiding laser pulses P 1 , P 2 , and P 3 , respectively. Let's fly towards goal 5
【0030】ここで、前記実施例では誘導レーザパルス
を三つとしているが四つ以上であってもよい。また、軌
道修正手段としてはインパルススラスタ(サイドスラス
タ)のほか通常の空力操舵式のものを用いてもよい。Here, in the above-described embodiment, the number of the induced laser pulses is three, but may be four or more. As the trajectory correcting means, a normal aerodynamic steering type may be used in addition to the impulse thruster (side thruster).
【0031】[0031]
【発明の効果】以上のように本発明によれば、飛しょう
体の機体の外側であって且つ機体を取り囲む正多角形の
頂部に相当する部位にそれぞれ機体の後方から誘導レー
ザパルスを照射するようにしたことにより、従来のよう
に飛しょう体が発生するロケットモータ噴煙のなかを誘
導レーザパルスを透過させる必要もなければ、飛しょう
体の飛しょう経路を曲げる必要もないので、強力なレー
ザ照射源を必要とするなどの性能、運用上の制約を伴う
ことがない。As described above, according to the present invention, the laser beam is irradiated from the back of the airframe to the outside of the airframe of the flying object and to the portion corresponding to the top of the regular polygon surrounding the airframe. As a result, there is no need to transmit the induced laser pulse through the rocket motor plume generated by the flying object as in the past, and there is no need to bend the flight path of the flying object. There is no restriction on performance and operation such as the need for an irradiation source.
【0032】また、ロールジャイロ等を搭載することな
しに飛しょう体が慣性基準に対するロール角を検出する
ことができるため、コストや重量の増加を招くことなく
信頼性が向上する。Further, since the flying object can detect the roll angle with respect to the inertia reference without mounting a roll gyro or the like, the reliability is improved without increasing costs and weight.
【図1】本発明の一実施例を示す全体システムの概略説
明図。FIG. 1 is a schematic explanatory diagram of an entire system showing one embodiment of the present invention.
【図2】飛しょう体の軌道修正制御系のブロック回路
図。FIG. 2 is a block circuit diagram of a trajectory correction control system of the flying object.
【図3】レーザパルス照射器の構成を示す説明図。FIG. 3 is an explanatory diagram showing a configuration of a laser pulse irradiator.
【図4】誘導レーザパルスの照射形態を示す説明図。FIG. 4 is an explanatory view showing an irradiation mode of an induced laser pulse.
【図5】飛しょう体の機体の要部拡大図。FIG. 5 is an enlarged view of a main part of a flying body.
【図6】受光センサ(光検出器)の原理を示す説明図。FIG. 6 is an explanatory diagram showing the principle of a light receiving sensor (photodetector).
【図7】誘導レーザパルスと散乱光との関係を示す説明
図。FIG. 7 is an explanatory diagram showing a relationship between an induced laser pulse and scattered light.
【図8】軌道修正方向算出のための原理を示す説明図。FIG. 8 is an explanatory diagram showing a principle for calculating a trajectory correction direction.
【図9】軌道修正方向算出のための原理を示す説明図。FIG. 9 is an explanatory diagram showing a principle for calculating a trajectory correction direction.
【図10】軌道修正方向算出のための原理を示す説明
図。FIG. 10 is an explanatory diagram showing a principle for calculating a trajectory correction direction.
1…発射機 2…誘導レーザパルス照射器 4…飛しょう体 5…目標 11…機体 12,13,14…光検出器(受光センサ) 18…軌道修正手段としてのインパルススラスタ a…飛しょう指令方向 d1,d2,d3…散乱光 F…軌道修正方向 M…機軸 P1,P2,P3…誘導レーザパルス θ1,θ2,θ3…入射角DESCRIPTION OF SYMBOLS 1 ... Launcher 2 ... Induction laser pulse irradiator 4 ... Flying object 5 ... Target 11 ... Aircraft 12, 13, 14 ... Light detector (light receiving sensor) 18 ... Impulse thruster as trajectory correction means a ... Flight command direction d 1, d 2, d 3 ... scattered light F ... course correction direction M ... shaft P 1, P 2, P 3 ... guided laser pulse θ 1, θ 2, θ 3 ... incident angle
Claims (1)
かって放射状の視野をもつ複数の光検出器を備えるとと
もに軌道修正手段を備えた飛しょう体を所定方向に向け
て発射させ、 機体の外周には飛しょう指令方向を中心にもち且つ機体
を取り囲む正多角形の頂部に相当する部位にそれぞれ機
体後方から誘導レーザパルスを照射し、 前記誘導レーザパルスからの散乱光を前記複数の光検出
器でとらえて所定の演算を行うことにより、前記飛しょ
う指令方向と機軸とのずれを修正するのに必要な飛しょ
う体の軌道修正方向を求め、 この軌道修正方向情報に基づいて前記軌道修正手段を作
動させることにより飛しょう体を飛しょう指令方向に誘
導することを特徴とする飛しょう体の誘導制御方法。1. A flying object provided with a plurality of photodetectors having a radial visual field toward the outside of the aircraft at equal positions on the outer peripheral surface of the aircraft and provided with a trajectory correcting means is fired in a predetermined direction, The outer periphery of the fuselage is irradiated with a guide laser pulse from the rear of the fuselage with respect to a portion corresponding to the top of a regular polygon surrounding the fuselage and having the fly command direction as a center, and scattered light from the guide laser pulse is applied to the plurality of By performing a predetermined calculation by capturing with the photodetector, the trajectory correction direction of the flying object necessary to correct the deviation between the flight command direction and the aircraft axis is determined, and the trajectory correction direction information is obtained based on the trajectory correction direction information. A guidance control method for a flying object characterized by guiding a flying object in a flight command direction by operating a trajectory correcting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200317A JP2638345B2 (en) | 1991-08-09 | 1991-08-09 | Flying object guidance control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200317A JP2638345B2 (en) | 1991-08-09 | 1991-08-09 | Flying object guidance control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0545094A JPH0545094A (en) | 1993-02-23 |
JP2638345B2 true JP2638345B2 (en) | 1997-08-06 |
Family
ID=16422301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3200317A Expired - Fee Related JP2638345B2 (en) | 1991-08-09 | 1991-08-09 | Flying object guidance control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2638345B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100227202B1 (en) * | 1996-09-30 | 1999-10-15 | 니시무로 타이죠 | Offset detecting apparatus and aircraft guiding system used thereof |
-
1991
- 1991-08-09 JP JP3200317A patent/JP2638345B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0545094A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5662291A (en) | Device for self-defense against missiles | |
US6832740B1 (en) | Missile system and method of missile guidance | |
EP3276298B1 (en) | Method of irradiatiing electromagnetic pulse and electromagnetic pulse irradiation system | |
US5333814A (en) | Towed aerodynamic bodies | |
US5695152A (en) | System for correcting flight trajectory of a projectile | |
US4542870A (en) | SSICM guidance and control concept | |
FR2517818A1 (en) | GUIDING METHOD TERMINAL AND MISSILE GUIDE OPERATING ACCORDING TO THIS METHOD | |
US8371201B2 (en) | Method and apparatus for efficiently targeting multiple re-entry vehicles with multiple kill vehicles | |
US6568627B1 (en) | Side-scatter beamrider missile guidance system | |
US7755011B2 (en) | Target maneuver detection | |
US6138944A (en) | Scatterider guidance system for a flying object based on maintenance of minimum distance between the designating laser beam and the longitudinal axis of the flying object | |
US4598884A (en) | Infrared target sensor and system | |
DE4007712A1 (en) | FLOOR WITH AN IR DETECTING SYSTEM ARROWED ON THE BOW SIDE | |
US4951901A (en) | Spin-stabilized projectile with pulse receiver and method of use | |
US3216674A (en) | Proportional navigation system for a spinning body in free space | |
US6817569B1 (en) | Guidance seeker system with optically triggered diverter elements | |
JP2638345B2 (en) | Flying object guidance control method | |
US7175130B2 (en) | Missile steering using laser scattering by atmosphere | |
US3942447A (en) | Fuzing system | |
EP1196733B1 (en) | Ring array projectile steering with optically-triggered diverter elements | |
US7150428B2 (en) | Beam laser atmospheric scattering trajectory guidance | |
JP2011163589A (en) | Guided flying object device | |
RU2111898C1 (en) | Controllable parachute system | |
RU2148236C1 (en) | Method for missile guidance on target | |
JPS6112569B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |