JP2638175B2 - A color-image chrominance signal multiplex transmission system with compatibility - Google Patents

A color-image chrominance signal multiplex transmission system with compatibility

Info

Publication number
JP2638175B2
JP2638175B2 JP1002840A JP284089A JP2638175B2 JP 2638175 B2 JP2638175 B2 JP 2638175B2 JP 1002840 A JP1002840 A JP 1002840A JP 284089 A JP284089 A JP 284089A JP 2638175 B2 JP2638175 B2 JP 2638175B2
Authority
JP
Japan
Prior art keywords
signal
mhz
transmission system
color
definition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1002840A
Other languages
Japanese (ja)
Other versions
JPH02184184A (en
Inventor
保明 金次
久和 加藤
亮一 矢島
正一 鈴木
台次 西澤
和雅 榎並
豊 田中
治雄 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK filed Critical Nippon Hoso Kyokai NHK
Priority to JP1002840A priority Critical patent/JP2638175B2/en
Publication of JPH02184184A publication Critical patent/JPH02184184A/en
Application granted granted Critical
Publication of JP2638175B2 publication Critical patent/JP2638175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ハイビジョン信号とより情報量の少ない
特定方式のテレビジョン信号との両立性を保ちながら伝
送するハイビジョン伝送方式に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-vision transmission system for transmitting a high-vision signal and a television signal of a specific system with a smaller amount of information while maintaining compatibility.

(発明の概要) この発明はハイビジョン信号の伝送方式に関するもの
で、例えば16:9のアスペクト比の映像を4:3のアスペク
ト比の従来のNTSC信号と両立性を保って伝送し、アクペ
スト比の整合のためNTSC受像機画面の上下に信号のない
空白部分を作る方式において、この上下の空白部分にハ
イビジョン信号の2つの色差信号の水平高域成分をフイ
ールド順次に、ハイビジョン信号の輝度信号の垂直高域
成分とともにまたは単独で多重して伝送している。
(Summary of the Invention) The present invention relates to a transmission method of a high-definition signal. For example, a video having an aspect ratio of 16: 9 is transmitted while maintaining compatibility with a conventional NTSC signal having an aspect ratio of 4: 3, and an image having an aspect ratio of 16: 9. In the method of creating blank areas without signals above and below the NTSC receiver screen for matching, the horizontal and high frequency components of the two color difference signals of the Hi-Vision signal are field-sequentially applied to the upper and lower blank areas, and the vertical of the luminance signal of the Hi-Vision signal. The signal is multiplexed with the high frequency component or transmitted alone.

かくてより情報量の少ない特定方式のテレビジョン信
号と両立性のよいハイビジョン信号を伝送することがで
きる。
Thus, it is possible to transmit a high-definition signal that is compatible with a television signal of a specific system having a smaller amount of information.

(従来の技術) テレビジョン伝送方式において、その垂直または水平
帰線期間に各種映像信号を多重する技術はこれまでも種
々提案されているが、ハイビジョン信号をより情報量の
少ない特定方式のテレビジョン信号と両立性を持たせる
目的で、有効走査線の圧縮走査変換とアスペクト比の整
合の結果、前記特定方式受像機の上下部分にできた信号
のない空白部分にハイビジョン信号の色信号の高域成分
を多重した従来例はない。
(Prior Art) In a television transmission system, various technologies for multiplexing various video signals in a vertical or horizontal blanking period have been proposed so far, but a high-definition television signal of a specific system having a smaller amount of information has been proposed. As a result of the compression scan conversion of the effective scan line and the matching of the aspect ratio for the purpose of providing compatibility with the signal, the high-frequency color signal of the high-definition signal is placed in a blank portion where no signal is formed in the upper and lower portions of the specific type receiver. There is no conventional example in which components are multiplexed.

(発明が解決しようとする問題点) ハイビジョン信号は例えば走査線が1125本,アスペク
ト比が16:9であり、NTSC信号は走査線が525本,アクペ
クト比が4:3である。このように放送方式が異なる場合
は、通常は異なる伝送路で伝送し受像機も異なるものを
用いることが前提となっている。
(Problems to be Solved by the Invention) A high-vision signal has, for example, 1125 scanning lines and an aspect ratio of 16: 9, and an NTSC signal has 525 scanning lines and an aspect ratio of 4: 3. When the broadcasting systems are different as described above, it is premised that the broadcasting is usually transmitted through different transmission paths and the receiver is also different.

NTSC信号とっ両立性を保ちながらハイビジョン信号を
伝送するためには、ハイビジョン信号が有している高精
細度な情報をNTSC信号に多重しなければならない。ハイ
ビジョン信号の輝度信号の垂直高域成分の多重について
は別途出願がなされているが(特願昭63−24009「画像
信号伝送方式」),いずれにしてもハイビジョン信号と
NTSC信号のアスペクト比の違いからハイビジョンの映像
をNTSC方式で表現するためには、NTSC受像機の画面で上
下に信号のない空白部分を作るか、上述のNTSC受信機の
画面で画面高を整合させた場合には左右の見切れた部分
を別に伝送するかの2つの方式となる。
In order to transmit a Hi-Vision signal while maintaining compatibility with the NTSC signal, high-definition information of the Hi-Vision signal must be multiplexed into the NTSC signal. A separate application has been filed for the multiplexing of the vertical high-frequency component of the luminance signal of the Hi-Vision signal (Japanese Patent Application No. 63-24009 "Image signal transmission method").
In order to express Hi-Vision video in the NTSC format due to the difference in the aspect ratio of the NTSC signal, create a blank area with no signal at the top and bottom of the screen of the NTSC receiver or match the screen height on the screen of the NTSC receiver described above In such a case, there are two methods of separately transmitting the left and right broken parts.

本発明伝送方式の目的は、前述の2つの方式のうち前
者の方式で、前記上下に信号のない空白部分に、ハイビ
ジョン信号の輝度信号の垂直高域成分とともにまたは単
独でハイビジョンの2つの色差信号の水平高域成分をフ
イールド順次に多重することにより、NTSC受像機では上
下が黒くなりアスペクト比が16:9の映像が再生できる
し、ハイビジョン受像機では上下の空白部分に多重した
信号を復調して、高精細度のハイビジョン映像が再生で
きる両立性を備えたカラー画像色差信号多重伝送方式を
提案せんとするものである。
The purpose of the transmission system of the present invention is to use the former two of the above two systems, and the two color difference signals of the Hi-Vision, alone or together with the vertical high-frequency component of the luminance signal of the Hi-Vision signal, By multiplexing the horizontal high-frequency components in a field-sequential manner, NTSC receivers can play video with an aspect ratio of 16: 9, which is black at the top and bottom, and Hi-Vision receivers can demodulate signals multiplexed in the upper and lower blank areas. In addition, the present invention proposes a color image color difference signal multiplexing transmission system having compatibility capable of reproducing high definition high definition video.

(問題点を解決するための手段) この目的を達成するための本発明両立性を備えたカラ
ー画像色差信号多重伝送方式は、特定方式のテレビジョ
ン信号よりも大きなアスペクト比とより多数の走査線数
を有するハイビジョン信号の有効走査線を、特定方式の
テレビジョン信号の有効走査線よりも少ない数の有効走
査線に圧縮走査変換して伝送することにより、特定方式
の受像機に対してハイビジョン方式のアスペクト比を保
ちながらハイビジョン信号を伝送する方式において、前
記特定方式の受像機画面の上下の信号空白部分にハイビ
ジョン信号の2つの色差信号の水平高域成分をフイール
ド順次に、ハイビジョン信号の輝度信号の垂直高域成分
とともにまたは単独で多重して伝送することを特徴とす
るものである。
(Means for Solving the Problems) To achieve this object, the compatible color image chrominance signal multiplex transmission system of the present invention has a larger aspect ratio and a larger number of scanning lines than a television signal of a specific system. The number of effective scanning lines of a high-definition signal having a number is compressed and scan-converted into a smaller number of effective scanning lines than the effective scanning lines of a television signal of a specific system, and transmitted. In the method of transmitting a high-definition signal while maintaining the aspect ratio of the high-definition signal, the horizontal high-frequency components of the two color difference signals of the high-definition signal are field-sequentially arranged in a signal blank portion above and below the receiver screen of the specific method, and the luminance signal of the high-definition signal is Multiplexed with or independently of the vertical high-frequency component of the above.

(実施例) NTSC伝送方式色信号の帯域は、I信号が1.5MHz、Q信
号が0.5MHzである。この発明は伝送すべき色信号をハイ
ビジョン伝送方式との両立性を保つためより広帯域化
し、本発明によるハイビジョン受像機ではI信号が3MH
z,Q信号が2MHzまで再生できるものとしている。色信号
に両立性を持たせるため、I信号においては帯域が0〜
1.5MHzと1.5〜3MHzに、Q信号においては0〜0.5MHzと
0.5〜2MHzに分け、低減については従来のNTSC方式と同
じ伝送路を用い、高域については以下に詳述する方法に
より伝送をおこなうものとする。
(Embodiment) The band of the NTSC transmission color signal is 1.5 MHz for the I signal and 0.5 MHz for the Q signal. According to the present invention, the color signal to be transmitted is broadened in order to maintain compatibility with the high-definition transmission system. In the high-vision receiver according to the present invention, the I signal is 3 MHz.
It is assumed that the z and Q signals can be reproduced up to 2 MHz. In order to make the color signal compatible, the band of the I signal is 0 to 0.
1.5MHz and 1.5 ~ 3MHz, 0 ~ 0.5MHz for Q signal
The frequency is divided into 0.5 to 2 MHz, the same transmission path as that of the conventional NTSC system is used for the reduction, and the transmission is performed by the method described in detail below for the high band.

以下に添付図面を参照し本発明に係る色信号の伝送方
式について詳細に説明する。
Hereinafter, a color signal transmission method according to the present invention will be described in detail with reference to the accompanying drawings.

第1図,第2図に本発明伝送方式に係る色信号部分の
エンコーダ、デコーダ実施例構成ブロック線図をそれぞ
れ示す。
FIGS. 1 and 2 are block diagrams showing an encoder and a decoder according to an embodiment of the present invention, respectively.

第1図においてマトリックス処理を受けた入力I信号
は、まずLPF(低域通過フィルタ)1により0〜3MHzに
帯域制限される。この出力はさらに0〜1.5MHzのLPF2に
より0〜1.5MHzの信号と1.5〜3MHzの信号に分離され
る。1.5〜3MHzの信号はLPF2の入力と出力の信号を減算
器3で減算することにより得られる。これにより0〜1.
5MHzの信号と1.5〜3MHz信号との1.5MHz付近の特性は相
補の関係となる。こゝでI信号の0〜0.5MHzの信号につ
いては、NTSC伝送方式と同様後述のQ信号とのかねあい
でπ/2移相器4を介した3.58MHzの色副搬送波fscを変調
器5で変調し、加算器12,スイッチs2を介して伝送され
る。減算器3の出力であるI信号の1.5〜3MHzの信号も
変調器6で3.58MHzの色副搬送波fscを変調し、これによ
り信号の帯域0.58〜2.08MHzと5.08〜6.58MHzが得られ
る。このうち5.08〜6.58MHzの信号はLPF7により除去さ
れ、0.58〜2.08MHzの信号成分がLPF7の出力に得られ
る。
In FIG. 1, the input I signal that has been subjected to the matrix processing is first band-limited to 0 to 3 MHz by an LPF (low-pass filter) 1. This output is further separated into a 0-1.5 MHz signal and a 1.5-3 MHz signal by an LPF 2 of 0-1.5 MHz. The signal of 1.5 to 3 MHz is obtained by subtracting the input and output signals of the LPF 2 by the subtractor 3. This allows 0-1.
The characteristics around 1.5 MHz of the 5 MHz signal and the 1.5 to 3 MHz signal have a complementary relationship. The signal 0~0.5MHz the I signal at thisゝ, NTSC transmission method similar to the color of 3.58MHz via [pi / 2 phase shifter 4 in view of the later of the Q signal subcarrier f sc modulator 5 in modulated, the adder 12, is transmitted via the switch s 2. 1.5~3MHz signals is the output of the subtracter 3 I signal also modulates the 3.58MHz color subcarrier f sc in the modulator 6, thereby the signal of the band 0.58~2.08MHz and 5.08~6.58MHz is obtained. Among them, the signal of 5.08 to 6.58 MHz is removed by the LPF 7, and the signal component of 0.58 to 2.08 MHz is obtained at the output of the LPF 7.

一方マトリックス処理を受けた入力Q信号はまずLPF8
により0〜2MHzの帯域に制限される。続いてI信号と同
様な方法で、LPF9と減算器10を用いて0〜0.5MHzの信号
と0.5〜2MHzの信号に分離される。Q信号の0〜0.5MHz
の信号については、NTSC伝送方式と同様3.58MHZの色副
搬送波fscを変調器11で変調し、加算器12,スイッチS2
介して伝送される。0.5〜2MHzのQ信号成分については
以下に述べる方法より、アスペクト比の違いによるNTSC
信号の上下空白部分にフイールド順次に多重する。
On the other hand, the input Q signal that has undergone matrix processing is first LPF8
Is limited to a band of 0 to 2 MHz. Subsequently, the signal is separated into a signal of 0 to 0.5 MHz and a signal of 0.5 to 2 MHz using the LPF 9 and the subtractor 10 in the same manner as the I signal. 0 to 0.5MHz of Q signal
The signal modulates the NTSC color transmission system similar 3.58MHZ subcarrier f sc in the modulator 11, an adder 12, is transmitted via the switch S 2. For the Q signal component of 0.5 to 2 MHz, NTSC due to the difference in aspect ratio
It is multiplexed in a field sequence on the upper and lower blank portions of the signal.

LPF7の出力であるI信号の高域成分と減算器10の出力
であるQ信号の高域成分とは、スイッチS1でフイールド
毎に切換えられる。I信号とQ信号とをフイールド毎に
切換えることはフイールド周波数が半減することと等価
になる。このことにより伝送できる動き方向の帯域は狭
くなる。静止画または動きの小さな動画の場合は、動き
方向の帯域が狭いためにフイールド周波数が半減しても
再生信号には支障がない。動きの大きい動画の場合は、
色信号の高域成分が少ないために伝送する情報量が少な
くてすむ。従って、色信号の高域成分をフイールド順次
で伝送するのが可能となる。
A high frequency component of which is the output I signal LPF7 the high-frequency component of the Q signal output from the subtracter 10 is switched every field by the switch S 1. Switching between the I signal and the Q signal for each field is equivalent to halving the field frequency. This narrows the band in the direction of motion that can be transmitted. In the case of a still image or a moving image with a small motion, the reproduction signal is not affected even if the field frequency is reduced by half because the band in the motion direction is narrow. For moving video,
Since the high frequency components of the color signal are small, the amount of information to be transmitted is small. Therefore, it is possible to transmit the high frequency components of the color signal in a field sequence.

次にスイッチS1の出力である切換え後の色信号は時間
軸圧縮器13により時間軸圧縮される。ハイビジョン画像
のアスペクト比は16:9であるがNTSC画像のアスペクト比
は4:3である。両立性を保つための信号伝送後のNTSC受
像機上での縦の有効走査線数は、垂直方向を圧縮してア
スペクト比を16:9とする方式を採用したとすれば上下部
分が空白となる。それはNTSC受像機での本来の垂直の走
査線数525本に比しかなり少なくなるからである。この
上下空白部分に画面中央部の有効画面の輝度信号の垂直
高域成分を割当てる手段は本願人により別途出願されて
いる(特願昭63−24009「画像信号伝送方式」参照)。
今この発明ではこの上下空白部分にさらにまたは単独で
画面中央部有効画面の色信号の高域成分を時間軸圧縮器
13で時間軸圧縮して多重しようとするものである。色信
号の高域成分を時間軸圧縮をするのは、この上下空白部
分が画面中央部に比しその面積が半分程度と狭くなるこ
とに起因する。
Then the color signals after the switching, which is the output of the switch S 1 is time-base-compressed by the time axis compressor 13. The aspect ratio of a high-definition image is 16: 9, while the aspect ratio of an NTSC image is 4: 3. The number of vertical effective scanning lines on the NTSC receiver after signal transmission to maintain compatibility is that if the vertical direction is compressed and the aspect ratio is 16: 9, the upper and lower parts will be blank. Become. This is because the number of vertical scanning lines in an NTSC receiver is considerably smaller than that of 525. A means for assigning the vertical high frequency component of the luminance signal of the effective screen in the center of the screen to the upper and lower blank portions has been separately filed by the present applicant (see Japanese Patent Application No. 63-24009, "Image Signal Transmission System").
In the present invention, the high-frequency component of the color signal of the effective screen in the center of the screen is additionally or separately applied to the upper and lower blank portions by the time axis compressor
At 13 the time axis is compressed and multiplexing is attempted. The reason why the high frequency component of the color signal is compressed on the time axis is that the area of the upper and lower blank portions is reduced to about half that of the central portion of the screen.

今例えば説明を簡単化するため上下空白部分の走査線
数を175本、有効画面の走査線数を350本というように1:
2ととると、前記時間軸圧縮の圧縮比は1:2となる。この
圧縮比のもとではLPF7の出力であるI信号の0.58〜2.08
MHzの信号成分は1.16〜4.16MHz、減算器10の出力である
Q信号の0.5〜2.0MHzの信号成分は1.0〜4.0MHzの帯域と
なる。これらの信号は上下空白部分への多重のため例え
ば4.68MHz(=17/13・fsc)の搬送波fを変調器14で変
調すると、I信号の帯域は0.52〜3.52MHzと5.84〜8.84M
Hz、Q信号の帯域は0.68〜3.68MHzと5.68〜8.68MHzとな
る。このうち周波数の高い方の成分を除去し(そのため
のLPFは省略してある)、低い方の成分を上下空白部分
に多重して伝送する。すなわち今の場合I信号は0.52〜
3.52MHz,Q信号は0.68〜3.68MHzの成分が伝送される。ス
イッチS2は信号が有効画面の時は加算器12の出力側、信
号が上下空白部分の時は乗算器14の出力側に切換えられ
る。
For example, to simplify the explanation, the number of scanning lines in the upper and lower blank part is 175, the number of scanning lines in the effective screen is 350, and so on.
Taking 2, the compression ratio of the time axis compression is 1: 2. Under this compression ratio, the output of the LPF 7 is 0.58 to 2.08 of the I signal.
The signal component of MHz has a band of 1.16 to 4.16 MHz, and the signal component of 0.5 to 2.0 MHz of the Q signal output from the subtracter 10 has a band of 1.0 to 4.0 MHz. Since these signals are multiplexed into the upper and lower blank portions, for example, when a carrier f of 4.68 MHz (= 17/13 · f sc ) is modulated by the modulator 14, the I signal band is 0.52 to 3.52 MHz and 5.84 to 8.84 M
The bandwidths of the Hz and Q signals are 0.68 to 3.68 MHz and 5.68 to 8.68 MHz. Of these, the higher frequency component is removed (the LPF for that is omitted), and the lower component is multiplexed on the upper and lower blank portions and transmitted. That is, in this case, the I signal is 0.52-
As for the 3.52 MHz and Q signal, components of 0.68 to 3.68 MHz are transmitted. Switch S 2 is the signal that is output of the adder 12 when the effective screen, when the signal is of the upper and lower blank portions are switched to the output side of the multiplier 14.

かくて得られた出力C信号は色信号の高域成分のみを
上下空白部分に多重するときはそのまゝ多重する。輝度
信号の垂直高域成分もこの上下空白部分に多重するとき
は、この伝送すべき輝度信号の垂直高域成分と色信号の
高域成分との帯域幅の取合いや一部インターリーブの技
術を使用することになるが、この技術はよく知られた公
知の技術を使用すればよいので詳細については省略す
る。
When only the high frequency component of the color signal is multiplexed in the upper and lower blank portions, the output C signal thus obtained is multiplexed as it is. When the vertical high-frequency component of the luminance signal is also multiplexed in the upper and lower blank areas, use the bandwidth arrangement between the vertical high-frequency component of the luminance signal to be transmitted and the high-frequency component of the chrominance signal, and use some interleaving techniques. However, since this technique may use a well-known technique, a detailed description thereof will be omitted.

以上が本発明伝送方式に係るエンコーダ構成例の説明
であるが次にデコーダ構成例について第2図を参照して
説明する。
The above is the description of the encoder configuration example according to the transmission system of the present invention. Next, the decoder configuration example will be described with reference to FIG.

伝送されてきた色信号は入力C信号としてまずスイッ
チS3により有効画面時と上下空白部分の時とそれぞれ乗
算器22,23側と乗算器24側に切換えられる。こゝで入力
C信号は、輝度信号の垂直高域成分と色信号の高域成分
とがともに上下空白部分に多重されて伝送されてくる時
には、この前段でまたは一寸変形した処理回路が必要と
なるが、こゝでは色信号の高域成分の多重のみの場合に
ついて説明をするものとする。
Color signal transmitted is switched to the multiplier 24 side by the first switch S 3 as the input C signal and when the effective screen as when the multipliers 22 and 23 side of the upper and lower blank portions. In this case, when the input C signal is transmitted with the vertical high frequency component of the luminance signal and the high frequency component of the chrominance signal both multiplexed in the upper and lower blank portions, a processing circuit which is deformed at the preceding stage or one dimension is required. In this case, however, a case will be described in which only high-frequency components of a color signal are multiplexed.

有効画面時はさらに通常のNTSC伝送方式と同様に色副
搬送波3.58fMHfscを乗算して、π/2移相器21と乗算器22
とによりI信号の低域成分が、乗算器23によりQ信号の
低減成分が復調される。上下空白部分の時はさらに色信
号の高域成分のエンコーダ時の変調と同じ周波数の搬送
波fを乗算器24で乗算して色信号の高域成分が復調され
る。本実施例の場合伝送されてくる高域I信号の帯域は
0.52〜3.52MHz,高域Q信号の帯域は0.68〜3.68MHzであ
るから、搬送波の周波数fを4.68MHz(=17/13・fsc
とすると、復調される信号の帯域は、I信号が1.16〜4.
16MHzと5.84〜8.84MHz,Q信号が1.0〜4.0MHzと5.36〜8.3
6MHzとなる。このうちLPF25で低い方の成分のみを通過
させる。次に時間軸伸張器26で時間軸伸長を行なう。こ
の結果本実施例の場合の信号帯域は高域I信号が0.58〜
2.08MHz,高域Q信号が0.5〜2.0MHzとなる。
At the time of the effective screen, the π / 2 phase shifter 21 and the multiplier 22 are further multiplied by the color subcarrier 3.58 fMHf sc in the same manner as the normal NTSC transmission method.
Thus, the low-frequency component of the I signal is demodulated by the multiplier 23, and the reduced component of the Q signal is demodulated by the multiplier 23. In the upper and lower blank portions, the multiplier 24 multiplies the carrier f having the same frequency as that of the modulation of the high frequency component of the color signal at the time of the encoder to demodulate the high frequency component of the color signal. In the case of the present embodiment, the band of the high band I signal transmitted is
Since the band of the high-frequency Q signal is 0.68 to 3.68 MHz, the frequency f of the carrier wave is 4.68 MHz (= 17/13 · f sc ).
Then, the band of the signal to be demodulated is 1.16 to 4.
16MHz and 5.84 ~ 8.84MHz, Q signal is 1.0 ~ 4.0MHz and 5.36 ~ 8.3
6MHz. Of these, LPF25 passes only the lower component. Next, time axis expansion is performed by the time axis expander 26. As a result, the signal band of the present embodiment is such that
2.08 MHz and the high band Q signal is 0.5 to 2.0 MHz.

色信号の高域成分はフイールド順次に伝送されてくる
からフイールド補間を行なう必要がある。第2図示構成
例の場合は零次補間と称せられるものである。高域I信
号が伝送されてきている時はスイッチS4が上、スイッチ
S5が下となり高域I信号はフイールドメモリ27に記録さ
れると同時に次段に送られる。高域Q信号が伝送されて
きている時はスイッチS4が下、スイッチS5が上となりフ
ィールドメモリ27に記録されていた1フイールド前の高
域I信号が次段に送られる。このことにより高域Q信号
伝送時にも高域I信号はとぎれることなく次段に送られ
る。フイールドメモリ28の動作もフイールドメモリ27の
動作と同様であり、高域Q信号も間断なく次断に送られ
る。高域I信号はその後色副搬送波fscで復調器29を使
用して復調され、この結果高域I信号の帯域は1.5〜3.0
MHzと4.16〜5.66MHzとなるが、LPF30により低域の方が
通過させられる。このことによりこの高域I信号はエン
コーダで分離したときの高域成分1.5〜3.0MHzと同じに
なり、低域のI信号に加算器31で加算することによりエ
ンコード前のI信号を再生することができる。高域Q信
号はフイールドメモリ28、スイッチS6後は帯域が0.5〜
2.0MHzであり、これはエンコーダ側で分離したときの高
域Q信号と同一であり、低域Q信号に加算器32で加算す
ることによりエンコード前のQ信号を再生することがで
きる。
Since the high frequency components of the color signal are transmitted in a field sequence, it is necessary to perform field interpolation. In the case of the configuration example shown in FIG. 2, it is called zero-order interpolation. When the high band I signal is being transmitted, the switch S 4 is up and the switch is
High band I signal S 5 becomes lower is sent to the next stage as soon as they are recorded in the field memory 27. When the high band Q signal is being transmitted, the switch S 4 is down and the switch S 5 is up, and the high band I signal one field before recorded in the field memory 27 is sent to the next stage. As a result, the high band I signal is transmitted to the next stage without interruption even during the transmission of the high band Q signal. The operation of the field memory 28 is the same as the operation of the field memory 27, and the high-frequency Q signal is transmitted without interruption. High band I signal is demodulated then use the demodulator 29 at the color subcarrier f sc, the band of the result of high band I signal 1.5 to 3.0
MHz and 4.16 to 5.66 MHz, but the LPF 30 allows lower frequencies to pass. As a result, the high-frequency I signal becomes the same as the high-frequency component 1.5 to 3.0 MHz when separated by the encoder, and the I-signal before encoding is reproduced by adding the low-frequency I signal to the adder 31. Can be. High-frequency Q signal field memories 28, after the switch S 6 is 0.5 bandwidth
2.0 MHz, which is the same as the high-frequency Q signal when separated on the encoder side, and by adding to the low-frequency Q signal by the adder 32, the Q signal before encoding can be reproduced.

以上の実施例では特定方式はNTSC伝送方式、前記特定
方式の受像機での有効走査線数は350本、ハイビジョン
信号の2つの色信号の伝送帯域がそれぞれ3MHzと2MHzで
あるとして説明してきたが、本発明はこれに限定される
ものではなく、本発明のはんちゅうを逸脱することな
く、本発明に変形あるいは修正をほどこすことが可能な
ことは当業者にとり自明であろう。
In the above embodiments, the specific method is described as the NTSC transmission method, the number of effective scanning lines in the receiver of the specific method is 350, and the transmission bands of the two color signals of the Hi-Vision signal are 3 MHz and 2 MHz, respectively. However, it is obvious to those skilled in the art that the present invention is not limited to this, and that the present invention can be changed or modified without departing from the scope of the present invention.

(発明の効果) 従来のNTSC伝送方式では、伝送できる色の帯域はI信
号0〜1.5MHz、Q信号が0〜0.5MHzであった。この発明
方式ではアスペクト比を4:3ではなく16:9にし、上下に
できた空白部分に色信号の高域を多重することにより、
従来の4:3のアスペクト比の受像機では上下が黒くアス
ペクト比の16:9の有効画面が再生でき、16:9のアスペク
ト比の受像機では、I信号が0〜3.0MHz、Q信号が0〜
2.0MHzの広帯域の色信号が再生できる。
(Effects of the Invention) In the conventional NTSC transmission system, the color bands that can be transmitted are I signals of 0 to 1.5 MHz and Q signals of 0 to 0.5 MHz. In the method of the present invention, the aspect ratio is set to 16: 9 instead of 4: 3, and the high frequency range of the color signal is multiplexed in the blank part formed above and below, so that
A conventional 4: 3 aspect ratio receiver can reproduce an effective screen with a 16: 9 aspect ratio black, with the top and bottom black. On a 16: 9 aspect ratio receiver, the I signal is 0 to 3.0 MHz and the Q signal is 0 to
A 2.0MHz wideband color signal can be reproduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明伝送方式に係る色信号部分のエ
ンコーダ,デコーダ実施例構成ブロック線図をそれぞれ
示す。 1,30……LPF(0〜3MHz) 2……LPF(0〜1.5MHz) 3,10……減算器、4,21……π/2移相器 5,6,11,14,22,23,24,29……乗算器 7……LPF(0〜2.1MHz) 8……LPF(0〜2MHz)、9……LPF(0〜0.5MHz) 12,31,32……加算器、13……時間軸圧縮器 S1,S2,S3,S4,S5,S6……スイッチ 25……LPF(0〜4.2MHz) 26……時間軸伸長器 27,28……フイールドメモリ
FIGS. 1 and 2 are block diagrams respectively showing an embodiment of an encoder and a decoder for a color signal portion according to the transmission system of the present invention. 1,30 LPF (0 to 3 MHz) 2 LPF (0 to 1.5 MHz) 3,10 Subtractor 4,21 π / 2 phase shifter 5,6,11,14,22, 23,24,29 Multiplier 7 LPF (0 to 2.1 MHz) 8 LPF (0 to 2 MHz) 9 LPF (0 to 0.5 MHz) 12,31,32 Adder 13 …… Time axis compressor S 1 , S 2 , S 3 , S 4 , S 5 , S 6 … Switch 25… LPF (0 to 4.2 MHz) 26… Time axis expander 27,28… Field memory

フロントページの続き (72)発明者 鈴木 正一 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 西澤 台次 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 榎並 和雅 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 田中 豊 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 奥田 治雄 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (56)参考文献 特開 平1−200881(JP,A) 特開 平1−258581(JP,A) 特開 平2−184183(JP,A)Continued on the front page (72) Inventor Shoichi Suzuki 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (72) Inventor Taiji Nishizawa 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Within the Broadcasting Corporation Broadcasting Research Institute (72) Inventor Kazuma Enami 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Within the Broadcasting Corporation Research Institute (72) Inventor Yutaka Tanaka 1-110, Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Broadcasting Research Institute (72) Inventor Haruo Okuda 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Broadcasting Research Institute (56) References JP-A-1-200881 (JP, A) Hei 1-258581 (JP, A) JP-A-2-184183 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】特定方式のテビジョン信号よりも大きなア
スペクト比とより多数の走査線数を有するハイビジョン
信号の有効走査線を、特定方式のテレビジョン信号の有
効走査線よりも少ない数の有効走査線に圧縮走査変換し
て伝送することにより、特定方式の受像機に対してハイ
ビジョン方式のアスペクト比を保ちながらハイビジョン
信号を伝送する方式において、 前記特定方式の受像機画面の上下の信号空白部分にハイ
ビジョン信号の2つの色差信号の水平高域成分をフイー
ルド順次に、ハイビジョン信号の輝度信号の垂直高域成
分とともにまたは単独で多重して伝送することを特徴と
する両立性を備えたカラー画像色差信号多重伝送方式。
An effective scanning line of a high-vision signal having a larger aspect ratio and a greater number of scanning lines than a television signal of a specific system has a smaller number of effective scanning lines than an effective scanning line of a television signal of a specific system. In a method of transmitting a high-definition signal while maintaining the aspect ratio of the high-definition method with respect to the receiver of the specific method by transmitting the compression scan conversion to the high-definition method, a high-definition image is formed in a signal blank portion above and below the screen of the specific method. A color image chrominance signal multiplexing with compatibility characterized in that the horizontal high frequency components of two color difference signals of the signal are multiplexed and transmitted in a field-sequential manner together with the vertical high frequency component of the luminance signal of the HDTV signal or independently. Transmission method.
【請求項2】請求項1記載の伝送方式において、前記特
定の方式がNTSC伝送方式であることを特徴とする両立性
を備えたカラー画像色差信号多重伝送方式。
2. A color image chrominance signal multiplex transmission system having compatibility as claimed in claim 1, wherein said specific system is an NTSC transmission system.
【請求項3】請求項1または2記載の伝送方式において
前記ハイビジョン信号のアスペクト比が16:9であること
を特徴とする両立性を備えたカラー画像色差信号多重伝
送方式。
3. The color image chrominance signal multiplex transmission system with compatibility according to claim 1 or 2, wherein the aspect ratio of said Hi-Vision signal is 16: 9.
【請求項4】請求項1から3いずれかに記載の伝送方式
において、前記特定方式のテレビジョン信号の有効走査
線より少ない数の有効走査線の本数が350本であること
を特徴とする両立性を備えたカラー画像色差信号多重伝
送方式。
4. The transmission system according to claim 1, wherein the number of effective scanning lines smaller than the number of effective scanning lines of the television signal of the specific system is 350. Multiplexed color image color difference signal transmission system
【請求項5】請求項1から4いずれかに記載の伝送方式
において、前記ハイビジョン信号の伝送される2つの色
差信号の帯域が、それぞれ3MHzと2MHzであることを特徴
とする両立性を備えたカラー画像色差信号多重伝送方
式。
5. The transmission system according to claim 1, wherein the bands of two color difference signals for transmitting the Hi-Vision signal are 3 MHz and 2 MHz, respectively. Color image color difference signal multiplex transmission method.
JP1002840A 1989-01-11 1989-01-11 A color-image chrominance signal multiplex transmission system with compatibility Expired - Lifetime JP2638175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002840A JP2638175B2 (en) 1989-01-11 1989-01-11 A color-image chrominance signal multiplex transmission system with compatibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002840A JP2638175B2 (en) 1989-01-11 1989-01-11 A color-image chrominance signal multiplex transmission system with compatibility

Publications (2)

Publication Number Publication Date
JPH02184184A JPH02184184A (en) 1990-07-18
JP2638175B2 true JP2638175B2 (en) 1997-08-06

Family

ID=11540608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002840A Expired - Lifetime JP2638175B2 (en) 1989-01-11 1989-01-11 A color-image chrominance signal multiplex transmission system with compatibility

Country Status (1)

Country Link
JP (1) JP2638175B2 (en)

Also Published As

Publication number Publication date
JPH02184184A (en) 1990-07-18

Similar Documents

Publication Publication Date Title
KR950002655B1 (en) Progressive scan television system with interlaced inter-field sum and difference components
JPH05284507A (en) Technique for applying compatibility between high-definition color television and conventional-type color television
US5103295A (en) Television signal processor for eliminating quality differences between portions of television images having different aspect ratios
EP0113932B1 (en) Television transmission system
JPS594287A (en) Color television transmission system
US4970601A (en) Video signal processing apparatus for video tape recorder
JP2638175B2 (en) A color-image chrominance signal multiplex transmission system with compatibility
JPS62236288A (en) Multiplex signal transmission system
JPS6346084A (en) Transmission system for television signal
JPS6276986A (en) Wide aspect television reproducing device
US4472746A (en) Chrominance channel bandwidth modification system
JP2516004B2 (en) Color-video signal conversion method and apparatus thereof
JP2624533B2 (en) Image signal transmission system with compatibility
JPS6372288A (en) System and device for color television
JPS63105586A (en) Television signal processing method
CA1331806C (en) Apparatus with an inverse nyquist filter for processing vestigial multiplex signals in quadrature
JPH04502995A (en) Compatible frequency multiplexed television system
JPH02170789A (en) Video signal recorder
JP2855738B2 (en) Video signal transmission system
JPH0233292A (en) Television signal processor
JPH03154594A (en) Transmission system for television signal and receiver
JPS63123295A (en) Television signal device
JPS647555B2 (en)
JPS63123290A (en) Television signal device
JPS6386983A (en) Processing method for high definition television signal