JP2635062B2 - Particle collection device for evacuation system - Google Patents

Particle collection device for evacuation system

Info

Publication number
JP2635062B2
JP2635062B2 JP31100387A JP31100387A JP2635062B2 JP 2635062 B2 JP2635062 B2 JP 2635062B2 JP 31100387 A JP31100387 A JP 31100387A JP 31100387 A JP31100387 A JP 31100387A JP 2635062 B2 JP2635062 B2 JP 2635062B2
Authority
JP
Japan
Prior art keywords
gas flow
thermophoretic
gas
particle trap
trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31100387A
Other languages
Japanese (ja)
Other versions
JPH01151918A (en
Inventor
良保 前羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP31100387A priority Critical patent/JP2635062B2/en
Publication of JPH01151918A publication Critical patent/JPH01151918A/en
Application granted granted Critical
Publication of JP2635062B2 publication Critical patent/JP2635062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空室と真空ポンプとの間に設置され、真
空室に存するダスト等の微粒子を真空ポンプに到達する
前に捕集する真空排気系用微粒子捕集装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vacuum installed between a vacuum chamber and a vacuum pump to collect fine particles such as dust existing in the vacuum chamber before reaching the vacuum pump. The present invention relates to a particulate collection device for an exhaust system.

[従来の技術] 従来、CVD(化学気相成長)等の多量にダスト等の微
粒子(粉)を発生する装置においては、真空ポンプ保護
のために、排気通路にメッシュを介在させて排気ガス中
のダスト等の微粒子を付着させる方法が採られていた。
しかし、真空中ではレイノズル数は小さく、上記のよう
な方法はほとんどブラウン効果に頼っているため捕集効
率が悪かった。
[Prior art] Conventionally, in a device such as CVD (chemical vapor deposition) that generates a large amount of fine particles (powder) such as dust, a mesh is interposed in an exhaust passage to protect a vacuum pump. A method of adhering fine particles such as dust.
However, in a vacuum, the number of Reynolds nozzles was small, and the above-described method almost relied on the Brownian effect, resulting in poor collection efficiency.

上記のような欠点を解消する手段として先に例えば第
3図に示すような熱泳動式の捕集装置を提案した(特願
昭62−97521号)。
As a means for overcoming the above-mentioned disadvantages, for example, a thermophoretic trapping device as shown in FIG. 3 has been proposed (Japanese Patent Application No. 62-97521).

第3図に示す捕集装置は外側円筒体1と内側円筒体2
とから成る二重円筒型の容器3を有し、この二重円筒型
の容器3に設けられた流入管4はバルブ5を介して例え
ば成膜装置の真空室6に接続され、また二重円筒型の容
器3に設けられた流出管7はバルブ8を介して低真空ま
たは中真空を形成し得る真空ポンプ9に接続され、上記
外側円筒体1と内側円筒体2との間に流入管4から流出
管7へ通じる気体の流路10が形成され、外側円筒体1は
その外側に加熱用ヒータ11を取り付けて高温壁として機
能させ、また内側円筒体2はその内部に冷却水パイプ12
を介して冷却水を供給することにより低温壁として機能
させると共に、捕集装置を通過するに必要な圧力差を小
さくし、また気体中の微粒子を全て捕集できるように、
外側円筒体1および内側円筒体2の断面積および長さを
適当に保つように構成されている。なお、第2図におい
て13はバルブ14、15を介して真空室6と真空ポンプ9と
を結ぶバイパス配管である。
The collecting device shown in FIG. 3 has an outer cylindrical body 1 and an inner cylindrical body 2.
The inflow pipe 4 provided in the double cylindrical container 3 is connected via a valve 5 to, for example, a vacuum chamber 6 of a film forming apparatus. An outflow pipe 7 provided in the cylindrical container 3 is connected via a valve 8 to a vacuum pump 9 capable of forming a low or medium vacuum, and an inflow pipe between the outer cylindrical body 1 and the inner cylindrical body 2. A gas flow passage 10 is formed from the gas flow passage 4 to the outflow pipe 7. The outer cylinder 1 is provided with a heater 11 on its outside to function as a high-temperature wall, and the inner cylinder 2 has a cooling water pipe 12 inside.
By supplying cooling water through the, it functions as a low-temperature wall, reduces the pressure difference required to pass through the collection device, and collects all the fine particles in the gas.
The outer cylindrical body 1 and the inner cylindrical body 2 are configured to appropriately maintain the cross-sectional area and length. In FIG. 2, reference numeral 13 denotes a bypass pipe connecting the vacuum chamber 6 and the vacuum pump 9 via valves 14 and 15.

このように構成された捕集装置において、真空ポンプ
9が作動されると、真空室6内のガスは流入管4、二重
円筒型の容器3内の気体の流路10および流出管7を通っ
て真空ポンプ9へと吸引されるが、気体の流路10は高温
壁と低温壁とを対向させて設けしかも流入管4より断面
積を大きく形成されているので、真空ポンプ9で吸引さ
れるガス中のダスト等の微粒子は、高温壁と低温壁との
温度勾配を有する流路10内で高温側から低温側へと熱泳
動現象によりある速度で移動して低温壁すなわち内側円
筒体2に付着する。この微粒子の移動速度は、圧力が低
いほど小さい温度勾配で同一の速度となるので、外側円
筒体1と内側円筒体2との間隔を大きく取り、温度勾配
が小さくなった場合つまり流路10の断面積を大きくした
場合であっても十分にガス中の微粒子を低温壁に吸着し
て捕集することができる。しかも、流路断面積は流入管
4の断面積より大きいので、微粒子収集のための圧力差
が小さくて済み、そのため比較的高い真空度の得られる
真空ポンプにも使用でき、可及的に真空室内の圧力を低
くすることが可能になる。
When the vacuum pump 9 is operated in the trapping device thus configured, the gas in the vacuum chamber 6 flows through the inflow pipe 4, the gas flow path 10 in the double cylindrical container 3 and the outflow pipe 7. The gas flow path 10 is drawn by the vacuum pump 9 because the high-temperature wall and the low-temperature wall are provided to face each other and the gas flow path 10 has a larger cross-sectional area than the inflow pipe 4. The fine particles such as dust in the gas move through the flow path 10 having a temperature gradient between the high temperature wall and the low temperature wall from the high temperature side to the low temperature side at a certain speed due to a thermophoretic phenomenon and move to the low temperature wall, that is, the inner cylindrical body 2. Adheres to Since the moving speed of the fine particles becomes the same speed with a smaller temperature gradient as the pressure is lower, the distance between the outer cylindrical body 1 and the inner cylindrical body 2 is increased, and when the temperature gradient is reduced, Even when the cross-sectional area is increased, the fine particles in the gas can be sufficiently adsorbed and collected on the low-temperature wall. In addition, since the cross-sectional area of the flow path is larger than the cross-sectional area of the inflow pipe 4, a pressure difference for collecting fine particles can be small, and therefore, it can be used for a vacuum pump capable of obtaining a relatively high degree of vacuum. It is possible to reduce the pressure in the room.

[発明が解決しようとする問題点] 先に提案した熱泳動を利用した捕集装置は、従来のも
のよりも効率が良いなど多くの長所を有しているが、ダ
スト等の微粒子がある程度付着すると、掃除をする必要
があり、そのためには分解して微粒子を除去する必要が
あった。
[Problems to be Solved by the Invention] The trapping device using thermophoresis proposed earlier has many advantages such as higher efficiency than the conventional one, but some particles such as dust adhere to it. Then, it was necessary to clean, and for that purpose, it was necessary to disassemble and remove fine particles.

しかしながら、一般に半導体製造装置等、ダスト等の
粉を発生し易いプロセスで使用するガスは非常に活性
で、反応性に富んでいるために、通常は安全を確保する
ために全て最終段に除害装置を設けている。
However, gases used in processes that easily generate dust and other powders, such as in semiconductor manufacturing equipment, are very active and highly reactive, so they are usually all harmed to the final stage to ensure safety. Equipment is provided.

このような系で、ダスト等の微粒子と一緒に未反応の
ままガスが吸着していた場合、装置を分解してそれを大
気にさらすということは甚だ危険である。そのため通常
はN2ガスなどを用いて未反応の活性な成分を十分にパー
ジしている。従って吸着したダスト等の微粒子を除去に
非常に手間が掛かるという問題があった。
In such a system, if the gas is adsorbed unreacted together with fine particles such as dust, it is extremely dangerous to disassemble the device and expose it to the atmosphere. For this reason, unreacted active components are usually sufficiently purged using N 2 gas or the like. Therefore, there is a problem that it takes much time to remove the fine particles such as the adsorbed dust.

そこで、本発明は、上記のような従来の熱泳動式の捕
集装置のもつ問題点を解決して、低圧のガス中のダスト
等の微粒子を圧力差を高めることなしに十分に捕集で
き、製作が容易で比較的高い真空度の得られる真空ポン
プを使用でき、しかも装置を分解する必要なしに吸着微
粒子を除去できる保守の容易な真空排気系用微粒子捕集
装置を提供することを目的としている。
Therefore, the present invention solves the above-mentioned problems of the conventional thermophoretic collection device, and can sufficiently collect fine particles such as dust in a low-pressure gas without increasing the pressure difference. The object of the present invention is to provide an easy-to-maintain fine particle collection device for a vacuum exhaust system that can use a vacuum pump that is easy to manufacture and can obtain a relatively high degree of vacuum and that can remove adsorbed fine particles without having to disassemble the device. And

[問題点を解決するための手段] 本発明による真空排気系用微粒子捕集装置は、上述の
問題点を解決するために、真空室と真空ポンプとの間に
接続され、真空ポンプで吸引されるガス中の微粒子を、
高温壁と低温壁の温度勾配を有する流路内で熱泳動現象
により移動させて低温壁に付着させるようにした熱泳動
式微粒子トラップに、上記熱泳動式微粒子トラップ内へ
気体流を高い流速で吹き込む気体流発生装置と、上記気
体流発生装置から吹き込まれた気体流を排出させる排出
管とをそれぞれバルブを介して接続したことを特徴とし
ている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the particle collecting apparatus for an evacuation system according to the present invention is connected between a vacuum chamber and a vacuum pump, and is sucked by a vacuum pump. Particles in the gas
At a high flow rate, a gas flow into the thermophoretic particle trap is transferred to the thermophoretic particle trap, which is moved by a thermophoretic phenomenon in a flow path having a temperature gradient between the high temperature wall and the low temperature wall so as to adhere to the low temperature wall. A gas flow generator to be blown in and a discharge pipe for discharging the gas flow blown from the gas flow generator are connected via valves.

[作用] このように構成した本発明の真空排気系用微粒子捕集
装置においては、熱泳動式微粒子トラップのクリーニン
グが必要となった時に、熱泳動式微粒子トラップの真空
室側および真空ポンプ側のそれぞれのバルブを閉じて熱
泳動式微粒子トラップを切り離した状態で、バルブを介
して取り付けられた気体流発生装置から高い流速(少な
くとも10m/sec以上)で熱泳動式微粒子トラップ内へ吹
き込むことにより低温壁に付着したダスト等の微粒子は
ガスと共にその風力で取り除かれ、バルブを介して取り
付けられた排出管から排出され得る。排出管を通って排
出されるダスト等の微粒子やガスを含んだ気体流は除害
装置に運ばれ処理され得る。
[Operation] In the thus configured particulate collection device for a vacuum exhaust system of the present invention, when cleaning of the thermophoretic fine particle trap is required, the vacuum chamber side and the vacuum pump side of the thermophoretic fine particle trap are disposed. With each valve closed and the thermophoretic particle trap disconnected, a low flow rate is achieved by blowing into the thermophoretic particle trap at a high flow rate (at least 10 m / sec) from the gas flow generator attached via the valve. Fine particles such as dust adhering to the wall are removed by the wind power together with the gas, and can be discharged from an exhaust pipe attached via a valve. The gas stream containing fine particles and gas such as dust discharged through the discharge pipe can be conveyed to the abatement apparatus and processed.

こうしてクリーニング操作を行なった後、気体流発生
装置および排出管のバルブを閉じ、熱泳動式微粒子トラ
ップの真空室側および真空ポンプ側のそれぞれのバルブ
を開くことにより再び熱泳動式微粒子トラップによるダ
スト等の微粒子の捕集作業が開始され得る。
After performing the cleaning operation in this way, the valves of the gas flow generator and the discharge pipe are closed, and the valves on the vacuum chamber side and the vacuum pump side of the thermophoretic fine particle trap are opened again to recycle dust and the like generated by the thermophoretic fine particle trap. The operation of collecting fine particles can be started.

このように、本発明の装置ではCVDのような成膜プロ
セスで発生したダスト等の微粒子が捕集装置の低温壁に
多量に付着した段階において真空室と真空ポンプに通じ
る管路のバルブを閉じ、気体流発生装置および排出管に
通じる管路のバルブを開くことにより装置を分解せずに
低温壁に多量に付着したダスト等の微粒子の除去が行わ
れる。
As described above, in the apparatus of the present invention, at the stage where a large amount of fine particles such as dust generated in a film forming process such as CVD adhere to the low-temperature wall of the collector, the valve of the vacuum chamber and the pipe line communicating with the vacuum pump are closed. By opening the valves of the gas flow generator and the conduit leading to the discharge pipe, a large amount of fine particles such as dust adhering to the cold wall can be removed without disassembling the apparatus.

[実施例] 以下、添付図面の第1図および第2図を参照して本発
明の実施例について説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.

第1図には本発明の一実施例による真空排気系用微粒
子捕集装置の要部を概略的に示し、微粒子トラップ本体
は第3図に示した熱泳動式微粒子トラップと実施質的に
同じ構造をもち、従って対応する部分は第3図で用いた
符号で示す。すなわち、第1図の装置において、熱泳動
式微粒子トラップ本体は外側円筒体1と内側円筒体2と
から成る二重円筒型の容器3で構成され、外側円筒体1
と内側円筒体2との間に流入管4から流出管7へ通じる
気体の流路10が形成され、外側円筒体1はその外側に加
熱用ヒータ11を取り付けて高温壁として機能させ、また
内側円筒体2はその内部に冷却水パイプ12を介して冷却
水を供給することにより低温壁として機能させると共
に、捕集装置を通過するに必要な圧力差を小さくし、ま
た気体中の微粒子を全て捕集できるように、外側円筒体
1および内側円筒体2の断面積および長さを適当に保つ
ように構成されている。すなわち気体の流路10は高温壁
と低温壁とを対向させて設けしかも流入管4より断面積
を大きく形成され、ガス中のダスト等の微粒子が、高温
壁と低温壁との温度勾配を有する流路10内で高温側から
低温側への熱泳動現象によりある速度で移動して低温壁
すなわち内側円筒体2に付着するようにされている。
FIG. 1 schematically shows a main part of a particle trapping device for an evacuation system according to one embodiment of the present invention. The particle trap body is substantially the same as the thermophoretic particle trap shown in FIG. It has a structure, and the corresponding parts are indicated by the reference numerals used in FIG. That is, in the apparatus shown in FIG. 1, the thermophoretic particle trap main body is composed of a double cylindrical container 3 composed of an outer cylindrical body 1 and an inner cylindrical body 2.
A gas flow passage 10 communicating from the inflow pipe 4 to the outflow pipe 7 is formed between the inner cylindrical body 2 and the inner cylindrical body 2. The outer cylindrical body 1 is provided with a heater 11 on its outer side to function as a high-temperature wall. The cylindrical body 2 functions as a low-temperature wall by supplying cooling water to the inside of the cylindrical body 2 through a cooling water pipe 12, reduces the pressure difference required to pass through the collection device, and removes all the fine particles in the gas. The outer cylindrical body 1 and the inner cylindrical body 2 are configured so as to appropriately maintain the cross-sectional area and length so as to be collected. That is, the gas flow path 10 is provided with the high-temperature wall and the low-temperature wall opposed to each other and has a larger cross-sectional area than the inflow pipe 4. It moves at a certain speed due to the thermophoresis phenomenon from the high temperature side to the low temperature side in the flow path 10 and adheres to the low temperature wall, that is, the inner cylindrical body 2.

本発明では、このように構成した熱泳動式微粒子トラ
ップ本体の上部にバルブ16を介して送風機17が接続さ
れ、この送風機17によりトラップ本体内の気体の流路10
に高い流速で空気を吹き込むようにされている。またト
ラップ本体の底部にはバルブ18を介して排出管19が接続
され、この排出管19は適当な除害装置(図示してない)
に接続される。
In the present invention, a blower 17 is connected via a valve 16 to the upper part of the thermophoretic particle trap main body thus configured, and the blower 17 allows the gas flow path 10 in the trap main body.
The air is blown at a high flow rate. A discharge pipe 19 is connected to the bottom of the trap body via a valve 18, and the discharge pipe 19 is connected to a suitable abatement device (not shown).
Connected to.

このように構成した図示し実施例の動作において、真
空室から吸い込んだガス中のダスト等の微粒子が低温壁
に多量に付着してトラップ本体内をクリーニングする必
要が生じた際には、真空排気系のバルブ5、8を閉じて
トラップ本体を真空排気系から切り離す。この状態で送
風機側のバルブ16および排出管側のバルブ18を開け、送
風機17により空気流をトラップ本体内の流路10に吹き込
む。この場合、トラップ本体内の流路10に吹き込まれる
空気流は低温壁に付着したダスト等の微粒子を剥がし取
るのに十分な力を与えることのてきる流速(例えば10m/
sec以上)をもつようにされる。トラップ本体内の流路1
0に吹き込まれた空気流によって低温壁から剥がされた
ダスト等の微粒子はこの空気流にのってトラップ本体の
底部から排出管19を通って除害装置へ運ばれる。
In the operation of the illustrated embodiment configured as described above, when a large amount of fine particles such as dust in the gas sucked from the vacuum chamber adhere to the low-temperature wall and it becomes necessary to clean the inside of the trap body, evacuation is performed. The valves 5 and 8 of the system are closed to disconnect the trap body from the evacuation system. In this state, the valve 16 on the blower side and the valve 18 on the discharge pipe side are opened, and the airflow is blown into the flow path 10 in the trap body by the blower 17. In this case, the air flow blown into the flow path 10 in the trap main body provides a flow velocity (for example, 10 m / m) that gives a sufficient force to peel off fine particles such as dust attached to the low-temperature wall.
sec or more). Flow path 1 in the trap body
Fine particles such as dust peeled off from the low-temperature wall by the air flow blown into 0 are carried along the air flow from the bottom of the trap body through the discharge pipe 19 to the abatement apparatus.

第2図には、取り扱うダスト等の微粒子が危険性のな
い場合に有利に用いられ得る本発明の変形例を示し、こ
の変形例では送風機20、バルブ21、トラップ本体22、バ
ルブ23およびフイルタ24から成る閉じたクリーニング系
として構成され、送風機20からトラップ本体22内に吹き
込まれた空気流によって剥がされたダスト等の微粒子は
フィルタ24において除去される。
FIG. 2 shows a modification of the present invention which can be advantageously used when fine particles such as dust to be handled are not dangerous. In this modification, a blower 20, a valve 21, a trap body 22, a valve 23 and a filter 24 are shown. The filter 24 removes fine particles such as dust, which are peeled off by an air flow blown into the trap body 22 from the blower 20.

ところで、図示実施例では、トラップ本体として二重
円筒型構造のものを用いているが、熱泳動式のものであ
ればいかなる形式のものでも使用できる。
By the way, in the illustrated embodiment, the trap body has a double cylindrical structure, but any type of thermophoresis type can be used.

また送風機の代わりに例えば高圧ガスを充填した高圧
ガス源を使用し、圧力差により風力を生じさせ、ある風
速以上でガスを吹き込むようにすることもできる。
Further, instead of the blower, for example, a high-pressure gas source filled with a high-pressure gas may be used, and a wind force may be generated by a pressure difference, and the gas may be blown at a certain wind speed or more.

さらに図示実施例ではクリーニング用ガスとして空気
を使用したが、好ましくは窒素等の不活性ガスが使用さ
れ得る。
Further, although air is used as the cleaning gas in the illustrated embodiment, an inert gas such as nitrogen can be preferably used.

[発明の効果] 以上説明してきたように、本発明の真空排気系用微粒
子捕集装置によれば、熱泳動式微粒子トラップに対して
熱泳動式微粒子トラップ内へ気体流を高い流速で吹き込
む気体流発生装置と気体流発生装置から吹き込まれた気
体流を排出させる排出管とから成るクリーニング系を設
け、このクリーニング系をバルブの切替え操作で簡単に
クリーニングモードにすることができるようにしたこと
により、トラップ自体を分解する必要なしに安全かつ短
時間で内部のクリーニング作業を行なうことができる。
[Effect of the Invention] As described above, according to the fine particle trapping device for a vacuum exhaust system of the present invention, the gas blown into the thermophoretic fine particle trap at a high flow rate into the thermophoretic fine particle trap By providing a cleaning system including a flow generator and a discharge pipe for discharging the gas flow blown from the gas flow generator, the cleaning system can be easily set to a cleaning mode by switching a valve. The inside can be cleaned safely and in a short time without having to disassemble the trap itself.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による真空排気系用微粒子捕
集装置の要部を示す概略断面図、第2図は本発明の変形
例を示す概略線図、第3図は先に提案された捕集装置の
要部を示す概略断面図である。 図中 1:外側円筒体(高温壁) 2:内側円筒体(低温壁) 3:二重円筒型の容器(トラップ) 10:気体の流路 16:バルブ 17:送風機 18:バルブ 19:排出管 20:送風機 21:バルブ 22:トラップ本体 23:バルブ 24:フイルタ
FIG. 1 is a schematic sectional view showing a main part of a particle collecting apparatus for an evacuation system according to one embodiment of the present invention, FIG. 2 is a schematic diagram showing a modification of the present invention, and FIG. It is a schematic sectional drawing which shows the principal part of the collection device performed. In the figure 1: Outer cylinder (hot wall) 2: Inner cylinder (cold wall) 3: Double cylindrical vessel (trap) 10: Gas flow path 16: Valve 17: Blower 18: Valve 19: Discharge pipe 20: Blower 21: Valve 22: Trap body 23: Valve 24: Filter

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空室と真空ポンプとの間に接続され、真
空ポンプで吸引されるガス中の微粒子を、高温壁と低温
壁の温度勾配を有する流路内で熱泳動現象により移動さ
せて低温壁に付着させるようにした熱泳動式微粒子トラ
ップと、この熱泳動式微粒子トラップにバルブを介して
接続され、上記熱泳動式微粒子トラップ内へ気体流を高
い流速で吹き込む気体流発生装置と、上記熱泳動式微粒
子トラップにバルブを介して接続され、上記気体流発生
装置から吹き込まれた気体流を排出させる排出管とから
成ることを特徴とする真空排気系用微粒子捕集装置。
A fine particle in a gas which is connected between a vacuum chamber and a vacuum pump and which is sucked by the vacuum pump is moved by a thermophoresis phenomenon in a flow path having a temperature gradient between a high temperature wall and a low temperature wall. A thermophoretic fine particle trap to be attached to the cold wall, a gas flow generator connected to the thermophoretic fine particle trap via a valve, and blowing a gas flow into the thermophoretic fine particle trap at a high flow rate; A discharge pipe connected to the thermophoretic particle trap via a valve and configured to discharge a gas flow blown from the gas flow generation device, wherein the particle collection device for a vacuum exhaust system is provided.
【請求項2】熱泳動式微粒子トラップ内へ気体流を高い
流速で吹き込む気体流発生装置が送風機から成る特許請
求の範囲第1項に記載の真空排気系用微粒子捕集装置。
2. The particle collecting apparatus for an evacuation system according to claim 1, wherein the gas flow generator for blowing a gas flow into the thermophoretic particle trap at a high flow rate comprises a blower.
【請求項3】送風機から熱泳動式微粒子トラップ内へ吹
き込まれた気体流を排出させる排出管がフイルタ装置を
介して上記送風機に接続される特許請求の範囲第2項に
記載の真空排気系用微粒子捕集装置。
3. The vacuum exhaust system according to claim 2, wherein a discharge pipe for discharging a gas flow blown from the blower into the thermophoretic particle trap is connected to the blower through a filter device. Particle collecting device.
【請求項4】熱泳動式微粒子トラップ内へ気体流を高い
流速で吹き込む気体流発生装置が高圧不活性ガス源から
成る特許請求の範囲第1項に記載の真空排気系用微粒子
捕集装置。
4. A particle collecting apparatus for an evacuation system according to claim 1, wherein the gas flow generator for blowing a gas flow into the thermophoretic particle trap at a high flow rate comprises a high-pressure inert gas source.
JP31100387A 1987-12-10 1987-12-10 Particle collection device for evacuation system Expired - Lifetime JP2635062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31100387A JP2635062B2 (en) 1987-12-10 1987-12-10 Particle collection device for evacuation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31100387A JP2635062B2 (en) 1987-12-10 1987-12-10 Particle collection device for evacuation system

Publications (2)

Publication Number Publication Date
JPH01151918A JPH01151918A (en) 1989-06-14
JP2635062B2 true JP2635062B2 (en) 1997-07-30

Family

ID=18011954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31100387A Expired - Lifetime JP2635062B2 (en) 1987-12-10 1987-12-10 Particle collection device for evacuation system

Country Status (1)

Country Link
JP (1) JP2635062B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414168B1 (en) * 1999-08-20 2004-01-07 한국전기초자 주식회사 Glass furnace
US6492067B1 (en) * 1999-12-03 2002-12-10 Euv Llc Removable pellicle for lithographic mask protection and handling
CN1317490C (en) * 2004-12-24 2007-05-23 清华大学 Automobile emission inhalable particulate matter removing device

Also Published As

Publication number Publication date
JPH01151918A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
EP1498172B1 (en) Dust collector
US6332925B1 (en) Evacuation system
JPS63264118A (en) Fine particle trap for vacuum gas discharge system
CN1307505A (en) Particle collection apparatus and associated method
WO2019062545A1 (en) Outside-filtering bag-type dust remover
JP2635062B2 (en) Particle collection device for evacuation system
KR101480237B1 (en) Equipment for gathering particle
US4692173A (en) Process for cleaning filter elements
JPH03229609A (en) Dry cvd waste gas treatment device
JPS63310618A (en) Fine particle collecting device for vacuum exhausting system
CN113041778B (en) Low dew point compressed air purifier's adsorption tower
JP2943794B1 (en) Gas treatment equipment
JPH0446606B2 (en)
CN220759589U (en) Self-cleaning cyclone separation device
JPH01317520A (en) Filter apparatus to exhaust gas flow in gaseous phase precipitation
KR100509149B1 (en) Method for purification through sublimation
JPH0342009A (en) Fine particle trap for vacuum evacuation system
JPH05192524A (en) Dust collector
JPH0952011A (en) Dust collector
JP3949217B2 (en) Cleaning method in gas filling container
JPH04180568A (en) Dust collector for cvd device
TW202415436A (en) Filtration device and method thereof
JPS63305912A (en) Collector of fine particle for vacuum exhaust system
CN114849375A (en) Purification device and equipment for TM (transverse magnetic) cavity of silicon carbide epitaxial equipment
JPH1024207A (en) Device for making waste gas harmless for semiconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080425