JP2633854B2 - Infrared cutoff detector - Google Patents

Infrared cutoff detector

Info

Publication number
JP2633854B2
JP2633854B2 JP62162995A JP16299587A JP2633854B2 JP 2633854 B2 JP2633854 B2 JP 2633854B2 JP 62162995 A JP62162995 A JP 62162995A JP 16299587 A JP16299587 A JP 16299587A JP 2633854 B2 JP2633854 B2 JP 2633854B2
Authority
JP
Japan
Prior art keywords
light
infrared
light emitting
circuit
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62162995A
Other languages
Japanese (ja)
Other versions
JPS647299A (en
Inventor
敏男 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOCHIKI KK
Original Assignee
HOOCHIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOCHIKI KK filed Critical HOOCHIKI KK
Priority to JP62162995A priority Critical patent/JP2633854B2/en
Publication of JPS647299A publication Critical patent/JPS647299A/en
Application granted granted Critical
Publication of JP2633854B2 publication Critical patent/JP2633854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外線ビームの遮断を検知して盗難警報等
を行なわせる赤外線遮断検出器に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared cutoff detector for detecting a cutoff of an infrared beam and issuing a burglar alarm or the like.

(従来技術) 従来、この種の赤外線遮断検出器にあっては、赤外線
ビームを発射する投光器に対し所定距離を隔てて受光器
を対向配置し、人等の通過により赤外線ビームが遮断さ
れたことを受光器で検出して盗難警報等を行なわせるよ
うにしている。
(Prior art) Conventionally, in this type of infrared cutoff detector, a light receiver is arranged at a predetermined distance from a projector that emits an infrared beam, and the infrared beam is cut off by the passage of a person or the like. Is detected by a light receiver, and a theft alarm or the like is performed.

また投光器に設けられた赤外線発光素子、例えば赤外
線LED(赤外線発光ダイオード)は、消費電力の節減及
び素子の耐久性を高めるために間欠発光されており、特
に外乱光等による誤動作を防止するため現在のところ50
0Hz程度の発光繰り返し周波数により間欠発光させてい
る。
Infrared light emitting elements provided in the projector, such as infrared LEDs (infrared light emitting diodes), are intermittently illuminated to reduce power consumption and increase the durability of the elements. Up to 50
Intermittent light emission is performed at a light emission repetition frequency of about 0 Hz.

(発明が解決しようとする問題点) しかしながら、このような従来の間欠発光による赤外
線ビームの発射にあっては、赤外線LEDに1回の流すこ
とのできる発光駆動電流が間欠発光周期のオフデューテ
ィ比により制限を受け、その結果、赤外線ビームの有効
到達距離で決まる警報距離が制約され、また霧等による
ビーム減衰の影響が大きいという問題があった。
(Problems to be Solved by the Invention) However, in the emission of an infrared beam by such conventional intermittent light emission, the light emission drive current that can flow once into the infrared LED is based on the off duty ratio of the intermittent light emission cycle. As a result, there is a problem in that the warning distance determined by the effective reach of the infrared beam is restricted, and that the beam is greatly affected by fog or the like.

そこで従来装置にあっては、例えば第6図に示すよう
に、投光器1に2つの発光部2a,2bを設け、同様に受光
器3にも2つの受光部4a,4bを設けた2つの赤外線ビー
ム5a,5bを発射するダブルビーム方式を採用し、投光器
1からの2つの赤外線ビーム5a,5bの広がりにより受光
器2の受光部4a,4bで2つの赤外線ビーム5a,5bの合成ビ
ームを受けるようにし、見掛け上、赤外線ビームを強く
している。
Therefore, in the conventional apparatus, for example, as shown in FIG. 6, two light-emitting portions 2a and 2b are provided in the light projector 1 and two light-receiving portions 4a and 4b are similarly provided in the light receiver 3 as well. The double beam method of emitting the beams 5a and 5b is adopted, and the spread of the two infrared beams 5a and 5b from the projector 1 causes the light receiving sections 4a and 4b of the light receiver 2 to receive a combined beam of the two infrared beams 5a and 5b. In this way, the infrared beam is apparently intensified.

しかし、このようなダブルビーム方式にあっては、機
器が大型化し、更に構造が複雑でコストも高くなるとい
う問題があった。
However, in such a double beam system, there is a problem that the device becomes large, the structure is complicated, and the cost increases.

(問題点を解決するための手段) 本発明は、このような従来の問題点に鑑みてなされた
もので、ワンビーム方式であっても赤外線発光ダイオー
ドに流すことのできる発光電流を増加させ警戒距離の増
加や霧等によるビーム減衰を低減できるようにした赤外
線遮断検出器を提供することを目的とする。
(Means for Solving the Problems) The present invention has been made in view of such conventional problems, and increases a light-emitting current that can be supplied to an infrared light emitting diode even in a one-beam system, thereby increasing a caution distance. It is an object of the present invention to provide an infrared cutoff detector capable of reducing beam attenuation due to an increase in light and fog.

この目的を達成するため本発明にあっては、投光器と
受光器を所定距離を隔てて対向配置し、前記投光器から
予め定めた一定周期T毎に間欠的に所定の発光パルス幅
の赤外線ビームを受光器に向けて発射し、該赤外線ビー
ムの遮断を前記受光器で検出する赤外線遮断検出器に於
いて、前記投光器に、赤外線発光ダイオードをN個設
け、該N個の赤外線発光ダイオードの各々を、前記所定
の発光パルス幅を変えることなく前記一定周期TをN倍
した周期(N×T)で且つ前記一定周期Tだけずらして
順次繰り返し発光制御すると共に、前記各赤外線発光ダ
イオードに流す駆動電流を、単一の赤外線発光ダイオー
ドを前記一定周期Tで発光駆動した場合に許容される駆
動電流I1より高い駆動電流I2に設定して発光光量を増加
させる発光制御手段を設けたことを特徴とする。
In order to achieve this object, in the present invention, a light emitter and a light receiver are arranged opposite to each other at a predetermined distance, and an infrared beam having a predetermined light emission pulse width is intermittently emitted from the light emitter at every predetermined period T. In an infrared cutoff detector that emits light toward a light receiver and detects the cutoff of the infrared beam with the light receiver, the light projector is provided with N infrared light emitting diodes, and each of the N infrared light emitting diodes is provided. A driving current flowing in each of the infrared light emitting diodes, while controlling the light emission repeatedly in a cycle (N × T) obtained by multiplying the predetermined cycle T by N without changing the predetermined light emission pulse width and by shifting the predetermined cycle T. and the light emission control means for increasing the acceptable amount of light emission is set to high drive current I 2 from the driving current I 1 when light emission drive a single infrared light emitting diode in said constant period T And wherein the digit.

(作用) このような構成を備えた本発明の赤外線遮断検出器に
あっては、予め定められた発光周期、例えば発光繰り返
し周波数500Hzで定まる発光周期(T)毎に複数の赤外
線発光ダイオードを順次発光駆動することから、赤外線
発光ダイオードの数を(N)とすると、赤外線発光ダイ
オード1個当りの発光周期は(T×N)に拡大され、発
光周期における素子オン時間は変化しないことから、結
果として赤外線発光ダイオード1個当りのオフデューテ
ィ比を略N倍に拡大することができ、間欠発光駆動で赤
外線発光ダイオードに流すことのできる電流は、オフデ
ューティが大きい程、多く流せるため、発光電流を増加
でき、この発光電流の増加で赤外線ビームを強くして、
警戒距離の増加と、警戒距離が同じならば霧等によるビ
ーム減衰を低減することができる。
(Operation) In the infrared cutoff detector of the present invention having such a configuration, a plurality of infrared light emitting diodes are sequentially arranged in a predetermined light emission cycle, for example, every light emission cycle (T) determined by a light emission repetition frequency of 500 Hz. Since the number of infrared light emitting diodes is (N) because of light emission driving, the light emitting cycle per infrared light emitting diode is expanded to (T × N), and the element ON time in the light emitting cycle does not change. As the off-duty ratio per infrared light emitting diode can be increased approximately N times, the current that can be passed through the infrared light emitting diode by intermittent light emission drive can be increased as the off duty is large, so that the light emitting current can be reduced. Can increase the intensity of the infrared beam by increasing the emission current,
If the guard distance is the same as the increase in the guard distance, beam attenuation due to fog or the like can be reduced.

(実施例) 第1図は本発明の赤外線遮断検出器における投光器の
一実施例を示した回路ブロック図である。
(Embodiment) FIG. 1 is a circuit block diagram showing an embodiment of a light projector in an infrared cutoff detector of the present invention.

第1図において、10は整流回路であり、例えば商用AC
100Vを降下して所定電圧に落した電圧を受けて整流し、
所定の直流電圧を発生する。12は定電圧回路であり、整
流回路10からの直流電圧を安定化して投光器の各回路部
に一定電圧を電源として供給する。
In FIG. 1, reference numeral 10 denotes a rectifier circuit, for example, a commercial AC
Receiving the voltage dropped to the predetermined voltage by dropping 100V, rectified,
Generates a predetermined DC voltage. Reference numeral 12 denotes a constant voltage circuit, which stabilizes the DC voltage from the rectifier circuit 10 and supplies a constant voltage as a power source to each circuit unit of the projector.

14は発振回路であり、発振回路14は例えば繰返し周波
数が500Hzで発振し、第3図に示すオン時間Ton及びオフ
時間Toffで成る周期Tをもった発振パルスaを発振す
る。
Reference numeral 14 denotes an oscillation circuit. The oscillation circuit 14 oscillates at a repetition frequency of, for example, 500 Hz, and oscillates an oscillation pulse a having a period T including an on-time Ton and an off-time Toff shown in FIG.

発振回路14からの発振パルスaは制御回路16,18に与
えられる。制御回路16,18は2つの発光回路20,22に対応
して設けられる。発光回路20,22にはそれぞれ赤外線発
光ダイオードとしての赤外線LEDが組込まれている。
The oscillation pulse a from the oscillation circuit 14 is given to the control circuits 16 and 18. The control circuits 16 and 18 are provided corresponding to the two light emitting circuits 20 and 22. Each of the light emitting circuits 20 and 22 incorporates an infrared LED as an infrared light emitting diode.

第2図は第1図の発光回路20,22の回路構成の一例を
示したもので、発光回路20には赤外線LED24が、また発
光回路22には赤外線LED26が設けられる。赤外線LED24,2
6はそれぞれトランジスタ28,30によるスイッチング制御
を受けて間欠的に発光駆動され、トランジスタ28,30の
ベースに対する制御信号d,e第1図の制御回路16,18のそ
れぞれから供給され、トランジスタ28,30のオンにより
抵抗R1,R2のそれぞれを通じて赤外線LED24,26に電源が
加わることで、赤外線LED24,26の発光駆動が行なわれ
る。
FIG. 2 shows an example of a circuit configuration of the light emitting circuits 20 and 22 of FIG. 1. The light emitting circuit 20 is provided with an infrared LED 24, and the light emitting circuit 22 is provided with an infrared LED 26. Infrared LED 24,2
6 are intermittently driven to emit light under the switching control of the transistors 28 and 30, respectively. Control signals d and e for the bases of the transistors 28 and 30 are supplied from the control circuits 16 and 18 in FIG. When the power is applied to the infrared LEDs 24 and 26 through the resistors R1 and R2 when the 30 is turned on, the infrared LEDs 24 and 26 emit light.

再び第1図を参照するに、制御回路16,18は発振回路1
4からの発振パルスに同期して180゜位相の異なるゲート
信号によって発振パルスを1/2に分周した制御信号d,eを
交互に発光回路20,22に対し出力する。
Referring again to FIG. 1, the control circuits 16 and 18
In synchronization with the oscillation pulse from 4, control signals d and e obtained by dividing the oscillation pulse by 1/2 with gate signals having a 180 ° phase difference are alternately output to the light emitting circuits 20 and 22.

即ち、第3図に示すように、制御回路16は発振パルス
aを1/2に分周したゲート信号bを作り出し、一方、制
御回路18はゲート信号bに対し180゜位相の異なるゲー
ト信号cを作り出し、制御回路16はゲート信号bと発振
パルスaの論理積をとることで制御信号dを作り出して
発光回路20に出力し、また制御回路18は発振パルスaと
ゲート信号cの論理積をとることで制御信号eを作り出
して発光回路22に出力するようになる。
That is, as shown in FIG. 3, the control circuit 16 produces a gate signal b obtained by dividing the oscillation pulse a by half, while the control circuit 18 produces a gate signal c having a 180 ° phase difference from the gate signal b. The control circuit 16 generates a control signal d by taking the logical product of the gate signal b and the oscillation pulse a and outputs the control signal d to the light emitting circuit 20, and the control circuit 18 calculates the logical product of the oscillation pulse a and the gate signal c. Thus, the control signal e is generated and output to the light emitting circuit 22.

次に、第1図の実施例の動作を説明する。発振回路14
より、例えば発光繰返し周波数500HZとなる発振パルス
aが発振されたとすると、この発振パルスaは制御回路
16,18のそれぞれに与えられ、第3図のゲート信号b又
はゲート信号cとの論理積をとることにより制御回路16
は発光回路20に制御信号dを出力して発光回路20に設け
た赤外線LED24を発光駆動し、一方、制御回路18は制御
信号dに対し周期Tの位相送れをもった制御信号eを発
光回路22に出力して赤外線LED26を発光駆動する。この
ように制御回路16,18の制御信号d,eにより順次発光駆動
される発光回路20,22に設けた赤外線LED24,26からの赤
外光は、赤外線LED24,26が近接配置されていることか
ら、同じ位置の赤外線ビームとして順次発射されるよう
になり、受光器からみると投光器からは発光繰返し周波
数500Hzで赤外線ビームが間欠的に発射された状態とな
る。
Next, the operation of the embodiment shown in FIG. 1 will be described. Oscillation circuit 14
For example, if an oscillation pulse a having a light emission repetition frequency of 500 Hz is oscillated, the oscillation pulse a
The control circuit 16 is provided with the gate signal b or the gate signal c shown in FIG.
Outputs a control signal d to the light-emitting circuit 20 to drive the infrared LED 24 provided in the light-emitting circuit 20 to emit light, while the control circuit 18 outputs a control signal e having a phase T of a period T with respect to the control signal d. 22 to drive the infrared LED 26 to emit light. As described above, the infrared light from the infrared LEDs 24 and 26 provided in the light emitting circuits 20 and 22 that are sequentially driven to emit light by the control signals d and e of the control circuits 16 and 18 is that the infrared LEDs 24 and 26 are arranged in close proximity. As a result, the infrared beams are sequentially emitted as infrared beams at the same position. When viewed from the light receiver, the infrared beam is intermittently emitted from the light emitter at a light emission repetition frequency of 500 Hz.

ここで赤外線LED24,26の発光駆動をみると、制御回路
16,18による順次発光で発振パルスaの周期Tに対し赤
外線LED24,26の発光周期は2倍の周期となっており、赤
外線LED24,26の発光時間Tonは同じであることから、発
光周期が2Tとなることで、 Doff=Toff/(Ton+Toff) で与えられるオフデューティDoffがTonが充分に短いと
すると略2倍になる。
Looking at the emission drive of the infrared LEDs 24 and 26, the control circuit
The light emission cycle of the infrared LEDs 24 and 26 is twice as long as the cycle T of the oscillation pulse a in the sequential light emission by 16, 18 and the light emission time Ton of the infrared LEDs 24 and 26 is the same. With 2T, the off duty Doff given by Doff = Toff / (Ton + Toff) is approximately doubled if Ton is sufficiently short.

その結果、第4図のタイミングチャートに示すよう
に、発光回路20からの発光パルスL1を得るための赤外線
LED24のオフデューティが略2倍になることで、発光電
流I01は破線で示す500Hzのときのオフデューティ発光駆
動したときの発光電流I1に対し、図示のようにI2に増加
させることができ、これによって赤外線ビームを強くす
ることができる。この点は発光パルスL2を得る赤外線LE
D26の発光電流I02についても同様である。
As a result, as shown in the timing chart of FIG.
Since the off-duty of the LED 24 is approximately doubled, the emission current I01 can be increased to I2 as shown in the figure with respect to the emission current I1 at the time of off-duty emission drive at 500 Hz indicated by the broken line. Can enhance the infrared beam. This point is the infrared ray LE that obtains the light emission pulse L2.
The same applies to the emission current I02 of D26.

その結果、見かけ上赤外線LEDをオフデューティの増
加により流れる発光電流I2によって500Hzの発光繰返し
周波数で駆動したと同じ状態となり、500Hzの発光繰返
し周波数を変えることなく赤外線LEDの発光電流を増加
させて発射する赤外線ビームを強くすることができ、警
戒距離を長くできると共に赤外線ビームを強くすること
で霧等が発生したときのビーム減衰を低減して誤動作を
防止することができる。
As a result, apparently the same state as when the infrared LED was driven by the emission current I2 flowing due to the increase in off duty at the emission repetition frequency of 500 Hz, the emission current of the infrared LED was increased without changing the emission repetition frequency of 500 Hz and fired It is possible to increase the infrared beam to be emitted, to increase the caution distance, and to increase the infrared beam to reduce beam attenuation when fog or the like is generated, thereby preventing malfunction.

第5図は本発明の他の実施例を示した回路ブロック図
であり、この実施例にあってはビーム減衰の原因となる
霧等の外部環境の状態を検出して発光駆動制御を切替え
るようにしたことを特徴とする。尚、第5図の実施例に
あっては電源供給ラインは省略している。
FIG. 5 is a circuit block diagram showing another embodiment of the present invention. In this embodiment, the light emission drive control is switched by detecting the state of an external environment such as fog which causes beam attenuation. It is characterized by the following. The power supply line is omitted in the embodiment of FIG.

第5図において、32は環境検出回路であり、例えば警
戒場所で発生した霧、若しくは降雨を検出して検出出力
を生ずる。環境検出回路32の検出出力は電流制御回路34
及び発振同期回路36に与えられる。
In FIG. 5, reference numeral 32 denotes an environment detection circuit, which detects a fog or a rainfall generated in, for example, a caution area and generates a detection output. The detection output of the environment detection circuit 32 is a current control circuit 34
And the oscillation synchronizing circuit 36.

また、第5図の実施例にあっては、発光回路20及び22
のそれぞれに対応して発振回路38,40を設けており、発
振回路38,40の発振周波数が発振同期回路36により制御
され、また発振回路38,40からの発振出力により発光回
路20,22の赤外線LEDに流れる発光電流が電流制御回路34
による制御される。
In the embodiment shown in FIG. 5, the light emitting circuits 20 and 22
Oscillation circuits 38 and 40 are provided for each of the above, the oscillation frequency of the oscillation circuits 38 and 40 is controlled by the oscillation synchronization circuit 36, and the oscillation outputs from the oscillation circuits 38 and 40 enable the light emission circuits 20 and 22 The emission current flowing to the infrared LED is controlled by the current control circuit 34
Controlled by.

発振同期回路36は環境検出回路32の検出出力が得られ
ない定常監視状態にあっては、例えば発振回路38,40を5
00Hzで同期発振しており、また電流制御回路34は発光回
路20,22の赤外線LEDに流す発光電流を規定電流に制限し
ている。
When the oscillation synchronization circuit 36 is in the steady monitoring state where the detection output of the environment detection circuit 32 cannot be obtained, for example, the oscillation circuits 38 and 40
Synchronous oscillation is performed at 00 Hz, and the current control circuit 34 limits the emission current flowing to the infrared LEDs of the emission circuits 20 and 22 to a specified current.

一方、環境検出回路32の検出出力が得られると、発振
同期回路36は発振回路38,40の発振周波数を半分の250Hz
の発振に切替え、且つ発振位相を500Hz発振時の同期T
分だけ位相差をもつように位相制御する。同時に環境検
出回路32の検出出力を受けた電流制御回路34は発光回路
20,22に流す発光電流を定常監視状態の発光電流より高
い所定電流値に増加させる。
On the other hand, when the detection output of the environment detection circuit 32 is obtained, the oscillation synchronization circuit 36 reduces the oscillation frequency of the oscillation circuits 38 and 40 by half to 250 Hz.
Switching to oscillation and the oscillation phase is 500 Hz
The phase is controlled so as to have a phase difference by an amount. At the same time, the current control circuit 34 receiving the detection output of the environment detection circuit 32
The light emission current flowing through 20, 20 and 22 is increased to a predetermined current value higher than the light emission current in the steady monitoring state.

このため、霧の発生や雨等により赤外線ビームの減衰
が予測される環境条件にあっては、発光回路20,22の赤
外線LEDが250Hzの繰返し周波数をもって交互に発光駆動
され、このため赤外線LEDのオフデューティが定常監視
状態に対し略2倍となることから、電流制御回路34によ
る電流制御のもとに定常監視状態での発光電流より大き
い発光電流を流すことができ、発光電流の増加により赤
外線ビームを強くして霧や雨によるビーム減衰を防止す
るようになる。
For this reason, in an environmental condition where the infrared beam is expected to be attenuated due to fog or rain, the infrared LEDs of the light emitting circuits 20 and 22 are alternately driven to emit light at a repetition frequency of 250 Hz. Since the off-duty is approximately twice as large as the steady-state monitoring state, a light-emitting current larger than the light-emitting current in the steady-state monitoring state can flow under current control by the current control circuit 34. The beam is strengthened to prevent beam attenuation due to fog or rain.

尚、第5図の実施例にあっては、定常監視状態で発振
回路38,40を500Hzで発振させるようにしている、定常監
視状態にあっては発振回路38,40のいずれか一方のみを
発振駆動させるようにしてもよい。
In the embodiment of FIG. 5, the oscillation circuits 38, 40 are oscillated at 500 Hz in the steady monitoring state. In the steady monitoring state, only one of the oscillation circuits 38, 40 is used. Oscillation drive may be performed.

また、第1図の実施例にあっても第5図の実施例のよ
うに制御回路16,18の部分を発振回路とし、発振回路14
を発振同期回路とすることで2つの発光回路20,22を間
欠的に順次発光駆動するようにしてもよい。
Also, in the embodiment of FIG. 1, the parts of the control circuits 16 and 18 are used as oscillation circuits as in the embodiment of FIG.
May be used as an oscillation synchronous circuit so that the two light emitting circuits 20 and 22 are driven to emit light intermittently and sequentially.

更に、上記の実施例にあっては、投光器に2つの赤外
線LEDを設けた場合を例にとるものであったが、赤外線L
EDの数はこれに限定されず、必要に応じて3つ以上の赤
外線LEDを設けて間欠的に順次発光駆動すれば、更に赤
外線LED1個当りのオフデューティを大きくして発光電流
を更に増加させることができる。
Further, in the above embodiment, the case where two infrared LEDs are provided in the projector is taken as an example.
The number of EDs is not limited to this. If three or more infrared LEDs are provided as needed and light emission is driven intermittently, the off duty per infrared LED is further increased to further increase the emission current. be able to.

更にまた、上記の実施例にあっては独立した発光素子
としての赤外線LEDを近接配置させるようにしている
が、1つの赤外線LEDの中に2つの発光素子が一体に組
込まれているものを使用すれば、従来の光学系を変更す
ることなく本発明を簡単に実現することができる。
Furthermore, in the above embodiment, the infrared LEDs as independent light emitting elements are arranged close to each other, but one in which two light emitting elements are integrated into one infrared LED is used. Then, the present invention can be easily realized without changing the conventional optical system.

一方、上記の実施例はワンビーム方式を例にとるもの
であったが、第6図に示したダブルビーム方式について
も、投光器の各発光部のそれぞれについて複数の赤外線
LEDを設けて本発明を適用するようにしてもよい。
On the other hand, in the above embodiment, the one-beam system is taken as an example. However, in the double-beam system shown in FIG.
The present invention may be applied by providing an LED.

(発明の効果) 以上説明してきたように本発明によれば、投光器と受
光器を所定距離を隔てて対向配置し、前記投光器から予
め定めた一定周期T毎に間欠的に所定の発光パルス幅の
赤外線ビームを受光器に向けて発射し、該赤外線ビーム
の遮断を前記受光器で検出する赤外線遮断検出器に於い
て、前記投光器に、赤外線発光ダイオードをN個設け、
該N個の赤外線発光ダイオードの各々を、前記所定の発
光パルス幅を変えることなく前記一定周期TをN倍した
周期(N×T)で且つ前記一定周期Tだけずらして順次
繰り返し発光制御すると共に、前記各赤外線発光ダイオ
ードに流す駆動電流を、単一の赤外線発光ダイオードを
前記一定周期Tで発光駆動した場合に許容される駆動電
流I1より高い駆動電流I2に設定して発光光量を増加させ
る発光制御手段を設けたため、赤外線発光ダイオード1
個当りのオフデューティ比を素子数に応じて拡大するこ
とができ、このオフデューティ比が大きくなることで1
回の発光駆動で赤外線発光ダイオードに流す電流を増加
させることができ、発光電流の増加によって赤外線ビー
ムを強くして警戒距離の増大と霧や雨等によるビーム減
衰を低減することができる。
(Effects of the Invention) As described above, according to the present invention, a light emitter and a light receiver are opposed to each other with a predetermined distance therebetween, and a predetermined light emission pulse width is intermittently interposed every predetermined period T from the light emitter. In the infrared cutoff detector that emits the infrared beam toward the light receiver and detects the cutoff of the infrared beam with the light receiver, the light emitter is provided with N infrared light emitting diodes,
Each of the N infrared light-emitting diodes is sequentially and repeatedly controlled to emit light at a period (N × T) obtained by multiplying the predetermined period T by N without changing the predetermined light emission pulse width and by shifting the predetermined period T. The drive current flowing through each of the infrared light emitting diodes is set to a drive current I 2 higher than the drive current I 1 allowed when a single infrared light emitting diode is driven to emit light at the constant period T, thereby increasing the amount of emitted light. The light emitting control means for causing the infrared light emitting diode 1
The off-duty ratio per unit can be increased according to the number of elements.
The current flowing through the infrared light emitting diode can be increased by one light emission drive, and the infrared light beam can be strengthened by the increase of the light emission current, thereby increasing the caution distance and reducing the beam attenuation due to fog, rain, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示した回路ブロック図、第
2図は第1図の発光回路の回路図、第3図は第1図の動
作タイミングチャート図、第4図は第1図の発光パルス
と発光電流を示したタイミングチャート図、第5図は本
発明の他の実施例を示したブロック図、第6図は従来の
ダブルビーム方式を示した説明図である。 10:整流回路 12:定電圧回路 14,38,40:発振回路 16,18:制御回路 20,22:発光回路 24,26:赤外線LED(赤外線発光ダイオード) 28,30:トランジスタ 32:環境検出回路 34:電流制御回路 36:発信同期回路
FIG. 1 is a circuit block diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram of the light emitting circuit of FIG. 1, FIG. 3 is an operation timing chart of FIG. 1, and FIG. FIG. 5 is a timing chart showing light emission pulses and light emission currents, FIG. 5 is a block diagram showing another embodiment of the present invention, and FIG. 6 is an explanatory diagram showing a conventional double beam system. 10: Rectifier circuit 12: Constant voltage circuit 14, 38, 40: Oscillator circuit 16, 18: Control circuit 20, 22: Light emitting circuit 24, 26: Infrared LED (infrared light emitting diode) 28, 30: Transistor 32: Environmental detection circuit 34: Current control circuit 36: Transmission synchronization circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】投光器と受光器を所定距離を隔てて対向配
置し、前記投光器から予め定めた一定周期T毎に間欠的
に所定の発光パルス幅の赤外線ビームを受光器に向けて
発射し、該赤外線ビームの遮断を前記受光器で検出する
赤外線遮断検出器に於いて、 前記投光器に、赤外線発光ダイオードをN個設け、該N
個の赤外線発光ダイオードの各々を、前記所定の発光パ
ルス幅を変えることなく前記一定周期TをN倍した周期
(N×T)で且つ前記一定周期Tだけずらして順次繰り
返し発光制御すると共に、前記各赤外線発光ダイオード
に流す駆動電流を、単一の赤外線発光ダイオードを前記
一定周期Tで発光駆動した場合に許容される駆動電流I1
より高い駆動電流I2に設定して発光光量を増加させる発
光制御手段を設けたことを特徴とする赤外線遮断検出
器。
1. A light emitter and a light receiver are arranged opposite to each other at a predetermined distance, and an infrared beam having a predetermined light emission pulse width is intermittently emitted from the light emitter toward the light receiver every predetermined fixed period T; In the infrared cutoff detector for detecting the cutoff of the infrared beam by the light receiver, the light projector is provided with N infrared light emitting diodes.
Each of the plurality of infrared light emitting diodes is sequentially and repeatedly controlled to emit light at a period (N × T) obtained by multiplying the predetermined period T by N without changing the predetermined light emission pulse width and by shifting the predetermined period T, and A driving current I 1 allowed when a single infrared light emitting diode is driven to emit light at the constant period T is a driving current flowing through each infrared light emitting diode.
Infrared blocking detector, characterized in that a light emission control means for increasing the amount of emitted light is set to a higher drive current I 2.
JP62162995A 1987-06-30 1987-06-30 Infrared cutoff detector Expired - Fee Related JP2633854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62162995A JP2633854B2 (en) 1987-06-30 1987-06-30 Infrared cutoff detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62162995A JP2633854B2 (en) 1987-06-30 1987-06-30 Infrared cutoff detector

Publications (2)

Publication Number Publication Date
JPS647299A JPS647299A (en) 1989-01-11
JP2633854B2 true JP2633854B2 (en) 1997-07-23

Family

ID=15765198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62162995A Expired - Fee Related JP2633854B2 (en) 1987-06-30 1987-06-30 Infrared cutoff detector

Country Status (1)

Country Link
JP (1) JP2633854B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226361A (en) * 1975-08-25 1977-02-26 Nippon Chem Ind Co Ltd:The Process for refining of harmful gases

Also Published As

Publication number Publication date
JPS647299A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
US5815018A (en) Pulse modulator circuit for an illuminator system
KR900000641A (en) Decorative lighting systems
US4973834A (en) Optical switching device employing a frequency synchronous circuit
JP2633854B2 (en) Infrared cutoff detector
KR100603760B1 (en) Display apparatus and the driving pulse control method thereof
US7679291B2 (en) Barricade flasher
US6701094B1 (en) Battery-powered IR transmitter having constant power output
JPS60177395A (en) Information display unit
JP3118595B2 (en) Photoelectric smoke detector
JP2593980B2 (en) Photoelectric smoke detector
JP2617624B2 (en) Sensor with display function
JPH05304457A (en) Photoelectric switch
JPS62237844A (en) Drive circuit for display of key telephone system
JP2671377B2 (en) Photoelectric switch
JPH0229494Y2 (en)
US5892296A (en) Circuit for cyclically driving several loads
JPH05102526A (en) Orange-color lighting method
JP3548816B2 (en) Photoelectric sensor and light emitting method thereof
JPH08327735A (en) Illumination controller
JPH07240135A (en) Multiple optical axial type photoelectric switch
SU1041882A1 (en) Color analyzer
JPH04363910A (en) Photoelectric switch and photoelectric switch system
JPS6230985A (en) Manuscript sensor circuit
JPS622841Y2 (en)
JP2510087Y2 (en) Lighting control circuit for two-color light emitting diode element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees