JP2633749B2 - Infrared-visible conversion phosphor and method for producing the same - Google Patents

Infrared-visible conversion phosphor and method for producing the same

Info

Publication number
JP2633749B2
JP2633749B2 JP21216391A JP21216391A JP2633749B2 JP 2633749 B2 JP2633749 B2 JP 2633749B2 JP 21216391 A JP21216391 A JP 21216391A JP 21216391 A JP21216391 A JP 21216391A JP 2633749 B2 JP2633749 B2 JP 2633749B2
Authority
JP
Japan
Prior art keywords
phosphor
infrared
visible conversion
activator
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21216391A
Other languages
Japanese (ja)
Other versions
JPH0551580A (en
Inventor
保暁 田村
純一 大脇
篤 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21216391A priority Critical patent/JP2633749B2/en
Publication of JPH0551580A publication Critical patent/JPH0551580A/en
Application granted granted Critical
Publication of JP2633749B2 publication Critical patent/JP2633749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は赤外可視変換蛍光体とそ
の製造方法に係り、特に、動作波長選択幅が広く、メモ
リ特性、赤外可視変換効率が共に高く、また光情報の高
速書き込み、読みだしが可能な赤外可視変換蛍光体とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared-visible conversion phosphor and a method of manufacturing the same, and more particularly to a wide operating wavelength selection range, high memory characteristics, high infrared-visible conversion efficiency, and high-speed writing of optical information. The present invention relates to a readable infrared-visible conversion phosphor and a method for producing the same.

【0002】[0002]

【従来の技術】赤外光を可視光に変換する赤外可視変換
蛍光体はこれまでに多数知られているが、その中でも、
書き込み光エネルギーを蓄積し赤外光照射により読みだ
すことができる赤外輝尽蛍光体は、近年、光書換えメモ
リ材料、光情報処理用材料として注目を集めている。赤
外輝尽蛍光体とは、予め短波長の光あるいはX線、放射
線等で励起した後赤外光で刺激すると可視域の発光を発
生する蛍光体であり、半導体レーザーやYAGレーザーな
どの赤外光検出などに広く用いられている。硫化カルシ
ウム(CaS)や硫化ストロンチウム(SrS)にユーロピウム(E
u)とサマリウム(Sm)あるいはセリウム(Ce)と Sm などを
添加した蛍光体が赤外可視変換効率の高い蛍光体として
知られている。
2. Description of the Related Art There are many known infrared-visible conversion phosphors for converting infrared light into visible light.
Infrared stimulable phosphors that can store writing light energy and can be read out by irradiating infrared light have recently attracted attention as optical rewritable memory materials and optical information processing materials. Infrared stimulable phosphor is a phosphor that emits light in the visible region when stimulated with infrared light after being excited by short-wavelength light or X-rays or radiation. Widely used for detecting external light. Europium (E) is added to calcium sulfide (CaS) and strontium sulfide (SrS).
Phosphors to which u) and samarium (Sm) or cerium (Ce) and Sm are added are known as phosphors having high infrared-visible conversion efficiency.

【0003】本赤外可視輝尽変換蛍光体とその製造方法
についての技術的背景について記述するに先立って、ま
ず赤外輝尽蛍光体の動作原理について説明する。
[0003] Prior to describing the technical background of the present infrared-visible stimulable phosphor and its manufacturing method, the operating principle of the infrared stimulable phosphor will be described first.

【0004】図2は赤外輝尽蛍光体の一つである CaS :
Eu,Sm のバンドモデルを示す図で、Keller のモデル
(S.P.Keller and G.D.Pettit “Quenching,stimulatio
n,andexhaustion studies on some infrared stimulabl
e phosphors”: Phys.Rev.,111(1958) p.1533記載)を簡
略化して示したものであり、該蛍光体は下記の励起過
程、発光過程の二つの過程によって動作する。
FIG. 2 shows one of the infrared stimulable phosphors, CaS:
This figure shows the band model of Eu and Sm.
(SPKeller and GDPettit “Quenching, stimulatio
n, andexhaustion studies on some infrared stimulabl
e phosphors ": Phys. Rev., 111 (1958) p. 1533), and the phosphor operates by the following two processes, an excitation process and a light emission process.

【0005】励起過程 (1) 励起光の照射により Eu2+
がイオン化され、伝導帯上に電子を放出して Eu3+とな
る。
[0005] Eu upon irradiation with excitation process (1) excitation light 2 +
Is ionized and emits electrons onto the conduction band to become Eu 3 +.

【0006】(2) 伝導帯上に励起された電子は Sm3+に
捕獲されて Sm2+となる。
(2) The electrons excited on the conduction band are captured by Sm 3 + to become Sm 2 +.

【0007】発光過程 (3) Sm3+に捕獲されていた電子
が外光の刺激により伝導帶上に励起され、Sm2+は Sm3+
となる。
Light emission process (3) Electrons trapped by Sm 3 + are excited on the conduction band by stimulation of external light, and Sm 2 + is converted to Sm 3 +
Becomes

【0008】(4) 伝導帯上に励起された電子は Eu3+に
捕獲され、Eu3+はEu2+となる。このとき、Eu2+は発光遷
移により基底状態に遷移して光を放出する。このときの
発光が赤外輝尽発光である。
[0008] (4) excited electrons on the conduction band are captured in Eu 3 +, Eu 3 + is the Eu 2 +. At this time, Eu 2 + transitions to the ground state by light emission transition and emits light. The emission at this time is infrared stimulated emission.

【0009】上記の動作原理から判るように、Eu 元素
が励起光、赤外輝尽発光に関する波長特性を決定し、Sm
元素が赤外刺激に対する波長特性を決定している。こ
のように、励起光、赤外輝尽発光に関する波長特性を司
る元素を主活性剤、赤外刺激に対する波長特性を司る元
素を副活性剤と呼ぶ。
As can be seen from the above operating principle, the Eu element determines the wavelength characteristics related to the excitation light and the infrared stimulated emission,
The elements determine the wavelength characteristics for infrared stimulation. As described above, the element that controls the wavelength characteristics of the excitation light and the infrared stimulable emission is called the main activator, and the element that controls the wavelength characteristics of the infrared stimulus is called the sub-activator.

【0010】上記のように波長特性を主活性剤、副活性
剤で分担しているため、主活性剤、副活性剤の組合せを
変えることによって赤外輝尽発光波長、赤外波長感度特
性を独立に変えることが可能である。すなわち、主活性
剤を変えることなく副活性剤のみを変えた場合には、赤
外輝尽発光波長を変えることなく赤外波長感度特性を変
えることが可能であり、逆に、副活性剤を変えずに主活
性剤のみを変えた場合には、赤外波長感度特性を変える
ことなく赤外輝尽発光波長のみを変えることができる。
Since the wavelength characteristics are shared by the main activator and the sub-activator as described above, the infrared stimulating emission wavelength and the infrared wavelength sensitivity characteristics can be changed by changing the combination of the main activator and the sub-activator. It can be changed independently. That is, when only the sub-activator is changed without changing the main activator, it is possible to change the infrared wavelength sensitivity characteristics without changing the infrared stimulating emission wavelength. When only the main activator is changed without changing, only the infrared stimulating emission wavelength can be changed without changing the infrared wavelength sensitivity characteristics.

【0011】表1は、各種赤外輝尽蛍光体の発光波長を
示す表で、例えば、蛍光体母体をCaS とした場合、主活
性剤を Eu とし、副活性剤をSm 、Bi と変えたときに、
赤外輝尽発光波長のピーク波長を640nmとしたまま赤外
波長感度特性のピーク波長を1.15μm、0.95μmと変化さ
せることができ、また、副活性剤を Sm とし、主活性剤
を Eu、Ce と変えた場合には、赤外波長感度特性のピー
ク波長を1.15μmとしたまま、赤外輝尽発光波長のピー
ク波長を640nm、520nmと変えることができる。
Table 1 shows the emission wavelengths of various infrared stimulable phosphors. For example, when the phosphor matrix is CaS, the primary activator is Eu and the secondary activators are Sm and Bi. sometimes,
The peak wavelength of the infrared wavelength sensitivity characteristic can be changed to 1.15 μm and 0.95 μm while keeping the peak wavelength of the infrared stimulating emission wavelength at 640 nm, and the secondary activator is Sm, the primary activator is Eu, When it is changed to Ce, the peak wavelength of the infrared photostimulated emission wavelength can be changed to 640 nm and 520 nm while the peak wavelength of the infrared wavelength sensitivity characteristic is 1.15 μm.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明が解決しようとする課題】しかしながら、以上の
波長選択性にも限界があり、例えば、表1から明らかな
ように、赤外輝尽発光波長が470nmの青色であり、かつ
赤外波長感度特性のピーク波長が1.15μmである赤外輝
尽蛍光体は得られない。これは、蛍光体母体中に主活性
剤と副活性剤を同時に添加する従来の方法では本質的に
解決不可能な問題である。
However, there is a limit to the above-mentioned wavelength selectivity. For example, as is apparent from Table 1, the infrared stimulating emission wavelength is blue at 470 nm and the infrared wavelength sensitivity is high. An infrared stimulable phosphor having a characteristic peak wavelength of 1.15 μm cannot be obtained. This is a problem that cannot be essentially solved by the conventional method of simultaneously adding the main activator and the subactivator to the phosphor matrix.

【0014】次に、赤外輝尽蛍光体のメモリ特性におけ
る問題点について説明する。
Next, problems in the memory characteristics of the infrared stimulable phosphor will be described.

【0015】理論的には、赤外輝尽蛍光体は極めて安定
な記録情報保持能力を有する筈である。すなわち、前述
の Keller のモデルにおいて、記録情報の保持を担う S
m の準位は、蛍光体母体の伝導帯から1eV程度と、熱的
エネルギーの数十meVと比較して、極めて深い準位を形
成しているため、熱的擾乱により電子の再放出が生じに
くいためである。
[0015] Theoretically, the infrared stimulable phosphor should have an extremely stable ability to retain recorded information. In other words, in the Keller model described above, S
The level of m is about 1 eV from the conduction band of the phosphor matrix, which is extremely deep compared to the thermal energy of tens of meV. Therefore, re-emission of electrons occurs due to thermal disturbance. Because it is difficult.

【0016】ところが、本発明者等が実際の蛍光体につ
いて測定を行った結果では、メモリ特性は安定ではな
く、記録情報が時間経過と共に減衰していく事が明らか
になった。図3は、 CaS に Eu と Sm とを共に添加し
た赤外輝尽蛍光体について初期記録情報の保持量の時間
的変化を測定した一例である。図から明らかなように、
理論から予測される程に安定ではなく、僅か数日で記録
情報量は半減する。このように、従来の赤外可視変換蛍
光体とその製造方法では、メモリ時間が短いという欠点
があった。
However, the present inventors have conducted measurements on actual phosphors and found that the memory characteristics were not stable, and that the recorded information attenuated over time. FIG. 3 is an example of measuring the temporal change in the amount of retained initial recording information for an infrared stimulable phosphor obtained by adding Eu and Sm to CaS. As is clear from the figure,
It is not as stable as predicted by theory, and in just a few days the amount of recorded information is halved. As described above, the conventional infrared-visible conversion phosphor and the manufacturing method thereof have a drawback that the memory time is short.

【0017】本発明者等は、上記メモリ特性についてさ
らに多くの実験を繰り返した結果、メモリ特性の劣化
は、主に主活性剤の添加量によって大きく影響されるこ
とを見出した。図4は主活性剤濃度とメモリ半減時間と
の関係を示す図で、図から明らかなように、主活性剤の
濃度を増すことによりメモリ特性は著しく低下する。こ
の現象は従来の動作機構によっては説明できず、副活性
剤と主活性剤との間に相互作用が存在し、その相互作用
によって Sm に蓄積された電子が Eu に移動して記録情
報が失われる機構が存在することを示すものである。こ
のようなイオン間の相互作用は隣接イオン間の距離に依
存することが知られており、イオン間距離が短くなるに
伴い相互作用は増大する。すなわち、主活性剤の増大に
よるメモリ特性の低下は主活性剤の増加により主活性剤
と副活性剤との距離が近接したことによるものである。
The present inventors have repeated more experiments on the above memory characteristics and found that the deterioration of the memory characteristics is largely affected mainly by the amount of the main activator added. FIG. 4 is a graph showing the relationship between the concentration of the main activator and the half-life of the memory. As is apparent from the figure, the memory characteristics are significantly reduced by increasing the concentration of the main activator. This phenomenon cannot be explained by the conventional operating mechanism, and there is an interaction between the sub-activator and the main activator, and the electrons accumulated in Sm move to Eu to lose the recorded information due to the interaction. This indicates that a mechanism exists. It is known that the interaction between such ions depends on the distance between adjacent ions, and the interaction increases as the distance between ions becomes shorter. That is, the decrease in the memory characteristics due to the increase in the main activator is due to the fact that the distance between the main activator and the sub-activator is reduced due to the increase in the main activator.

【0018】従って、メモリ特性を向上させるために
は、主活性剤の濃度を減少させ活性剤間距離を増大させ
ればよいが、従来の主活性剤と副活性剤とを共に混合添
加する方法では、主活性剤濃度の減少と共に蓄積可能な
光エネルギー即ち赤外可視変換効率が低下するため、主
活性剤濃度を無制限に減少させることはできず、赤外可
視変換効率を犠牲とすることなくメモリ特性を向上させ
ることは本質的に不可能であった。
Therefore, in order to improve the memory characteristics, the concentration of the main activator may be decreased and the distance between activators may be increased. However, the conventional method of mixing and adding the main activator and the sub-activator together. In, the light energy that can be stored with the decrease of the main activator concentration, that is, the infrared-visible conversion efficiency decreases, so that the main activator concentration cannot be reduced indefinitely, without sacrificing the infrared-visible conversion efficiency. It was essentially impossible to improve the memory characteristics.

【0019】また、特にメモリ特性のみに着目して該特
性の向上を図った場合でも、記録情報蓄積量が一定値に
落着くまでに、情報記録後初期の段階で記録情報蓄積量
の急激な減少が生じるという問題があった。この状況は
図5に示す通りで、情報蓄積量は、初期数時間で急激な
減衰を示した後、一定値に落着くという特性を示す。こ
れは、活性剤が蛍光体母体中で隣接活性剤間距離の極め
て短いものから長いものまで統計的に分布しており、主
活性剤の濃度を減少させても隣接活性剤間距離の短い主
活性剤‐副活性剤ペアの数を零にすることはできず、近
接活性剤間で相互作用による記録情報の消失が生じるた
め、記録後初期の段階で記録情報量の急激な減衰が生じ
ることによるものである。このため、主活性剤と副活性
剤とを蛍光体母体中に均質に添加する従来の方法では、
初期記録情報の減少を回避することは本質的に不可能で
あった。
Even when the memory characteristics are particularly improved by focusing only on the memory characteristics, the amount of the stored information is rapidly increased in an early stage after the information is recorded until the amount of the stored information reaches a constant value. There was a problem that reduction occurred. This situation is as shown in FIG. 5, in which the amount of accumulated information shows a characteristic that it suddenly attenuates in a few hours in the initial stage and then reaches a constant value. This is because the activators are statistically distributed in the phosphor matrix from extremely short to long distances between adjacent activators, and even if the concentration of the main activator is reduced, the distance between adjacent activators is short. The number of activator-subactivator pairs cannot be reduced to zero, and the recorded information will be lost due to the interaction between neighboring activators, resulting in a sharp decrease in the recorded information in the early stage after recording. It is due to. For this reason, in the conventional method in which the main activator and the sub-activator are uniformly added to the phosphor matrix,
It was essentially impossible to avoid a reduction in the initial recorded information.

【0020】さらに、従来の赤外可視変換蛍光体とその
製造方法を光記録媒体に適用した場合、情報記録後直ち
に読みだしを行うと、情報記録後に生じるアフターグロ
ーによるノイズレベルが高く、読みだしによって発生す
る信号の S/N 比が極めて低いため、高速読みだしがで
きないという欠点があった。この現象は活性剤添加量を
多くして変換効率を高めた場合に特に著しく、図6に示
すように、情報記録後十数秒経過した後でも信号レベル
とアフターグローによるノイズレベルがほぼ等しい場合
もある。この現象は上記メモリ特性の説明中で述べた情
報記録後初期における蓄積情報量の減衰に関連してお
り、近接活性剤間で相互作用による再結合が生じる際に
光が放出され、これがアフターグローとして観測される
ことによるものである。このため、上記メモリ特性の場
合と同様の理由で、従来の方法ではアフターグローの発
生を回避することは本質的に不可能であった。
Furthermore, when the conventional infrared-visible conversion phosphor and its manufacturing method are applied to an optical recording medium, if reading is performed immediately after information recording, the noise level due to afterglow generated after information recording is high, and reading is performed. The S / N ratio of the signal generated by this was extremely low, so that high-speed reading was not possible. This phenomenon is particularly remarkable when the conversion efficiency is increased by increasing the amount of the activator added, and as shown in FIG. 6, even when the signal level and the noise level due to afterglow are almost equal even after a lapse of more than ten seconds after information recording. is there. This phenomenon is related to the attenuation of the amount of stored information in the early stage after information recording described in the above description of the memory characteristics, and light is emitted when recombination occurs due to interaction between adjacent activators, and this is an afterglow. It is because it is observed as. For this reason, it is essentially impossible to avoid the occurrence of afterglow in the conventional method for the same reason as in the case of the above memory characteristics.

【0021】本発明の目的は、上記従来技術の有してい
た課題を解決して、動作波長選択幅が広く、メモリ特
性、赤外可視変換効率が高く、また、光情報の高速書き
込み、読みだしが可能な赤外可視変換蛍光体とその製造
方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a wide operating wavelength selection range, high memory characteristics, high infrared-visible conversion efficiency, and high-speed writing and reading of optical information. An object of the present invention is to provide an infrared-visible conversion phosphor that can be used and a method for producing the same.

【0022】[0022]

【課題を解決するための手段】上記目的は、アルカリ土
類金属カルコゲナイドを蛍光体母体材料とし、ユーロピ
ウム、セリウム、マンガン、銅の中から選ばれる少なく
とも1種の元素Aを添加した粉末状蛍光体と、サマリウ
ム、ビスマス、鉛の中から選ばれる少なくとも1種の元
素Bを添加した粉末状蛍光体とを混合した後焼結して両
蛍光体粒子を融着させることによって、蛍光体内での元
素Aの濃度分布と元素Bの濃度分布とを異なるように添
加した赤外可視変換蛍光体とすることによって達成する
ことができる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a powdery phosphor prepared by using an alkaline earth metal chalcogenide as a phosphor base material and adding at least one element A selected from europium, cerium, manganese and copper. And a powdered phosphor to which at least one element B selected from samarium, bismuth, and lead is added, and then mixed and sintered to fuse both phosphor particles, thereby obtaining an element in the phosphor. This can be achieved by using an infrared-visible conversion phosphor in which the concentration distribution of A and the concentration distribution of element B are differently added.

【0023】[0023]

【作用】従来の技術の項でも述べたように、従来技術の
蛍光体は蛍光体中に主活性剤、副活性剤共に均質に分布
された構成となっているため、隣接主活性剤‐副活性剤
間の距離(以下、イオンペア間距離と称する)を添加濃度
と独立に制御することができず、濃度増加と共にイオン
ペア間距離が近いイオンペアが増加して特性低下が生じ
ていたが、上記本発明内容の蛍光体とするとすることに
よって、主活性剤の濃度分布と副活性剤の濃度分布とが
異なるように添加されているため、イオンペア間距離の
近いイオンペアの数を抑制することができ、これによっ
て、実効的な活性剤濃度を増加し、赤外可視変換効率の
向上、メモリ特性の向上を図ることができる。
As described in the section of the prior art, the phosphor of the prior art has a constitution in which both the main activator and the subactivator are homogeneously distributed in the phosphor. The distance between activators (hereinafter, referred to as ion-pair distance) could not be controlled independently of the added concentration, and the ion-pairs with a short distance between ion pairs increased with the increase in concentration, resulting in a decrease in characteristics. Since the phosphor of the present invention is added so that the concentration distribution of the main activator and the concentration distribution of the subactivator are different from each other, the number of ion pairs with a short distance between ion pairs can be suppressed, As a result, the effective activator concentration can be increased, the infrared-visible conversion efficiency can be improved, and the memory characteristics can be improved.

【0024】まず、波長特性に関しては、本発明の赤外
可視変換蛍光体の製造方法を適用することによって、主
活性剤を添加した蛍光体と副活性剤を添加した蛍光体と
を独立に選択することができるため、赤外輝尽発光波長
と赤外波長感度特性とを独立に設定することができ、従
来技術の蛍光体よりも波長選択範囲を広くすることがで
きる。例えば、主活性剤 Ce を添加した SrS と、副活
性剤 Sm を添加した CaS とを用いることによって、1.1
5μmに赤外波長感度特性の最大値を有し、青色に発光す
る赤外可視変換蛍光体を得ることができる。
First, with regard to the wavelength characteristics, by applying the method for producing an infrared-visible conversion phosphor of the present invention, a phosphor to which a main activator is added and a phosphor to which a sub-activator is added are independently selected. Therefore, the infrared stimulable emission wavelength and the infrared wavelength sensitivity characteristic can be set independently, and the wavelength selection range can be wider than that of the conventional phosphor. For example, by using SrS to which the main activator Ce is added and CaS to which the subactivator Sm is added, 1.1 is obtained.
An infrared-visible conversion phosphor that has a maximum value of infrared wavelength sensitivity characteristics at 5 μm and emits blue light can be obtained.

【0025】また、メモリ特性に関しては、主活性剤の
濃度分布と副活性剤の濃度分布とを異なるように添加す
ることは近接して存在する主活性剤‐副活性剤ペアの数
を大幅に減少させることに相当し、これによって、活性
剤間相互作用によるメモリ減衰効果を抑制することがで
き、メモリ特性を大幅に改善することができる。このた
め、添加濃度を増大してもメモリ特性を低下させること
がなく、メモリ特性、赤外可視変換効率ともに良好な蛍
光体を得ることができる。
With respect to the memory characteristics, the addition of the main activator concentration distribution and the sub-activator concentration distribution in a different manner greatly reduces the number of main activator-subactivator pairs present in close proximity. This is equivalent to a reduction, whereby the memory damping effect due to the interaction between activators can be suppressed, and the memory characteristics can be greatly improved. For this reason, even if the addition concentration is increased, the memory characteristics are not reduced, and a phosphor having both good memory characteristics and good infrared-visible conversion efficiency can be obtained.

【0026】さらに、メモリ減衰によるアフターグロー
の発生が抑制されるため、読みだし光の S/N 比が高
く、光情報の高速書き込み、読みだしが可能となる。
Furthermore, since the occurrence of afterglow due to the memory attenuation is suppressed, the S / N ratio of the read light is high, and high-speed writing and reading of optical information can be performed.

【0027】[0027]

【実施例】以下、本発明の赤外可視変換蛍光体とその製
造方法について、実施例によって具体的に説明する。
EXAMPLES Hereinafter, the infrared-visible conversion phosphor of the present invention and the method for producing the same will be specifically described with reference to examples.

【0028】[0028]

【実施例1】CaS を 蛍光体母体材料とし、主活性剤元
素としてEu 、副活性剤として Smを選択し、粉砕後混合
焼結する方法によって CaS 内での Eu 濃度分布と Sm
濃度とが異なるように添加した例について説明する。
[Example 1] CaS was used as a phosphor base material, Eu was selected as a main activator element, and Sm was selected as a subactivator element.
An example in which the concentration is different from the concentration will be described.

【0029】まず、酸化ユーロピウム(Eu2O3)を500ppm
添加した CaS 蛍光体と酸化サマリウム(Sm2O3)を150ppm
添加した CaS 蛍光体とを製造した。これらの蛍光体
を、それぞれ、ボールミルにより平均粒径が1μm以下
となるまで十分粉砕した後、該混合粉末をアルミナ製炉
心管内に設置し、Ar ガスとH2S ガスとの混合ガスを管
内に流しながら、1200℃の温度で2時間加熱し焼結し
た。焼結後の蛍光体は全体が融着した塊状となるので、
これをさらに粉砕し平均粒径50μm程度の粉末とした。
このようにして得られた蛍光体を走査電子顕微鏡内に
設置し、電子線照射によって蛍光体から発する蛍光を電
子線を走査しながら検査した結果、Eu の濃度分布と Sm
の濃度分布とが異なるように添加されていることが確
認された。また、この赤外可視変換蛍光体の赤外可視変
換効率は6%で、5000時間経過後の記録情報蓄積量は初
期書き込み量の80%以上を保持していた。一方、上記と
同量の活性剤を同時に CaS に添加した後焼結して得ら
れた従来の蛍光体の赤外可視変換効率は1%以下であ
り、また、僅か数十時間で記録情報蓄積量は初期書き込
み量の50%以下に減少した。以上の結果から、本発明の
赤外可視変換蛍光体は、赤外可視変換効率、メモリ特性
ともに従来技術の蛍光体と比較して極めて優れているこ
とがわかる。
First, 500 ppm of europium oxide (Eu 2 O 3 ) was added.
150 ppm of added CaS phosphor and samarium oxide (Sm 2 O 3 )
The added CaS phosphor was manufactured. After each of these phosphors is sufficiently pulverized by a ball mill until the average particle size becomes 1 μm or less, the mixed powder is placed in an alumina furnace tube, and a mixed gas of Ar 2 gas and H 2 S gas is placed in the tube. While flowing, it was heated at a temperature of 1200 ° C. for 2 hours and sintered. Since the phosphor after sintering becomes a fused mass,
This was further pulverized to obtain a powder having an average particle size of about 50 μm.
The phosphor thus obtained was placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation was inspected while scanning the electron beam. As a result, the Eu concentration distribution and Sm
Was added so as to be different from the concentration distribution of The infrared-visible conversion phosphor had an infrared-visible conversion efficiency of 6%, and the accumulated amount of recorded information after lapse of 5,000 hours was 80% or more of the initial writing amount. On the other hand, the infrared-visible conversion efficiency of the conventional phosphor obtained by adding the same amount of activator to CaS at the same time and then sintering is 1% or less, and the recorded information can be accumulated in only several tens of hours. The amount was reduced to less than 50% of the initial writing amount. From the above results, it can be seen that the infrared-visible conversion phosphor of the present invention is extremely superior in both the infrared-visible conversion efficiency and the memory characteristics as compared with the conventional phosphor.

【0030】[0030]

【実施例2】Ce を添加したセレン化ストロンチウム(Sr
Se)と、Sm を添加した CaS とからなり、蛍光体内での
Ce の濃度分布と Sm の濃度分布とを異なるように添加
した蛍光体の例について説明する。
Example 2 Strontium selenide (Sr) doped with Ce
Se) and CaS with Sm added.
An example of a phosphor added so that the Ce concentration distribution and the Sm concentration distribution are different will be described.

【0031】まず、酸化セリウム(CeO2)を1500ppm添加
した SrSe 蛍光体と、酸化サマリウム(SmO2)を150ppm添
加した CaS 蛍光体とを製造し、それぞれを平均粒径が
1μm以下となるまでボールミルにより粉砕した後、両
者を混合した。該混合粉末をアルミナ製炉心管内に設置
し、Ar ガスを炉心管内に流しながら1200℃の温度で2
時間焼結した。焼結後の蛍光体は全体が融着した塊とな
っているので、これをさらに粉砕して平均粒径50μm程
度の粉末とした。
First, a SrSe phosphor containing 1500 ppm of cerium oxide (CeO 2 ) and a CaS phosphor containing 150 ppm of samarium oxide (SmO 2 ) were manufactured. And then mixed. The mixed powder was placed in an alumina furnace tube, and Ar gas was flowed into the furnace tube at a temperature of 1200 ° C. for 2 hours.
Sintered for hours. Since the phosphor after sintering was in the form of a fused mass as a whole, it was further pulverized into a powder having an average particle size of about 50 μm.

【0032】このようにして得られた蛍光体を走査電子
顕微鏡内に設置し、電子線照射によって蛍光体から発す
る蛍光を電子線を走査しながら検査した結果、Ce の濃
度分布と Sm の濃度分布とが異なるように添加されてい
ることが確認された。また、この蛍光体の赤外波長感度
特性は中心波長が1.15μmにある幅広い波長感度特性を
示した。また、赤外輝尽発光波長はそのピークが470nm
にあるため、1.3μm、1.55μmの半導体レーザーに対し
ても十分な感度を有し、かつ、青色に発光する赤外可視
変換蛍光体が得られた。従来技術の蛍光体で1.3μm、1.
55μmに感度を有し青色に発光するものはなく、本発明
によって、赤外可視変換蛍光体の波長特性の選択性が広
がり、表示素子など各種応用に適した蛍光体の設計が可
能となった。
The phosphor thus obtained was placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation was inspected while scanning the electron beam. As a result, the Ce concentration distribution and the Sm concentration distribution were determined. Was confirmed to have been added so as to be different. In addition, the infrared wavelength sensitivity characteristics of this phosphor exhibited a wide wavelength sensitivity characteristic having a center wavelength of 1.15 μm. The peak wavelength of the infrared stimulating emission wavelength is 470 nm.
Therefore, an infrared-visible conversion phosphor which has sufficient sensitivity to 1.3 μm and 1.55 μm semiconductor lasers and emits blue light was obtained. 1.3 μm, 1.
Nothing emits blue light with sensitivity at 55 μm, and according to the present invention, the selectivity of the wavelength characteristics of the infrared-visible conversion phosphor is expanded, and it becomes possible to design a phosphor suitable for various applications such as a display element. .

【0033】[0033]

【実施例3】Eu を添加した CaS 蛍光体微粉末と、Sm
を添加した CaS 蛍光体微粉末とを混合後加熱焼結し
て、蛍光体内での Eu の濃度分布と Sm の濃度分布とが
異なるように添加した蛍光体の例について説明する。
Example 3 CaS phosphor fine powder to which Eu was added and Sm
An example of a phosphor added so that the concentration distribution of Eu and the concentration distribution of Sm in the phosphor are different from each other by mixing and heating and sintering the CaS phosphor fine powder to which phosphor is added is added.

【0034】まず、蛍光体焼成後の CaS 中の Eu 濃度
が500ppmとなるように、炭酸カルシウム、酸化ユーロピ
ウム、炭酸ナトリウム及び硫黄を混合し、アルミナ製坩
堝内に充填し、蓋をして電気炉中に設置して、1000℃で
1時間加熱し、得られた焼結体を粉砕し水洗することに
よって未反応原料を除去し、さらにエタノールで洗浄、
乾燥させることによって、平均粒径が100nm以下の CaS
: Eu 蛍光体微粒子を得た。また、蛍光体焼成後の CaS
中の Sm 濃度が100ppmとなるように、炭酸カルシウ
ム、酸化サマリウム、炭酸ナトリウム及び硫黄を混合
し、アルミナ製坩堝内に充填し、蓋をして電気炉中に設
置し、1000℃で1時間加熱し、得られた焼結体を粉砕、
水洗することによって未反応原料を除去した後、エタノ
ールで洗浄、乾燥させることによって平均粒径が100nm
以下の CaS : Sm 蛍光体微粒子を得た。 上記によって
得られた CaS : Eu 蛍光体微粒子と CaS : Sm 微粒子と
を混合した後、アルミナ製炉心管内に設置し、Ar ガス
と H2Sとを混合したガスを炉心管内に流しながら1200℃
の温度で4時間加熱し、焼結した。焼結後の蛍光体は全
体が融着した塊となるので、これをさらに粉砕し、平均
粒径50μm程度の粉末とした。
First, calcium carbonate, europium oxide, sodium carbonate and sulfur were mixed so that the Eu concentration in CaS after firing the phosphor was 500 ppm, and the mixture was filled in an alumina crucible, covered with an electric furnace. Placed inside, heated at 1000 ° C. for 1 hour, the obtained sintered body was crushed and washed with water to remove unreacted raw materials, and further washed with ethanol.
By drying, CaS with an average particle size of 100 nm or less
: Eu phosphor fine particles were obtained. In addition, CaS
Mix calcium carbonate, samarium oxide, sodium carbonate, and sulfur so that the Sm concentration in the mixture becomes 100 ppm, fill in an alumina crucible, cover and install in an electric furnace, and heat at 1000 ° C for 1 hour. And pulverize the obtained sintered body,
After removing unreacted raw materials by washing with water, washing with ethanol and drying, the average particle size is 100 nm.
The following CaS: Sm phosphor fine particles were obtained. CaS obtained by the above: Eu phosphor particles and CaS: after mixing the Sm particles, was placed in an alumina core tube, 1200 ° C. while flowing a mixed gas of Ar gas and H 2 S in the reactor core tube
For 4 hours and sintered. Since the phosphor after sintering became a lump as a whole, this was further pulverized to obtain a powder having an average particle diameter of about 50 μm.

【0035】上記のようにして得られた蛍光体を走査電
子顕微鏡内に設置し、電子線照射によって蛍光体から発
する蛍光を電子線を走査しながら検査した結果、Eu の
濃度分布と Sm の濃度分布が異なるように添加されてい
ることが確認された。また、この赤外可視変換蛍光体の
赤外可視変換効率は8%であり、5000時間経過後の記録
情報書き込み量は初期書き込み量の80%以上を保持して
いた。一方、上記と同量の活性剤を CaS に添加した後
焼結して得られた従来構成の蛍光体の赤外可視変換蛍光
体の赤外可視変換効率は1%以下であり、また、僅か数
十時間で記録情報書き込み量が初期書き込み量の50%以
下に減少した。以上の結果から、本発明の赤外可視変換
蛍光体の赤外可視変換効率、メモリ特性が共に従来構成
の蛍光体と比較して極めて優れていることがわかる。
The phosphor obtained as described above was placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation was inspected while scanning the electron beam. As a result, the concentration distribution of Eu and the concentration of Sm were determined. It was confirmed that they were added so as to have different distributions. Further, the infrared-visible conversion phosphor had an infrared-visible conversion efficiency of 8%, and the write amount of recorded information after lapse of 5000 hours was 80% or more of the initial write amount. On the other hand, the infrared-visible conversion efficiency of the conventional phosphor obtained by adding the same amount of activator to CaS and then sintering is 1% or less, and In several tens of hours, the write amount of recorded information decreased to 50% or less of the initial write amount. From the above results, it can be seen that both the infrared-visible conversion efficiency and the memory characteristics of the infrared-visible conversion phosphor of the present invention are extremely superior to those of the conventional configuration.

【0036】なお、上記各実施例で得られた本発明蛍光
体について情報記録後の読みだし特性を測定したとこ
ろ、図1に示すように、アフターグローによるノイズが
なく、極めて S/N 比の高い信号が得られた。図1を図
6と比較して、本発明蛍光体のS/N 比の極めて高いこと
が知られる。
When the reading characteristics of the phosphor of the present invention obtained in each of the above embodiments were recorded after recording information, as shown in FIG. 1, there was no noise due to afterglow, and the S / N ratio was extremely low. A high signal was obtained. 1 is compared with FIG. 6, it is known that the phosphor of the present invention has an extremely high S / N ratio.

【0037】なお、上記の実施例においては、主活性剤
として Eu 、Ce を添加し、副活性剤として Sm を添加
した CaS 、SrS あるいは SrSe 蛍光体の例について説
明したが、蛍光体母体材料として MgS 、CaS 、SrS 、B
aS 、MgSe 、CaSe 、SrSe 、BaSeなどのアルカリ土類金
属のカルコゲナイド及びそれらの混合物を用い、主活性
剤として Mn 、Cu 、副活性剤として Bi 、Pb を添加し
た場合にも、動作波長選択幅が広く、メモリ特性、赤外
可視変換効率が共に高い赤外可視変換蛍光体を実現する
ことができた。
In the above embodiment, examples of CaS, SrS or SrSe phosphors in which Eu and Ce are added as main activators and Sm is added as a subactivator have been described. MgS, CaS, SrS, B
When using chalcogenides of alkaline earth metals such as aS, MgSe, CaSe, SrSe, and BaSe and mixtures thereof, and adding Mn and Cu as main activators and Bi and Pb as subactivators, the operating wavelength selection width It was possible to realize an infrared-visible conversion phosphor having a wide range and high memory characteristics and high infrared-visible conversion efficiency.

【0038】[0038]

【発明の効果】以上述べてきたように、赤外可視変換蛍
光体及びその製造方法を本発明構成の蛍光体及び製造方
法とすること、すなわち、蛍光体内での主活性剤の濃度
分布と副活性剤の濃度分布とが異なるように添加した蛍
光体とすることによって、従来技術の有していた課題を
解決して、動作波長選択幅が広く、メモリ特性、赤外可
視変換効率ともに高い赤外可視変換蛍光体を提供するこ
とができた。
As described above, the infrared-visible conversion phosphor and the method for producing the same are used as the phosphor and the production method according to the present invention, that is, the concentration distribution of the primary activator in the phosphor and the secondary distribution. By using a phosphor that is added so that the concentration distribution of the activator is different, the problems of the prior art can be solved, and the operating wavelength selection range is wide, and the memory characteristics and infrared-visible conversion efficiency are both high. An outside-visible conversion phosphor could be provided.

【0039】また、主活性剤を添加した蛍光体と副活性
剤を添加した蛍光体とを混合した後焼結する製造方法と
することによって、上記特性を有する本発明蛍光体の製
造方法を提供することができた。
In addition, the present invention provides a method for producing the phosphor of the present invention having the above characteristics by mixing and sintering the phosphor containing the main activator and the phosphor containing the subactivator. We were able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外可視変換蛍光体に情報記録を行っ
た後読みだしを行った場合の信号レベルの時間的変化を
示す図。
FIG. 1 is a diagram showing a temporal change in a signal level when information is recorded on an infrared-visible conversion phosphor of the present invention and then read out.

【図2】赤外輝尽蛍光体の動作原理を示す図。FIG. 2 is a view showing the operation principle of an infrared stimulable phosphor.

【図3】従来の赤外輝尽蛍光体の記録情報保持特性を示
す図。
FIG. 3 is a diagram showing recorded information retention characteristics of a conventional infrared stimulable phosphor.

【図4】従来の赤外輝尽蛍光体の記録情報保持特性の主
活性剤濃度依存性を示す図。
FIG. 4 is a graph showing the dependency of the recording information retention characteristics of a conventional infrared stimulable phosphor on the concentration of a main activator.

【図5】従来の赤外輝尽蛍光体の内、メモリ特性に優れ
た蛍光体の記録情報保持特性を示す図。
FIG. 5 is a diagram showing recording information retention characteristics of a phosphor having excellent memory characteristics among conventional infrared stimulable phosphors.

【図6】従来の赤外輝尽蛍光体蛍光体に情報記録を行っ
た後読みだしを行った場合の信号レベルの時間的変化を
示す図。
FIG. 6 is a diagram showing a temporal change of a signal level when reading is performed after information is recorded on a conventional infrared stimulable phosphor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−234790(JP,A) 特開 平4−39385(JP,A) 特開 平4−39384(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-234790 (JP, A) JP-A-4-39385 (JP, A) JP-A-4-39384 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ土類金属カルコゲナイドを蛍光体
母体材料とし、該蛍光体母体材料にユーロピウム、セリ
ウム、マンガン、銅の中から選ばれる少なくとも1種の
元素Aと、サマリウム、ビスマス、鉛の中から選ばれる
少なくとも1種の元素Bとを共に添加し、かつ、該蛍光
体内での元素Aの濃度分布と元素Bの濃度分布とを空間
的に異なるように添加してなることを特徴とする赤外可
視変換蛍光体。
An alkaline earth metal chalcogenide is used as a phosphor base material, and the phosphor base material contains at least one element A selected from europium, cerium, manganese, and copper, and samarium, bismuth, and lead. At least one element B selected from the group consisting of: and a concentration distribution of the element A and a concentration distribution of the element B in the phosphor are spatially different from each other. Infrared-visible conversion phosphor.
【請求項2】アルカリ土類金属カルコゲナイドを蛍光体
母体材料とし、ユーロピウム、セリウム、マンガン、銅
の中から選ばれる少なくとも1種の元素を添加した粉末
状蛍光体Cと、サマリウム、ビスマス、鉛の中から選ば
れる少なくとも1種の元素を添加した粉末状蛍光体Dと
を混合した後加熱焼結して蛍光体Cの粉末粒子と蛍光体
Dの粉末粒子とを融着させることにより請求項1記載の
赤外可視変換蛍光体を製造することを特徴とする赤外可
視変換蛍光体の製造方法。
2. A powdered phosphor C containing an alkaline earth metal chalcogenide as a phosphor base material and added with at least one element selected from europium, cerium, manganese and copper, and samarium, bismuth and lead. A powdered phosphor D to which at least one element selected from the group is added is mixed and heated and sintered to fuse the phosphor C powder particles and the phosphor D powder particles. A method for producing an infrared-visible conversion phosphor, comprising producing the infrared-visible conversion phosphor described in the above.
JP21216391A 1991-08-23 1991-08-23 Infrared-visible conversion phosphor and method for producing the same Expired - Lifetime JP2633749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21216391A JP2633749B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21216391A JP2633749B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0551580A JPH0551580A (en) 1993-03-02
JP2633749B2 true JP2633749B2 (en) 1997-07-23

Family

ID=16617952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21216391A Expired - Lifetime JP2633749B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2633749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698490B2 (en) * 1991-09-02 1998-01-19 日本電信電話株式会社 Infrared-visible conversion element

Also Published As

Publication number Publication date
JPH0551580A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
US5028509A (en) Method for converting radiographic image, radiation energy storage panel having stimulable phosphor-containing layer and alkali halide phosphor
KR102087857B1 (en) Method for shortening the flash response of the emission center and scintillator material having a shortened flash response
Rezende et al. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl 2 O 4 phosphor
CA1040323A (en) Luminescent screen
JP2633749B2 (en) Infrared-visible conversion phosphor and method for producing the same
US4315979A (en) Rare earth oxyhalide phosphor and x-ray image converters utilizing same
O'Sullivan The origin of line-free XUV continuum emission from laser-produced plasmas of the elements 62⩽ Z⩽ 74
EP0252991B1 (en) Alkali halide phosphor
US3338841A (en) Luminescent molybdate and tungstate compositions
US4608190A (en) X-ray image storage panel comprising anion-deficient BaFCl:Eu/BaFBr:Eu phosphors
US4442360A (en) Radiation detector
Kawano et al. X-ray excitation fluorescence spectra of the Eu 2+-stabilized V K center in alkaline-earth fluoride mixed-crystal systems
JP3371133B2 (en) Optical memory using visible light, recording / reading method for the memory, and method for manufacturing phosphor for the optical memory
JPH08170077A (en) Fluorescent substance, its production, luminescent screen and cathode ray tube using the fluophor
US5560867A (en) Phosphor with an additive for reducing afterglow
Chen et al. Electron migration in BaFCl: Eu 2+ phosphors
CA1059747A (en) Method of producing a luminescent alkaline earth metal fluorohalide activated by bivalent europium
Hall et al. Phosphors for luminescent image plates
JP2698857B2 (en) Method for producing infrared-visible conversion phosphor
US2628201A (en) Zinc-magnesium oxide luminescent materials and methods of making same
US4068129A (en) Bismuth activated rare earth oxybromide phosphors and X-ray image converters utilizing said phosphors
JPH0675098A (en) Radiation-image recording and reproducing method
Peters Luminescence Properties of Thiogallate Phosphors: III. Red and White Emitting Phosphors for Flying Spot Scanner Applications
JP3263991B2 (en) Blue light emitting phosphor
Yavetskiy et al. Thermostimulated luminescence from single crystals of modified lithium gadolinium orthoborate Li 6− x Na x Gd (BO 3) 3: Ce

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120425

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15