JP2631786B2 - Conductivity measuring method and its device - Google Patents

Conductivity measuring method and its device

Info

Publication number
JP2631786B2
JP2631786B2 JP3296751A JP29675191A JP2631786B2 JP 2631786 B2 JP2631786 B2 JP 2631786B2 JP 3296751 A JP3296751 A JP 3296751A JP 29675191 A JP29675191 A JP 29675191A JP 2631786 B2 JP2631786 B2 JP 2631786B2
Authority
JP
Japan
Prior art keywords
current
transformer
coil
conductivity
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3296751A
Other languages
Japanese (ja)
Other versions
JPH0552814A (en
Inventor
正人 内冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3296751A priority Critical patent/JP2631786B2/en
Publication of JPH0552814A publication Critical patent/JPH0552814A/en
Application granted granted Critical
Publication of JP2631786B2 publication Critical patent/JP2631786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各種溶液の電導度あるい
は濃度を測定する方法および測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the conductivity or concentration of various solutions.

【0002】[0002]

【従来の技術】あらゆる測定方法の基本原理はバネ秤の
様にバネ(物体)の偏位を利用して測定する偏位法と、
天秤の様に中央を支点とするてこに相当する平衡機構を
持ち、分銅に相当する基準量(測定量と同一物)とつり
あわせて測定する零位法(通常は自動平衡機構を備えて
いるので、自動平衡法とも呼ぶ)で成り立っており、前
者は構造が簡単ではあるが精度及び安定度が低く、後者
は構造が複雑であるが精度及び安定度が高いという特徴
を持っている。又、溶液の電導度の測定方法には電極を
用いる電極法と電極を用いない電磁法があるが、本発明
が該当する方法は電磁法に関するものであり、前記測定
原理に基づく二つの方法が存在する。従来の技術は、実
公、昭54−34632号、公報に記載されている様
に、初めに、偏位法電導度測定装置の例を示すと、一次
側に交流電源が接続された励磁変圧器の二次コイルと、
二次側に被検液の電導度に対応した信号を計測する信号
計測器が接続された検出変圧器の一次コイルを共有した
一巻の形成された絶縁路に被検液を満たした液路コイル
により構成され、その測定方法は前記励磁変圧器の一次
コイルに一定の交流電圧をかけると励磁変圧器の二次コ
イル、(液路コイル)に一定の交流電圧が誘起するため
被検液の電導度に正比例した交流電流が前記検出変圧器
の一次コイル(液路コイル)に流れる結果、検出変圧器
の二次コイルには被検液の電導度に対応した非線形な電
圧が誘起するので、検出変圧器の二次コイルに誘起した
非線形な電圧を前記信号計測器で計測して被検液の電導
度を測定する方法、等が知られている。次に、従来にお
ける零位法(自動平衡法)電導度測定装置の例を示す
と、前記偏位法電導度測定装置で用いた、交流電源,励
磁変圧器,液路コイル,検出変圧器とを同様に結合し、
さらに検出変圧器の二次側に接続された誤差信号増幅器
と誤差信号増幅器に接続されるとともに誤差信号と基準
信号の位相関係に基づいた制御出力が得られる位相比較
器と、前記検出変圧器には前記液路コイルを流れる電流
によって発生する磁束を打ち消す向きに設けた補償コイ
ルと、補償コイルおよび前記位相比較器に接続されると
共に、記録計の構成部品でもある巻線型可変抵抗器とサ
ーボモーターを用いた電流調節器と、巻線型可変抵抗器
の可動接片の位置と目盛りから目視によって計測する信
号計測器(記録計)からなり、その測定方法は、前記偏
位法電導度測定方法で説明したように検出変圧器の二次
コイルには被検液の電導度に対応した非線形な電圧が同
様に誘起するから、検出変圧器の二次コイルに接続され
た前記誤差信号増幅器の出力が零になるように前記補償
コイルに前記交流電源、等により供給される電流を前記
電流調節器により調節して(記録計の自動平衡機構を共
用している)流し、平衡時における前記巻線型可変抵抗
器の可動接片の位置と目盛りから目視によって被検液の
電導度を測定する方法、等が知られている。しかしなが
ら、前記した従来のこの様な測定装置及び測定方法にお
ける欠点は変位法にあっては、検出変圧器の鉄心、(以
下コアと呼ぶ)の非線形な磁気特性のため、信号計測器
の出力は披検液の電導度に正比例せずに高電導度側で飽
和する特性曲線を描くため、直線性が±1%と悪く、又
コアの温度特性や外部応力特性、等の影響を直接に受け
るため安定性が±1%と悪い。特にコアの外部応力特性
は非常に敏感で、常用される高透磁率のパーマロイコア
は指先で数十グラムの力で挟んでも信号計測器の出力は
数%〜十数%変動するため検出変圧器の実装方法は充分
な外部応力対策をしないと実用に至らない、等の理由に
よりせいぜい±1%程度の精度及び安定度しか得られな
かった。又、従来の零位法にあっては、前記偏位法で述
べたコアの前記諸特性による悪影響は非常に小さく出来
るものの、補償電流を調節する電流調節器に、機械的可
動部品で高価な巻線型可変抵抗器とサーボモーターを組
み合わせて用いているため、サーボモーターの駆動には
高価な大出力の増幅器を別個に必要とした。又精度及び
安定度については巻線型可変抵抗器は、可動接片と巻線
の接触により抵抗を変えるものであるから、長期間の使
用によって巻線が部分的に摩耗し、寿命が短くなると共
に直線性が悪くなる事、及び抵抗値が不連続で段階的な
変化をするため、分解能が悪く、又信号計測器が記録計
であるため読取り精度が悪い等の理由により、せいぜい
±3%程度の精度及び安定度しか得られなかった。
2. Description of the Related Art The basic principle of all measuring methods is a displacement method in which measurement is performed using the displacement of a spring (object) like a spring balance,
It has an equilibrium mechanism equivalent to a lever with the center as a fulcrum like a balance, and has a zero-point method (normally equipped with an automatic equilibrium mechanism) for measuring by balancing with a reference amount equivalent to a weight (the same as the measured amount) Therefore, the former has a feature that the structure is simple but the accuracy and stability are low, and the latter has a feature that the structure is complicated but high accuracy and stability. In addition, there are an electrode method using an electrode and an electromagnetic method without an electrode as a method for measuring the conductivity of a solution, and the method applicable to the present invention relates to an electromagnetic method, and two methods based on the above measurement principle include: Exists. A conventional technique is disclosed in Japanese Utility Model Publication No. 54-34632, Japanese Patent Laid-Open Publication No. Sho 54-34632. First, when an example of a deflection method conductivity measuring apparatus is shown, an excitation transformer in which an AC power supply is connected to a primary side is described. Vessel secondary coil,
A liquid path filled with the test liquid in a single-turn insulated path that shares the primary coil of the detection transformer with a signal measuring device that measures the signal corresponding to the conductivity of the test liquid on the secondary side. When a constant AC voltage is applied to the primary coil of the exciting transformer, a constant AC voltage is induced in the secondary coil of the exciting transformer and the (fluid path coil). As a result that an alternating current that is directly proportional to the conductivity flows through the primary coil (fluid path coil) of the detection transformer, a non-linear voltage corresponding to the conductivity of the test liquid is induced in the secondary coil of the detection transformer. There is known a method of measuring a non-linear voltage induced in a secondary coil of a detection transformer by the signal measuring device to measure the electric conductivity of a test liquid, and the like. Next, an example of a conventional zero-position (automatic equilibrium method) conductivity measuring apparatus will be described. An AC power supply, an excitation transformer, a liquid path coil, a detection transformer, and the like used in the above-described deflection method conductivity measuring apparatus are shown. In the same way,
Further, an error signal amplifier connected to the secondary side of the detection transformer and a phase comparator connected to the error signal amplifier and obtaining a control output based on the phase relationship between the error signal and the reference signal; and Is a compensating coil provided in such a direction as to cancel the magnetic flux generated by the current flowing through the liquid path coil, and a winding type variable resistor and a servo motor which are connected to the compensating coil and the phase comparator and are also components of the recorder. And a signal measuring device (recorder) that visually measures the position and the scale of the movable contact piece of the winding type variable resistor, and the measuring method is the above-described deflection method conductivity measuring method. As described above, since a non-linear voltage corresponding to the conductivity of the test liquid is similarly induced in the secondary coil of the detection transformer, the error signal connected to the secondary coil of the detection transformer is increased. The current supplied from the AC power supply or the like is adjusted to the compensation coil by the current regulator so that the output of the recorder becomes zero (the automatic balance mechanism of the recorder is shared), and the current flows during the equilibrium. There is known a method of visually measuring the conductivity of a test liquid from the position and scale of the movable contact piece of the wire wound variable resistor. However, the disadvantage of the conventional measuring apparatus and measuring method described above is that the displacement method uses a non-linear magnetic characteristic of the iron core of the detecting transformer (hereinafter referred to as a core), so that the output of the signal measuring device is not sufficient. Since the characteristic curve that saturates on the high conductivity side without being directly proportional to the conductivity of the test solution is drawn, the linearity is poor at ± 1%, and is directly affected by the core temperature characteristics, external stress characteristics, etc. Therefore, the stability is poor at ± 1%. In particular, the external stress characteristics of the core are very sensitive, and the permalloy core, which is commonly used and has a high magnetic permeability, varies the output of the signal measuring instrument by several percent to several tens of percent even if it is sandwiched by a fingertip with a force of several tens of grams. The mounting method of (1) could not be put into practical use unless sufficient measures were taken against external stress, and the accuracy and stability of about ± 1% were obtained at most. Further, in the conventional null method, although the adverse effects due to the above-mentioned characteristics of the core described in the above-described displacement method can be extremely reduced, a current regulator for adjusting the compensation current is expensive due to mechanical moving parts. Since the wound type variable resistor and the servomotor are used in combination, an expensive high-output amplifier was separately required to drive the servomotor. Regarding accuracy and stability, the winding type variable resistor changes the resistance by the contact between the movable contact piece and the winding. Due to poor linearity and stepwise change in resistance value, the resolution is poor, and reading accuracy is poor because the signal measuring device is a recorder. Only the accuracy and stability of the

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような点
に鑑みてなされたものであり、 [1] 測定精度及び安定度が極めて高い事 [2] 機械的可動部品を持たない構造である事 [3] 安価に製作できる事 [4] 電導度に正比例した電流又は電圧出力が得られ
る事 の四つの小課題を一度で満足する電導度測定方法及びそ
の測定装置を開発する事を課題として研究を進めた。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and [1] has extremely high measurement accuracy and stability. [2] has a structure having no mechanical moving parts. [3] Being inexpensive to manufacture [4] To develop a conductivity measurement method and a measurement device that satisfy the four small tasks of obtaining a current or voltage output that is directly proportional to conductivity at one time. Research progressed.

【0004】[0004]

【課題を解決するための手段】まず前記小課題[1]の
測定精度及び安定度が極めて高い事、を解決するための
手段は、前記測定原理の特徴および前記した従来の技術
が示すとおり、精度及び安定度の低い変位法を捨てて、
精度及び安定度の高い零位法を採用することにした。零
位法電導度測定装置の精度及び安定度は、前記した測定
装置を構成する要素である、(1)交流電源,(2)励
磁変圧器,(3)検出変圧器,(4)電流調節器(5)
誤差信号増幅器,(6)位相比較器,(7)信号計測
器,の精度及び安定度より成り立っているから、電導度
測定装置の精度及び安定度を極めて高くするには前記測
定装置の個々の要素について精度及び安定度をバランス
良く極めて高くする必要があり、以下に個々の要素別に
対象となる特性及びそれを高める手段について順に説明
する。 (1)交流電源について対象となる特性は交流電源の出
力である交流電圧であり、交流電圧の精度及び安定度を
極めて高くする手段は、極めて高い精度及び安定度を持
つ基準電圧(例えば半導体基準電圧発生器では0.3p
pm/℃,150ppm/年)と等しくなる様に自動制
御する事、又は前記基準電圧を基に、スイッチング方式
により交流電源を作る事により達成される。 (2)励磁変圧器について対象となる特性はコイル間の
結合度,コアーの透磁率,磁気歪率と漏れ磁束率であ
り、一次,二次,コイルの結合度が極めて高くなるよう
に線巻、又は液路コイルを形成すること、および、交流
電源の周波数において充分な実効透磁率を有し、磁気歪
率の少ない、又コアーを環状型にして漏れ磁束を少なく
した常用されるパーマロイコアーや、アモルファスコア
ーを用いる事によって達成される。 (3)検出変圧器については(2)の励磁変圧器と同一
である。ここで検出変圧器回りの、電流調節器の歪率特
性と、誤差信号増幅器の歪除去率特性が、電導度の測定
精度へ与える影響について少し詳しく述べると、電導度
測定装置を構成する要素のうち、電流調節器と誤差信号
増幅器を除いた個々の要素が、すべて高い精度を有する
場合において、被検液の電導度に完全に正比例する液路
電流の歪率を零とした場合、電導度の測定精度をη(p
pm)とし、電流調節器の歪率をα(ppm)と、誤差
信号増幅器の歪除去率をβ、(0≦β≦1)とすれば
η=α×(1−β) で表されるから、(検出変圧器回
りの電流バランスから容易に導き出せる)この式から、
ηを小さくする為には、αを小さくしても、βを大きく
しても、又αを小さくすると共にβを大きくしても良い
事が判る。つまり電流調節器だけで高精度を実現する場
合には、電流調節器の歪率を出来るだけ小さくし、α→
0誤差信号増幅器だけで高精度を実現する場合には、誤
差信号増幅器の歪除去率を大きくし、β→1,電流調節
器と誤差信号増幅器の両方でもって高精度を実現する場
合には、電流調節器の歪率を小さく、α→0,すると共
に誤差信号増幅器の歪除去率を大きく、β→1,する事
によって、電導度の測定精度を高くする事が出来る。し
たがって、 (4)電流調節器について対象となる特性は歪率と分解
能であり、前記した様に、電流調節器だけで、又は誤差
信号増幅器と併用して高精度を実現する場合には歪率を
小さくする必要があり、又分解能は出来るだけ高い事が
必要である。その具体的手段は、半導体可変電流器を用
いることによつて達成される。半導体可変電流器とは、
外部からの制御信号によって、交流電圧又は交流電流又
は電気抵抗を連続的に変える機能を有するもののうち、
前記交流電圧又は交流電流又は電気抵抗を可変する機構
に半導体を用いて構成した交流電流を調節する機能を持
ったものであり、その具体的な構成例は(イ)掛算器,
割算器,(ロ)可変増幅率型増幅器,(ハ)半導体可変
抵抗器,等を用いて構成した交流電流を調節する機能を
持つたものであり、例えばさらに具体的で簡素な例を示
して説明すると、 (イ)掛算器を単独に用いて構成した場合の例は、入力
にXとYを持ち出力Zとの間に、Z=X×Y なる関係
が存在し、交流出力電圧Zは交流入力電圧Xと制御電圧
Yの積に比例するため、掛算器の出力と適当な価を持っ
た受動素子(コイル,コンデンサー,抵抗)を接続する
と、この回路に電流が流れるから交流電流を調節する機
能を持った半導体可変電流器を構成する事が出来る。可
変相互コンダクタンス方式の四象現(X,Y入力共に正
負の極性が取れる)掛算器は2000ppmの歪率と数
ppmの分解能を持っている。 (ロ)可変増幅率型増幅器を単独に用いて構成した場合
の例は、増幅器の増幅率Aを可変出来る増幅器の、入力
をX、出力をZ、とすると Z=A×X なる関係が成
立し、交流出力電圧Zは交流入力電圧Xと制御電圧に対
応する増幅率Aとの積に比例し、前記掛算器と同様な方
法によって半導体可変電流器を構成する事が出来る。電
圧制御可変増幅率型増幅器(一般にVCAと呼ばれる)
は40ppmの歪率と数ppmの分解能を持っている。 (ハ)半導体可変抵抗器を単独に用いて構成した場合の
例は、硫化カドミュウム光可変抵抗素子(以下CdSと
呼ぶ)を用いた例として、制御電圧に対応した光量を発
光素子を用いて発光させ、その光量に応じて電気抵抗が
変わるCdSの一端を交流電源に接続し、抵抗値に対応
した交流電流が流れる様にした方法、又CdSを増幅器
と組み合わせて、(ロ)の可変増幅率型増幅器を構成す
る方法、又同一の組み合わせで直接交流電流を調節する
方法、等がありこれらはすべて交流電流を調節する機能
を持った半導体可変電流器を構成する事が出来る。Cd
Sは20ppmの歪率と数ppmの分解能を持ってい
る。上記の具体例の様に単独で用いて構成した方法以外
に、複数個又は組み合わせて用いて構成した方法も含ま
れる。 (5)誤差信号増幅器について対象となる特性は歪除去
率と増幅率(分解能)であり、前記したように誤差信号
増幅器だけで、又は電流調節器と併用して、高精度を実
現する場合には歪除去率を大きく(β→1)する必要が
有る。この場合には誤差信号増幅器内に交流電源の波形
以外の波を除去するフィルターもしくは波形処理器を設
ける事によって達成される。増幅率については分解能を
決めるもので有るから大きくする必要があり、S/N比
の高い増幅器を用いて構成する事により達成される。 (6)位相比較器について対象となる特性は、制御性で
あり、これを高くする為には誤差信号と基準信号との位
相関係に対し、出来るだけ線形な制御出力が得られる方
式を用いる事によつて達成される。 (7)信号計測器について対象となる特性は、電導度に
対応する信号として何を計測するかの方法であり、従来
の零位法の例が示す様な平衡時における巻線型可変抵抗
器の可動接片の位置と目盛りから目視によって計測する
方法では無く、平衡時において、被検液の電導度に正確
に正比例する補償コイルに流れる電流を計測する方法を
用いることによって達成される。個々の構成要素につい
て対象となる共通の特性は個々の増幅器の零点ドリフト
と増幅率の安定性であり、零点ドリフトについては零点
ドリフトの安定度が極めて高い増幅器(例えば0.2p
pm/℃,3ppm/年)を用いる事、又増幅率につい
ては交流電源の周波数において充分な増幅率を持つ増幅
器を用いる事、又増幅率を決める抵抗には安定度の極め
て高いもの(例えば1ppm/℃,25ppm/年)を
用いる事によって達成される。交流電源,誤差信号増幅
器,電流調節器に用いられる増幅器の零点ドリフトの高
安定化については、扱う信号が交流である事を利用し
て、適当な値のコンデンサーを直列に接続する事により
達成される。次に前記小課題[2]の機械的可動部品を
持たない構造である事、及び前記小課題[3]の安価に
製作出来る事、を解決するための手段は前記[1]で述
べた電流調節器に半導体可変電流器を用いる事によって
達成される。前記小課題[4]の電導度に正比例した電
流又は電圧出力が得られる事、を解決するための手段
は、前記[1]の(7)で述べた補償コイルに流れる電
流を計測する方法を用いる事によって達成される。以
上、前記課題を解決するための手段をすべて述べたが、
これらの手段のうち従来の技術で解決可能なものと新規
な技術とに分けながらまとめてみると、前記零位法電導
度測定装置を構成する七つの要素のうち、電流調節器
(4)と信号計測器(7)を除いた個々の要素の精度及
び安定度を高める手段は、従来から常用されている技術
であるから、これらの個々の要素の精度及び安定度は、
技術的にはすでに非常に高いレベルに到達していた、と
考えて良い。従って、ここで問題となるのは、従来の零
位法電導度測定装置が、電流調節器(4),と信号計測
器(7)に極端に精度及び安定度の悪い前記の機械的可
動部品や、目視によつて計測する方法を用いた事にあ
る。これに対して、本発明による零位法電導度測定装置
は、電流調節器(4)に前記した半導体可変電流器を、
信号計測器(7)に補償コイルに流れる電流を計測する
方法を用いて被検液の電導度を測定する様にした事を特
長とする電導度測定方法が最良である事を発見した。
Means for solving the problem [1] that the measurement accuracy and stability of the small problem [1] are extremely high are as follows, as indicated by the characteristics of the measurement principle and the above-described conventional technology. Discard the displacement method with low accuracy and stability,
We decided to use the null method with high accuracy and stability. The accuracy and stability of the zero-level conductivity measuring device are the constituent elements of the measuring device described above: (1) AC power supply, (2) excitation transformer, (3) detection transformer, (4) current regulation. Tableware (5)
Since the accuracy and the stability of the error signal amplifier, (6) the phase comparator, and (7) the signal measuring device are established, it is necessary to increase the accuracy and stability of the conductivity measuring device by using individual components of the measuring device. It is necessary to make the accuracy and stability of the elements extremely high in a well-balanced manner. Hereinafter, the target characteristics for each element and the means for enhancing them will be described in order. (1) The characteristic of interest for an AC power supply is an AC voltage which is an output of the AC power supply, and a means for making the accuracy and stability of the AC voltage extremely high is a reference voltage (for example, a semiconductor reference) having extremely high accuracy and stability. 0.3p for voltage generator
pm / ° C., 150 ppm / year) or by forming an AC power supply by a switching method based on the reference voltage. (2) The characteristics of the exciting transformer are the degree of coupling between the coils, the magnetic permeability of the core, the magnetostriction and the leakage flux rate, and wire winding is performed so that the degree of coupling between the primary, secondary and coil is extremely high. Or forming a liquid path coil, and having a sufficient effective magnetic permeability at the frequency of the AC power supply, having a small magnetostriction, and a permalloy core commonly used in which the core is annular and the leakage flux is reduced. This is achieved by using an amorphous core. (3) The detection transformer is the same as the excitation transformer of (2). Here, the influence of the distortion characteristic of the current regulator and the distortion removal characteristic of the error signal amplifier on the measurement accuracy of the conductivity around the detection transformer will be described in some detail. When all the elements except for the current regulator and the error signal amplifier have high accuracy, and when the distortion factor of the liquid path current that is completely directly proportional to the conductivity of the test liquid is zero, the conductivity is Η (p
pm), the distortion rate of the current regulator is α (ppm), the distortion removal rate of the error signal amplifier is β, (0 ≦ β ≦ 1)
Since η = α × (1−β), from this equation (which can be easily derived from the current balance around the detection transformer),
It can be seen that in order to decrease η, α can be decreased, β can be increased, and β can be increased while decreasing α. In other words, when high accuracy is realized only with the current regulator, the distortion factor of the current regulator is reduced as much as possible, and α →
When high accuracy is realized only by the 0 error signal amplifier, the distortion removal rate of the error signal amplifier is increased, and β → 1, when high accuracy is realized by both the current regulator and the error signal amplifier, By making the distortion factor of the current regulator small, α → 0, and at the same time, increasing the distortion removal rate of the error signal amplifier, β → 1, the accuracy of measuring the conductivity can be increased. Therefore, (4) the characteristics that are the object of the current regulator are the distortion factor and the resolution. As described above, when high accuracy is realized only by the current regulator or in combination with the error signal amplifier, the distortion factor is high. Must be reduced, and the resolution must be as high as possible. The specific means is achieved by using a semiconductor variable current device. What is a semiconductor variable current device?
Among those having a function of continuously changing an AC voltage or an AC current or an electric resistance by an external control signal,
The mechanism for changing the AC voltage or the AC current or the electric resistance has a function of adjusting an AC current formed using a semiconductor, and specific examples of the structure are (a) a multiplier,
It has a function of adjusting an alternating current composed of a divider, (b) a variable amplification type amplifier, (c) a semiconductor variable resistor, etc. For example, a more specific and simple example is shown. In the case where the multiplier is used alone, the relationship Z = X × Y exists between X and Y as inputs and the output Z, and the AC output voltage Z Is proportional to the product of the AC input voltage X and the control voltage Y. If an output of the multiplier is connected to a passive element (coil, capacitor, resistor) having an appropriate value, an AC current flows through this circuit. A semiconductor variable current device having an adjusting function can be configured. A variable transconductance type four quadrant (possible positive and negative polarities for both X and Y inputs) multiplier has a distortion rate of 2000 ppm and a resolution of several ppm. (B) In the case where the variable amplification type amplifier is used alone, the relationship of Z = A × X is established when the input is X and the output is Z, where the amplification factor A of the amplifier is variable. The AC output voltage Z is proportional to the product of the AC input voltage X and the amplification factor A corresponding to the control voltage, and a semiconductor variable current device can be configured in the same manner as the multiplier. Voltage controlled variable amplification type amplifier (generally called VCA)
Has a distortion rate of 40 ppm and a resolution of several ppm. (C) An example in which a semiconductor variable resistor is used alone is an example in which a cadmium sulfide optical variable resistor (hereinafter, referred to as CdS) is used, and a light amount corresponding to a control voltage is emitted using a light emitting element. A method in which one end of CdS whose electric resistance changes according to the light amount is connected to an AC power supply so that an AC current corresponding to the resistance value flows, or the CdS is combined with an amplifier to obtain a variable amplification factor of (b) There are a method of configuring a type amplifier, a method of directly adjusting an alternating current by the same combination, and the like. All of them can constitute a semiconductor variable current device having a function of adjusting an alternating current. Cd
S has a distortion rate of 20 ppm and a resolution of several ppm. In addition to the method configured to be used alone as in the above specific examples, a method configured by using a plurality or a combination thereof is also included. (5) The target characteristics of the error signal amplifier are the distortion removal rate and the amplification rate (resolution). As described above, when high accuracy is realized only with the error signal amplifier or in combination with the current regulator. Needs to increase the distortion removal rate (β → 1). This can be achieved by providing a filter or a waveform processor for removing waves other than the waveform of the AC power supply in the error signal amplifier. Since the gain determines the resolution, it needs to be increased, and can be achieved by using an amplifier having a high S / N ratio. (6) The target characteristic of the phase comparator is the controllability, and in order to enhance the controllability, use a method that can obtain a control output that is as linear as possible with respect to the phase relationship between the error signal and the reference signal. Is achieved by: (7) The characteristic of interest for the signal measuring instrument is the method of measuring what is measured as a signal corresponding to the electrical conductivity. The characteristic of the wound variable resistor at the time of equilibrium as shown in the example of the conventional null method is shown. This is achieved not by a method of visually measuring the position and the scale of the movable contact piece but by a method of measuring a current flowing through a compensation coil that is directly proportional to the electric conductivity of the test solution at the time of equilibrium. A common characteristic of interest for each component is the zero drift and the stability of the amplification factor of the individual amplifier. For the zero drift, an amplifier having extremely high zero drift stability (for example, 0.2 p
pm / ° C., 3 ppm / year), use an amplifier having a sufficient amplification factor at the frequency of the AC power supply, and use an extremely stable resistor (for example, 1 ppm) for determining the amplification factor. / ° C, 25 ppm / year). High stabilization of the zero-point drift of the amplifiers used in AC power supplies, error signal amplifiers, and current regulators can be achieved by connecting capacitors of appropriate values in series, utilizing the fact that the signals to be handled are AC. You. Next, means for solving the above-mentioned problem [2], ie, the structure having no mechanical movable parts, and the above-mentioned problem [3], which can be manufactured at a low cost, include the current described in the above [1]. This is achieved by using a semiconductor variable current device for the regulator. Means for solving the problem [4] that a current or voltage output directly proportional to the electric conductivity is obtained is a method of measuring the current flowing through the compensation coil described in (7) of [1]. Achieved by using As described above, all means for solving the above problems have been described.
Among these means, those which can be solved by the conventional technology and those which are new can be summarized and the current regulator (4) and the current regulator (4) among the seven elements constituting the zero-point conductivity measuring device can be summarized. Since the means for increasing the accuracy and stability of the individual elements except for the signal measuring instrument (7) is a conventionally used technique, the accuracy and stability of these individual elements are
Technically, it can be considered that it has already reached a very high level. Therefore, the problem here is that the conventional zero-conductivity conductivity measuring device requires the current regulator (4) and the signal measuring device (7) to have extremely poor accuracy and stability in the above-mentioned mechanical moving parts. And a method of measuring visually. On the other hand, the zero-point conductivity measuring apparatus according to the present invention includes the above-mentioned semiconductor variable current device in the current regulator (4).
It has been found that the electric conductivity measuring method is characterized in that the electric conductivity of the test liquid is measured using a method of measuring the current flowing through the compensation coil in the signal measuring instrument (7).

【005】[0056]

【作用】電流調節器(4)に半導体可変電流器を用いた
構造は、次の様な作用をする。 (a)半導体可変電流器は、それを構成する要素の特性
及びその構成から、前記課題を解決するための手段(以
下手段と呼ぶ)の[1]の(4)で述べた様に分解能が
非常に高く、歪率が非常に小さいと言う特徴を持ってい
る。分解能が非常に高い事は又、前記手段の[1]の
(3)の次に述べた、電流調節器(4)の歪率と誤差信
号増幅器(5)の歪除去率と電導度測定精度の相互の関
係から判る様に、歪率が非常に小さい事は、電導度測定
装置の測定精度を極めて高くする様に作用する。 (b)半導体可変電流器は、動作速度の遅い(例えば1
秒)機械的可動部品を全く含まず、信号の伝達は光又は
電流によって行なわれるから、制御信号に対する応答速
度が非常に早い(例えば0.001秒)ので、自動平衡
機構の制御性を(応答速度)格段に上昇させる作用があ
る。 (c)半導体可変電流器は高価な機械的可動部品を全く
含まないから、安価に製作出来る作用がある。信号計測
器(7)に補償コイルに流れる電流を計測する方法を用
いると、被検液の電導度に正確に正比例した電気信号を
提供するため、 (d)電導度測定装置の測定精度を極めて高くする様に
作用する。 (e)電導度に正比例した電流又は電圧出力が即座に得
られる様に作用する。
The structure using the semiconductor variable current device for the current regulator (4) operates as follows. (A) The semiconductor variable current device has a resolution as described in (4) of [1] of the means for solving the above-mentioned problem (hereinafter referred to as means), based on the characteristics of the components constituting the current variable device and the configuration thereof. It has the characteristics of being very high and having a very small distortion rate. The very high resolution also means that the distortion factor of the current regulator (4), the distortion rejection factor of the error signal amplifier (5), and the conductivity measurement accuracy described after (3) in [1] of the above means. As can be seen from the relationship between the two, the fact that the distortion rate is very small acts to make the measurement accuracy of the conductivity measuring device extremely high. (B) The semiconductor variable current device has a low operation speed (for example, 1
Second) Since there is no mechanical moving part and the signal is transmitted by light or current, the response speed to the control signal is very fast (for example, 0.001 second). Speed) has the effect of significantly increasing. (C) Since the semiconductor variable current device does not include any expensive mechanical moving parts, it has an effect that it can be manufactured at low cost. When a method of measuring the current flowing through the compensation coil is used in the signal measuring device (7), an electric signal that is accurately proportional to the electric conductivity of the test liquid is provided. (D) The measurement accuracy of the electric conductivity measuring device is extremely high. It works to raise it. (E) It acts so that a current or voltage output directly proportional to the conductivity is obtained immediately.

【0006】[0006]

【実施例】以下図面を参照しながら本発明を詳細に説明
する。図1は本発明の実施例を示す原理説明図であり、
一次側のコイルLに振幅の安定な交流電源(1)が接
続された励磁変圧器(2)の二次コイルLと、二次側
の検出コイルLに誤差信号増幅器(5)が接続された
検出変圧器(3)の一次コイルLを共有した一巻の形
成された絶縁路に被検液を満たした液路コイルLと、
前記誤差信号増幅器に接続されると共に、誤差信号と交
流電源による基準信号の位相関係に基づいた制御出力が
得られる位相比較器(6)と前記検出変圧器には、前記
液路コイルを流れる電流によって発生する磁束を打ち消
す向きに設けた補償コイルLと、補償コイル及び前記
位相比較器及び交流電源に接続されると共に、前記半導
体可変電流器を用いた電流調節器(4)と補償コイルL
に流れる電流を計測する信号計測器(7)から成り、
これらの要素のうち、励磁変圧器(2)と液路コイルL
と検出変圧器(3)は図示されない容器に収納したも
のを検出部(8)として、例えば弗酸等の水溶液中に浸
漬させる。残りの要素は、図示されない箱に収納したも
のを計測部(9)として設置する。次に上記の様に構成
された電導度測定装置の動作原理を説明する。交流電源
(1)の出力電圧をe、被検液の電導度をK(液路抵
抗rの逆数に容器定数γを掛けたもの)コイルL
巻き数をnとすると、液路コイルLに流れる電流i
は、 i=(e/(γ×n))×K −−
(I) となり被検液の電導度Kに正確に正比例する。
一方検出変圧器における電流バランスより、液路コイル
に流れる電流を、i補償コイルLの巻き数をn
これを流れる電流をi、検出コイルLの巻数をn
これを流れる不平衡電流をiとすれば、 n×i=i−n×i −−(II) が成立
する。平衡状態においては、不平衡電流iは零となる
事から(II)式の左辺は零と成り n×i=i
−− (III) が成立しこれに(I)式を代入し
て、iについて解くと i=(e/(γ×n×
))×K −−(IV)となり、補償コイルL
流れる電流iは、被検液の電導度Kに正確に正比例し
ているので、補償コイルを流れる電流iを信号計測器
(7)で計測すれば、被検液の電導度を正確に求める事
が出来る。逆に被検液の電導度Kが急変して、不平衡状
態になった場合には、(II)式をiについて解いた
=(i−n×i)/n −−(V)なる
不平衡電流iが検出コイルLに流れるので、この信
号を誤差信号増幅器(5)で増幅して得られる誤差信号
が交流電源(1)から得られる基準信号に対して正相か
又は逆相かで増加又は減少する制御出力が得られる位相
比較器(6)と、この制御出力によって前期半導体可変
抵抗器を用いた電流調節器(4)を制御し、補償コイル
に流れる電流iを調節する。この一巡する工程は
不平衡電流iが零になるまで素早く連続的に繰りかえ
される。このようにして被検液の電導度に対応する新た
な平衡点に素早く到達するから(これを自動平衡機構と
呼ぶ)電導度の変化に対しても自動的に早く追従する。
次に電流調節器(4)を二つの可変電流器(半導体可変
電流器は単独又は複数又は組み合わせ、を含めた総称で
あるから一つの交流電流を調節する機能を有するものを
以下可変電流器と呼ぶ)で構成し、一方の可変電流器は
補償コイルLに流れる電流iのうち、実効電流に対
して自動平衡する様に、又他方の可変電流器は無効電流
に対して自動平衡する様にして、二重の自動平衡機構を
用いて構成した(以下二重平衡法と呼ぶ)電導度測定装
置、及び電流調節器(4)を一つの可変電流器で構成
し、補償コイルLに流れる電流iのうち実効電流に
対して自動平衡する様にした(以下単独平衡法と呼ぶ)
電導度測定装置の、性能試験を実施した例を
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a principle explanatory view showing an embodiment of the present invention.
A secondary coil L 2 of the coil L 1 of the primary-side amplitude stable AC power source (1) is connected to the excitation transformer (2), the secondary side of the detection coil L 3 to the error signal amplifier (5) a liquid path coil L 2 satisfying the test liquid in an insulating passage formed between the first turn covalently primary coil L 2 of the connected detector transformer (3),
A phase comparator (6), which is connected to the error signal amplifier and obtains a control output based on a phase relationship between the error signal and a reference signal from an AC power supply, and a current flowing through the fluid path coil is provided to the detection transformer. a compensation coil L 4 provided in the direction of canceling the magnetic flux generated by, and is connected to the compensating coil and the phase comparator and an AC power source, the semiconductor variable current coils and compensation current regulator (4) with L
4. A signal measuring device (7) for measuring a current flowing through 4 ,
Among these elements, the excitation transformer (2) and the liquid path coil L
The detection transformer ( 2) and the detection transformer (3) housed in a container (not shown) are immersed in an aqueous solution of, for example, hydrofluoric acid as the detection unit (8). The remaining elements are housed in a box (not shown) and installed as a measuring unit (9). Next, the operation principle of the electric conductivity measuring device configured as described above will be described. Assuming that the output voltage of the AC power supply (1) is e 1 , the conductivity of the test liquid is K (the reciprocal of the liquid path resistance r 0 is multiplied by the container constant γ), and the number of turns of the coil L 1 is n 1 current flowing through the road coil L 2 i
0 is i 0 = (e 1 / (γ × n 1 )) × K −−
(I) and is directly proportional to the conductivity K of the test solution.
On the other hand than the current balance in the detection transformer, the current flowing through the liquid passage coil L 2, the number of turns of the i 0 compensation coil L 4 n
4 The current flowing therethrough is i 4 , and the number of turns of the detection coil L 3 is n
3 Assuming that the unbalanced current flowing through this is i 3 , the following holds: n 3 × i 3 = i 0 −n 4 × i 4 − (II) In equilibrium, the left unbalance current i 3 is the fact that the zero of formula (II) is made zero n 4 × i 4 = i 0
- (III) by substituting enacted this equation (I) is, and solving for i 4 i 4 = (e 1 / (γ × n 1 ×
n 4)) × K - ( IV) , and the current i 4 flowing through the compensation coil L 4 are, since the exact directly proportional to the conductivity K of the test solution, a signal measuring the current i 4 flowing through the compensation coil If the measurement is performed by the device (7), the conductivity of the test liquid can be accurately obtained. Conversely suddenly changes conductivity K of the test solution, if it becomes unbalanced state, i 3 = (i 0 -n 4 × i 4) / n 3 that solving for i 3 the formula (II) - (V) becomes unbalanced current i 3 is flows through the detection coil L 3, with respect to a reference signal an error signal obtained by amplifying is obtained from an AC power source (1) in the error signal amplifier the signal (5) A phase comparator (6) that provides a control output that increases or decreases in positive or negative phase, and a current regulator (4) using a semiconductor variable resistor is controlled by the control output to generate a compensation coil. adjusting the current i 4 flowing through the L 4. This round to step is repeated in quick succession to the unbalanced current i 3 becomes zero. In this way, a new equilibrium point corresponding to the conductivity of the test solution is quickly reached (this is called an automatic equilibrium mechanism), and the change in conductivity is automatically followed quickly.
Next, the current regulator (4) is a generic name including two variable current devices (semiconductor variable current devices are singly or plurally or in combination, and therefore, those having a function of adjusting one AC current are hereinafter referred to as variable current devices. constituted by called), it is one of the variable current circuit of the current i 4 flowing through the compensation coil L 4, so as to automatically balanced with respect to the effective current, also the other variable current devices is self-balancing with respect to the reactive current In this way, the electric conductivity measuring device and the current controller (4) constituted by using the double automatic balancing mechanism (hereinafter referred to as the double balancing method) are constituted by one variable current device, and the compensation coil L 4 was set to be automatically balanced with respect to the effective current of the current i 4 flowing through (hereinafter referred to as single equilibrium method)
An example of conducting a performance test of a conductivity measurement device

【実施例1】〜Embodiment 1 ~

【実施例5】に、又上記測定装置を用いて濃度測定を実
施した例を
Fifth Embodiment An example in which a concentration measurement was carried out using the above-described measuring device is described below.

【実施例6】に示す。Embodiment 6 is shown.

【実施例1】二重平衡法において、実効電流及び無効電
流を調節する可変電流器に可変増幅率型増幅器の一種で
ある、前記したVCAを用いた場合、±10ppmの直
線性5ppmの分解能,3ppm/℃の安定度が得られ
た。
Embodiment 1 In the double balance method, when the above-described VCA, which is a kind of a variable gain type amplifier, is used as a variable current device for adjusting an effective current and a reactive current, a linearity of ± 10 ppm and a resolution of 5 ppm, A stability of 3 ppm / ° C. was obtained.

【実施例2】二重平衡法において、実効電流を調節する
可変電流器に前記したVCAを、無効電流を調節する可
変電流器に半導体可変抵抗器の一種である、前記したC
dSを用いた場合、±20ppmの直線性,5ppmの
分解能,3ppm/℃の安定度が得られた。
Embodiment 2 In the double balance method, the above-described VCA is used as a variable current device for adjusting an effective current, and the above-described C is used as a type of semiconductor variable resistor as a variable current device for adjusting a reactive current.
When dS was used, linearity of ± 20 ppm, resolution of 5 ppm, and stability of 3 ppm / ° C. were obtained.

【実施例3】二重平衡法において、実効電流及び無効電
流を調節する可変電流器に前記したCdSを用いた場
合、±20ppmの直線性,5ppmの分解能,3pp
m/℃の安定度が得られた。
Embodiment 3 In the double balance method, when the above-mentioned CdS is used as a variable current device for adjusting the effective current and the reactive current, the linearity of ± 20 ppm, the resolution of 5 ppm, and the 3 pp
A stability of m / ° C. was obtained.

【実施例4】単独平衡法において、実効電流を調節する
可変電流器に前記したVCAを用いた場合、±150p
pmの直線性,20ppmの分解能,20ppm/℃の
安定度が得られた。
Embodiment 4 In the single balance method, when the above-mentioned VCA is used as a variable current device for adjusting the effective current, ± 150 p
A linearity of pm, a resolution of 20 ppm and a stability of 20 ppm / ° C. were obtained.

【実施例5】単独平衡法において、実効電流を調節する
可変電流器に前記したCdSを用いた場合、±150p
pmの直線性,20ppmの分解能,20ppm/℃の
安定度が得られた。
Embodiment 5 In the single balance method, when the above-described CdS is used for a variable current device for adjusting an effective current, ± 150 p
A linearity of pm, a resolution of 20 ppm and a stability of 20 ppm / ° C. were obtained.

【実施例6】単独平衡法を用いて、55%弗酸水溶液の
純分の濃度測定を約1年間連続的に実施した結果、濃度
計測値と湿式分析値(1N・水酸化ナトリウム溶液を用
いて滴定法で求める)の差は、すべて±0.1%以下の
精度で一致した。二重平衡法を用いた場合は、測定器の
精度が湿式分析の精度を越えているので、あえて表現す
るならば湿式分析の精度以下である。測定器の応答速度
は、二重平衡法、単独平衡法、共に0.01秒以下であ
った。以上好適な実施例により説明したが、本発明はこ
れらに限定されるものではなく、種々の応用が可能であ
る。位相比較器(6)における位相比較法については常
用される同期整流法以外に、スイッチングにより入力波
形の一部を抽出して比較する方法、入力を方形波に変換
して論理処理する方法、アナログ掛算器による方法、等
も使用することが出来る。又位相比較信号から制御出力
を得る方法には比例、積分、微分、又はこれらを組み合
わせて構成した演算器(ソフトで構成されたものをふく
む)、等を用いる事が出来る。電流調節器(4)の信号
源は実施例が示した交流電源(1)以外に交流電源から
の信号を処理したもの、励磁変圧器に別巻したコイル、
等を用いても良い。用途については各種溶液の電導度の
測定は勿論のこと、濃度の測定も出来る。
Example 6 The concentration of a 55% hydrofluoric acid aqueous solution was measured continuously for about one year by using the single equilibrium method. As a result, the measured concentration and the wet analysis (using a 1N sodium hydroxide solution) were used. All were determined by titration method), all matched with an accuracy of ± 0.1% or less. When the double equilibrium method is used, the accuracy of the measuring instrument exceeds the accuracy of the wet analysis, so if it is intentionally expressed, it is lower than the accuracy of the wet analysis. The response speed of the measuring instrument was 0.01 seconds or less in both the double equilibrium method and the single equilibrium method. Although the preferred embodiments have been described above, the present invention is not limited to these, and various applications are possible. As for the phase comparison method in the phase comparator (6), in addition to the commonly used synchronous rectification method, a method of extracting and comparing a part of an input waveform by switching, a method of converting an input into a square wave and performing logic processing, an analog method A method using a multiplier can also be used. As a method of obtaining a control output from the phase comparison signal, a proportional unit, an integral unit, a derivative unit, or an arithmetic unit (including a unit configured by software) configured by combining these can be used. The signal source of the current regulator (4) is a signal source which processes a signal from an AC power source in addition to the AC power source (1) shown in the embodiment, a coil separately wound around an exciting transformer,
Etc. may be used. For use, it is possible to measure not only the conductivity of various solutions but also the concentration.

【0007】[0007]

【発明の効果】【The invention's effect】

[A] 測定精度及び安定度が極めて高くなった。測定
する環境の条件は、常用される屋外設置を考慮して、2
3℃±30℃とすると、従来の技術で述べた様に、従来
の偏位法が約±10000ppm (±1%),従来の
零位法が約±30000ppm(±3%)であったのに
対し、実施例で述べた本発明の二重平衡法は、3ppm
/℃×(±30℃)=±90ppm単独平衡法では、2
0ppm/℃×(±30℃)=±600ppm、の測定
精度及び安定度が得られたので、従来に比し333倍〜
17倍高くなった。 [B] 電導度と測定出力の直線性が極めて高くなっ
た。従来の技術で述べた様に、従来の偏位法が約±10
000ppm、従来の零位法が約±30000ppmで
あったのに対して、実施例で述べた本発明の二重平衡法
では±10〜±20ppm,単独平衡法では±150p
pmの直線性が得られたので従来に比し3000倍〜6
7倍高くなった。 [C] 電導度の応答速度が極めて速くなった。作用の
(b)及び実施例6で述べた様に、従来の零位法が約1
秒であったのに対して、本発明では約0.01秒の応答
速度が得られたので、従来の零位法に比し100倍速く
なった。 [D] 自動平衡機構の個体化(簡素化)ができた。安
価な半導体可変電流器を用いた本発明は、従来の零位法
の様に高価な機械的可動部品を全く用いないから完全に
個体化出来るため構造が非常に簡素になり、90%小型
に、又30%安価に製作することができた。 [E] 電導度に正確に正比例した電流又は電圧出力が
得られる様になった。 [F] 常用される従来の偏位法測定装置に補償コイル
と誤差信号増幅器、位相比較器、電流調節器を新たに追
加すれば格段に高性能な本発明による電導度測定装置を
製作出来るので、その移行性が良い。
[A] The measurement accuracy and stability were extremely high. The environmental conditions to be measured are 2
Assuming that the temperature is 3 ° C. ± 30 ° C., as described in the related art, the conventional displacement method is about ± 10000 ppm (± 1%) and the conventional null method is about ± 30000 ppm (± 3%). On the other hand, the double equilibrium method of the present invention described in Examples
/ ° C × (± 30 ° C.) = ± 90 ppm
The measurement accuracy and stability of 0 ppm / ° C. × (± 30 ° C.) = ± 600 ppm were obtained.
17 times higher. [B] The linearity between the conductivity and the measured output was extremely high. As described in the prior art, the conventional displacement method is about ± 10
000 ppm and about ± 30000 ppm in the conventional null method, ± 10 ± 20 ppm in the double equilibrium method of the present invention described in Examples, and ± 150 p in the single equilibrium method.
pm linearity was obtained, so it was 3000 times to 6
7 times higher. [C] The response speed of the conductivity was extremely high. As described in the operation (b) and the sixth embodiment, the conventional null method is about 1 unit.
In the present invention, the response speed was about 0.01 second, which was 100 times faster than the conventional null method. [D] Individualization (simplification) of the automatic balance mechanism was completed. The present invention using an inexpensive semiconductor variable current device does not use any expensive mechanical moving parts as in the conventional null method, and can be completely individualized. And 30% less expensive. [E] A current or voltage output that is exactly directly proportional to the conductivity is obtained. [F] If a compensating coil, an error signal amplifier, a phase comparator, and a current regulator are newly added to the conventional displacement measuring apparatus, a significantly higher-performance conductivity measuring apparatus according to the present invention can be manufactured. , Its migration is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す原理説明図である。FIG. 1 is a principle explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1)は交流電源 (2)は励磁変圧器 (3)は検出変圧器 (4)は電流調節器 (5)は誤差信号増幅器 (6)は位相比較器 (7)は信号計測器 (8)は検出部 (9)は計測部 (1) AC power supply (2) Excitation transformer (3) Detection transformer (4) Current regulator (5) Error signal amplifier (6) Phase comparator (7) Signal measuring instrument (8) ) Is the detection unit (9) is the measurement unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一次側に交流電源が接続された励磁変圧器
と、二次側に交流波形以外の歪波を除去する誤差信号増
幅器が接続された検出変圧器と、前記励磁変圧器の二次
側及び前記検出変圧器の一次側に接続された一巻の絶縁
路に被検液を満たした液路コイルと、前記検出変圧器に
設けられた補償コイルとを用いた溶液の電導度測定方法
において、前記誤差信号増幅器の出力信号と前記交流電
源からの信号との位相関係に基づいた制御信号を出力
し、その制御信号に基づいて前記補償コイルに流れる電
流を半導体可変電流器によって調節し、前記補償コイル
に流れる電流を計測することによって溶液の電導度を測
定する事を特徴とする溶液の電導度測定方法。
An exciting transformer having an AC power supply connected to a primary side, a detecting transformer having an error signal amplifier for removing a distortion wave other than an AC waveform connected to a secondary side, and an exciting transformer connected to the exciting transformer. Conductivity measurement of a solution using a liquid path coil filled with a test liquid in a one-turn insulating path connected to the primary side and the primary side of the detection transformer, and a compensation coil provided in the detection transformer Outputting a control signal based on a phase relationship between an output signal of the error signal amplifier and a signal from the AC power supply, and adjusting a current flowing through the compensation coil by a semiconductor variable current device based on the control signal. Measuring the electric current flowing through the compensating coil to measure the electric conductivity of the solution.
【請求項2】一次側に交流電源が接続された励磁変圧器
と、二次側に交流波形以外の歪波を除去する誤差信号増
幅器が接続された検出変圧器と、前記励磁変圧器の二次
側及び前記検出変圧器の一次側に接続された一巻の絶縁
路に被検液を満たした液路コイルと、前記検出変圧器に
設けられた補償コイルと、前記誤差信号増幅器の出力信
号と前記交流電源からの信号との位相関係に基づいた制
御出力が得られる位相比較器と、前記制御出力に基づい
て前記補償コイルに流れる電流を調節する半導体可変電
流器を用いた電流調節器と、前記補償コイルに流れる電
流を計測する信号計測器とから成る事を特徴とする溶液
の電導度測定装置。
2. An excitation transformer having an AC power supply connected to a primary side, a detection transformer having an error signal amplifier for removing a distorted wave other than an AC waveform connected to a secondary side, and an excitation transformer connected to the excitation transformer. A liquid path coil filled with a test liquid in a one-turn insulating path connected to the primary side and the primary side of the detection transformer, a compensation coil provided in the detection transformer, and an output signal of the error signal amplifier. And a phase comparator that obtains a control output based on the phase relationship between the signal from the AC power supply and a current regulator using a semiconductor variable current device that adjusts a current flowing through the compensation coil based on the control output. And a signal measuring device for measuring a current flowing through the compensating coil.
JP3296751A 1991-08-26 1991-08-26 Conductivity measuring method and its device Expired - Lifetime JP2631786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296751A JP2631786B2 (en) 1991-08-26 1991-08-26 Conductivity measuring method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296751A JP2631786B2 (en) 1991-08-26 1991-08-26 Conductivity measuring method and its device

Publications (2)

Publication Number Publication Date
JPH0552814A JPH0552814A (en) 1993-03-02
JP2631786B2 true JP2631786B2 (en) 1997-07-16

Family

ID=17837646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296751A Expired - Lifetime JP2631786B2 (en) 1991-08-26 1991-08-26 Conductivity measuring method and its device

Country Status (1)

Country Link
JP (1) JP2631786B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206284A (en) * 1988-02-12 1989-08-18 Nippon Buchiru Kk Metal detector
JPH0311741U (en) * 1989-06-21 1991-02-06

Also Published As

Publication number Publication date
JPH0552814A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
US4639665A (en) Sensing system for measuring a parameter
JP2002318250A (en) Current detector and overload current protective device using the same
US20200249258A1 (en) Sensor apparatus for measuring direct and alternating currents
US10345419B2 (en) On-line calibration and compensation of a current transformer
US4232265A (en) Device for measuring intensity of magnetic or electromagnetic fields using strain gauges mounted on ferromagnetic plates
US7145321B2 (en) Current sensor with magnetic toroid
WO2021112779A1 (en) A metal detector having a transmitter with active magnetic compensation
EP0601817B1 (en) Power calculation circuit
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP2631786B2 (en) Conductivity measuring method and its device
CN116930589A (en) AC/DC multi-air gap magnetic resistance current sensor and current measuring method
JPH02186284A (en) Magnetic flux sensor used in magnetic field for detecting flux density
JPWO2013105451A1 (en) Current sensor
JP2570836B2 (en) Non-contact current detector
JPS6230562B2 (en)
JP2020041945A (en) Magnetic field detection sensor
CN112462825B (en) Low-power-consumption high-stability laser temperature closed-loop control system and method
SU662826A1 (en) Force measuring device
JP2020003374A (en) Current detection device
JP6716163B2 (en) Servo type vibration detector
CN116718821A (en) Hall current sensor of full-integrated closed loop
SU1615816A1 (en) Sine voltage instrument converter
SU834542A1 (en) Multiturn contactless potentiometer
JPS6139948Y2 (en)
JPH11257908A (en) Electromagnetic induction type sensor