JP2631312B2 - Superplastic forming method - Google Patents

Superplastic forming method

Info

Publication number
JP2631312B2
JP2631312B2 JP63275163A JP27516388A JP2631312B2 JP 2631312 B2 JP2631312 B2 JP 2631312B2 JP 63275163 A JP63275163 A JP 63275163A JP 27516388 A JP27516388 A JP 27516388A JP 2631312 B2 JP2631312 B2 JP 2631312B2
Authority
JP
Japan
Prior art keywords
strain rate
processing
superplastic
forging
sensitivity index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63275163A
Other languages
Japanese (ja)
Other versions
JPH02121741A (en
Inventor
豊 若林
健三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63275163A priority Critical patent/JP2631312B2/en
Publication of JPH02121741A publication Critical patent/JPH02121741A/en
Application granted granted Critical
Publication of JP2631312B2 publication Critical patent/JP2631312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超塑性成形方法に関する。Description: TECHNICAL FIELD The present invention relates to a superplastic forming method.

〔発明の概要〕[Summary of the Invention]

本発明は、超塑性成形において、加工に多くの時間を
要するという問題点を、歪速度を変化させることによっ
て、加工時間を短縮しようとしたものである。
The present invention aims to shorten the processing time by changing the strain rate in order to solve the problem that much time is required for processing in superplastic forming.

〔従来の技術〕[Conventional technology]

従来、超塑性成形は超塑性現象が発現する歪速度感受
性指数が0.3以上の歪速度の非常に遅い領域で行ってい
た。一般的には、歪速度10-2S-1以下である。
Conventionally, superplastic forming has been performed in a region where the strain rate sensitivity index at which the superplastic phenomenon appears is 0.3 or more and the strain rate is very low. Generally, the strain rate is 10 −2 S −1 or less.

〔発明が解決しようとする課題〕 従来の技術においては、超塑性が発現する歪速度は、
非常に遅い。一般的には10-2S-1以下の歪速度であり、
加工能率が悪い。加工能率を上げるために、歪速度を大
きくすると、応力が高いうえ伸びが急激に低下するため
成形が難しい。また、歪速度が大きいほど応力が高いた
めスプリングバックが大きく成形品の精度が出にくいと
いう欠点もある。
[Problems to be solved by the invention] In the conventional technology, the strain rate at which superplasticity is expressed is
Very slow. Generally, the strain rate is 10 -2 S -1 or less,
Poor processing efficiency. If the strain rate is increased to increase the processing efficiency, it is difficult to mold because the stress is high and the elongation is sharply reduced. Also, there is a disadvantage that the higher the strain rate is, the higher the stress is, and the larger the springback is, so that it is difficult to obtain the accuracy of the molded product.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、圧縮成形の開始から途中
までを、歪速度感受性指数を0.3以上の高歪速度で荒加
工を行い、成形の最終段階を歪速度感受性指数を0.3以
上の低歪速度で仕上げ加工を行い、加工時間を短縮しな
がらも加工応力を低く、複雑形状に加工精度を高く圧縮
成形することを特徴とする。
In order to solve the above problems, rough processing is performed at a high strain rate with a strain rate sensitivity index of 0.3 or more from the start to the middle of the compression molding, and the final stage of molding is a low strain rate with a strain rate sensitivity index of 0.3 or more. The process is characterized in that the compression processing is performed with a low processing stress while shortening the processing time and with high processing accuracy in a complicated shape.

〔作用〕[Action]

成形の開始から成形の途中において歪速度を歪速度感
受性指数を0.3以下の高速にして、荒加工を行い、最終
形状に近い形状にする。最終的に歪速度を、歪速度感受
性指数0.3以上の低速度にし超塑性を利用して仕上げ加
工する。
From the start of forming to the middle of forming, the strain rate is increased to a strain rate sensitivity index of 0.3 or less, roughing is performed, and a shape close to the final shape is obtained. Finally, the strain rate is reduced to a strain rate sensitivity index of 0.3 or more, and finish processing is performed using superplasticity.

〔実施例〕〔Example〕

次に本発明の実施例について、図面を参照して説明す
る。第1図は、本発明の加工方法の一例を示す図であ
る。横軸は加工変位を表し右方ほど加工変位が大きく、
縦軸は加工速度を表し上方ほど加工速度が大きい。1は
荒加工域であり加工速度は、歪速度感受性指数0.3以下
の高歪速度で大きく、2は仕上げ加工域であり加工速度
は、歪速度感受性指数0.3以上の低歪速度で小さく、超
塑性が発現する領域である。本図のような加工をするこ
とにより超塑性の特徴である大きな伸び、低応力、転写
性、拡散接合性という利点をいかしながら成形時間を大
幅に短縮できる。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of the processing method of the present invention. The horizontal axis represents the machining displacement, and the machining displacement is greater toward the right,
The vertical axis represents the processing speed, and the processing speed is higher as it goes upward. 1 is a rough working area, the processing speed is large at a high strain rate with a strain rate sensitivity index of 0.3 or less; Is a region where is expressed. By processing as shown in this figure, the molding time can be greatly reduced while taking advantage of the advantages of superplasticity such as large elongation, low stress, transferability and diffusion bonding.

第2図は、鍛造金型の断面図である。3は上部金型、
4は下部金型、5は被加工材である。第1の方法で上部
金型3を矢印の方向に圧下させて被加工材5を鍛造す
る。
FIG. 2 is a sectional view of a forging die. 3 is the upper mold,
Reference numeral 4 denotes a lower mold, and reference numeral 5 denotes a workpiece. In the first method, the workpiece 5 is forged by lowering the upper mold 3 in the direction of the arrow.

第3図は歪速度と応力の関係を示す図である。使用し
た材料は、α/β型チタン合金であり、その成分を表1
に示す。本図のそれぞれの曲線は、β変態温度以下の場
合であり、超塑性材料特有のS字曲線を示す。それぞれ
の曲線において白抜き丸と黒丸との間が歪速度感受性指
数0.3以上の超塑性が発現する領域である。第1図に示
した加工開始からの高歪速度の範囲は、本図の黒丸以上
の歪速度の加工であり、加工の終盤の低歪速度の範囲
は、本図の白抜き丸と黒丸の間の歪速度の加工である。
FIG. 3 is a diagram showing the relationship between strain rate and stress. The material used was an α / β type titanium alloy, the components of which are shown in Table 1.
Shown in Each curve in the figure is a case where the temperature is equal to or lower than the β transformation temperature, and shows an S-shaped curve peculiar to a superplastic material. In each curve, a region between a white circle and a black circle is a region where superplasticity with a strain rate sensitivity index of 0.3 or more is developed. The range of the high strain rate from the start of processing shown in FIG. 1 is processing at a strain rate higher than the black circle in this figure, and the range of the low strain rate at the end of processing is the range of the white circle and black circle in this figure. This is the machining of the strain rate between the two.

第4は、歪速度と応力の関係を示す図である。使用し
た材料は、ニッケル合金であり、その化学成分を表2に
示す。本図のそれぞれの曲線は、α再固溶温度以下であ
る。第3図と同様の結果が得られた。
Fourth, a diagram showing the relationship between strain rate and stress. The material used was a nickel alloy, the chemical composition of which is shown in Table 2. Each curve in the figure is below the α-resolution temperature. The same result as in FIG. 3 was obtained.

第5図は、鍛造結果を示す図である。第2図の装置で
表1に示すα/β型チタン合金を鍛造した場合であり、
横軸には上部金型の変位量を、縦軸には鍛造荷重を示
す。○印は超塑性が発現する歪速度感受性指数が0.3以
上の低歪速度で鍛造した場合であり、□印は超塑性が発
現しない歪速度感受性指数が0.3以下の高歪速度で鍛造
した場合であり、△印は鍛造の開始から加工の途中まで
を□印の歪速度で、その後○印の歪速度で鍛造した場合
である。鍛造荷重歪速度が大きい方が高い。したがっ
て、□印の鍛造応力の方が○印の鍛造荷重より大きくな
る。しかし、□印の高歪速度から○印の低歪速度に変換
しても、それ以降の鍛造荷重は加工の最初から○印の低
歪速度で鍛造した応力と等しい。破線で示すように、歪
速度の変換時期はどの変位で行っても最終的な鍛造荷重
は等しい。したがって、本発明の鍛造方法を用いること
によって、超塑性の特徴である低応力、大きな伸び、転
写性、拡散接合性をいかしながら大幅な成形時間の短縮
を図ることができる。また、低応力の加工のためにスプ
リングバックによる形状変化も小さくでき、高精度な成
形品の加工が可能となる。
FIG. 5 is a view showing a forging result. 2 shows a case where the α / β type titanium alloy shown in Table 1 was forged by the apparatus of FIG.
The horizontal axis shows the displacement of the upper mold, and the vertical axis shows the forging load. ○ indicates the case where forging was performed at a low strain rate where the strain rate sensitivity index in which superplasticity appears is 0.3 or more, and □ indicates the case where forging was performed at a high strain rate in which the strain rate sensitivity index where superplasticity does not appear is 0.3 or less. In the figure, the symbol Δ indicates the case where the forging was performed at the strain rate indicated by □ from the start of forging to the middle of the processing, and thereafter, the strain rate was indicated by the mark ○. The higher the forging load strain rate, the higher. Therefore, the forging stress indicated by □ is larger than the forging load indicated by ○. However, even if the high strain rate indicated by □ is converted to the low strain rate indicated by ○, the forging load thereafter is equal to the stress forged at the low strain rate indicated by か ら from the beginning of processing. As shown by the broken line, the final forging load is the same regardless of the displacement of the strain rate conversion time. Therefore, by using the forging method of the present invention, it is possible to greatly reduce the molding time while taking advantage of low stress, large elongation, transferability, and diffusion bonding characteristics, which are features of superplasticity. In addition, a change in shape due to springback can be reduced due to low stress processing, and high precision processing of a molded product becomes possible.

第6図は、本発明の加工方法の一例を示す図であり、
段階的に加工速度を変化させた場合である。第7図は、
本発明の加工方法の一例を示す図であり、連続的に加工
速度を変化させた場合である。第6図も第7図も圧縮加
工において最終的に歪速度を超塑性が発現する歪速度感
受性が0.3以上の領域にすれば、圧縮加工の開始から歪
速度を超塑性が発現する領域で加工した場合と同様な結
果が得られた。
FIG. 6 is a diagram showing an example of the processing method of the present invention,
This is a case where the processing speed is changed stepwise. FIG.
It is a figure showing an example of the processing method of the present invention, and is a case where a processing speed is changed continuously. 6 and 7, if the strain rate sensitivity in the compression working finally becomes superplastic in a region where the strain rate sensitivity is 0.3 or more, processing is performed in the region where the strain rate develops superplasticity from the start of compression working. Similar results were obtained as with

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように成形の途中で加工速度
を、歪速度感受性指数0.3以下の高歪速度から歪速度感
受性指数0.3以上の低歪速度にすることによって、成形
時間が大幅に短縮されるばかりでなく加工荷重を低く抑
えておけるので、安価な金型の使用が可能である。ま
た、超塑性の特徴である伸び、転写性、拡散接合性も維
持しているので複雑な形状の成形も可能である。
As described above, the present invention significantly reduces the molding time by changing the processing speed during molding from a high strain rate having a strain rate sensitivity index of 0.3 or less to a low strain rate having a strain rate sensitivity index of 0.3 or more. In addition, since the working load can be kept low, an inexpensive mold can be used. In addition, since elongation, transferability, and diffusion bonding characteristics, which are features of superplasticity, are maintained, it is possible to form a complicated shape.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の加工方法の一例を示す図、第2図は鍛
造装置の断面図、第3図は歪速度と応力の関係を示す
図、第4図は歪速度と応力の関係を示す図、第5図は鍛
造結果を示す図、第6図は本発明の加工方法の一例を示
す図、第7図は本発明の加工方法の一例を示す図であ
る。 1……荒加工域 2……仕上げ加工域 3……上部金型 4……下部金型 5……被加工材
FIG. 1 is a view showing an example of the working method of the present invention, FIG. 2 is a sectional view of a forging apparatus, FIG. 3 is a view showing a relationship between strain rate and stress, and FIG. 4 is a view showing a relationship between strain rate and stress. FIG. 5 is a view showing a forging result, FIG. 6 is a view showing an example of the working method of the present invention, and FIG. 7 is a view showing an example of the working method of the present invention. 1 ... Roughing area 2 ... Finishing area 3 ... Upper mold 4 ... Lower mold 5 ... Workpiece

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超塑性材料の圧縮加工方法において、加工
の開始から加工の途中までを、超塑性鍛造領域以上の高
速加工である歪速度で行い、最終的に超塑性鍛造領域内
の歪速度で加工を行うことを特徴とする超塑性材料の圧
縮加工方法。
In a method for compressing and processing a superplastic material, from the start of processing to the middle of the processing, a strain rate which is a high-speed processing of a superplastic forging area or more is performed, and finally a strain rate in a superplastic forging area is obtained. A compression processing method for a superplastic material, characterized in that the processing is performed by:
【請求項2】前記超塑性材料がチタン合金であり、前記
超塑性鍛造領域以上の高速加工は歪速度感受性指数0.3
以下の歪速度2×10-3/s以上であり、前記超塑性鍛造領
域内の歪速度は歪速度感受性指数0.3以上の歪速度5×1
0-4〜2×10-3/sである特許請求の範囲第1項の超塑性
材料の圧縮加工方法。
2. The method according to claim 1, wherein the superplastic material is a titanium alloy, and a high speed working in the superplastic forging region or more is performed with a strain rate sensitivity index of 0.3.
The following strain rate is 2 × 10 −3 / s or more, and the strain rate in the superplastic forging region is a strain rate 5 × 1 with a strain rate sensitivity index of 0.3 or more.
2. The method for compressing a superplastic material according to claim 1, wherein the pressure is from 0 -4 to 2 × 10 -3 / s.
【請求項3】前記超塑性材料がニッケル合金であり、前
記超塑性鍛造領域以上の高速加工は歪速度感受性指数0.
3以下の歪速度で歪速度は2×10-2/s以上であり、前記
超塑性鍛造領域内の歪速度は歪速度感受性指数0.3以上
の歪速度5×10-3〜2×10-2/sである特許請求の範囲第
1項の超塑性材料の圧縮加工方法。
3. The superplastic material is a nickel alloy, and high-speed machining in the superplastic forging region or higher is performed with a strain rate sensitivity index of 0.5.
At a strain rate of 3 or less, the strain rate is 2 × 10 −2 / s or more, and the strain rate in the superplastic forging region is a strain rate of 5 × 10 −3 to 2 × 10 −2 with a strain rate sensitivity index of 0.3 or more. 2. The method for compressing a superplastic material according to claim 1, wherein the rate is / s.
JP63275163A 1988-10-31 1988-10-31 Superplastic forming method Expired - Fee Related JP2631312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275163A JP2631312B2 (en) 1988-10-31 1988-10-31 Superplastic forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275163A JP2631312B2 (en) 1988-10-31 1988-10-31 Superplastic forming method

Publications (2)

Publication Number Publication Date
JPH02121741A JPH02121741A (en) 1990-05-09
JP2631312B2 true JP2631312B2 (en) 1997-07-16

Family

ID=17551553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275163A Expired - Fee Related JP2631312B2 (en) 1988-10-31 1988-10-31 Superplastic forming method

Country Status (1)

Country Link
JP (1) JP2631312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236352A (en) * 1992-10-08 1993-08-17 Carpenter Roland K Apparatus and methods for processing scrap tires

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207526A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Method for superplastic forging with controlled working strain rate

Also Published As

Publication number Publication date
JPH02121741A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
US4797986A (en) Spur gear manufacturing process
US4113522A (en) Method of making a metallic structure by combined superplastic forming and forging
JP2631312B2 (en) Superplastic forming method
US4253323A (en) Method for manufacturing high precision slugs
JPH06106289A (en) Isothermal forging method
JPS62114743A (en) One-body forming method for nozzle
EP0101097B1 (en) Process for manufacturing work-hardened metallic workpieces by forging or pressing
JPH0635021B2 (en) Burring method
JPS63238942A (en) Manufacture of large-sized turbine blade
JPS58315A (en) Working method of turbine blade
JPS5848258B2 (en) Method for forming a member with an inner diameter groove
SU1542688A1 (en) Forging tool for broaching
SU1003985A1 (en) Apparatus for production method
JPS62267043A (en) Forging method for turbine blade
SU994101A1 (en) Method of multiple forming of vanes
SU1416257A1 (en) Method of producing parts of tool type with form-shaping cavity and die for effecting same
JPH0525597A (en) Manufacture of titanium alloy parts
SU1449182A1 (en) Method of producing annular dimplings in sheet blanks
CA1083859A (en) Method of making a metallic structure by combined superplastic forming and forging
SU1016007A1 (en) Method of forging refractory metals and alloys
JPH02165837A (en) Superplastic forging method
SU1178526A1 (en) Method of drawing ingots using inclined-parallel block heads
KR950007769B1 (en) Method of producing head dome structural parts
SU1227290A1 (en) Method of producing hollow articles from sheet metal
SU1204296A1 (en) Method of stamping dome-shaped bottoms

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees