JP2630133B2 - Driving method of liquid crystal panel, its driving circuit and display device - Google Patents

Driving method of liquid crystal panel, its driving circuit and display device

Info

Publication number
JP2630133B2
JP2630133B2 JP3253355A JP25335591A JP2630133B2 JP 2630133 B2 JP2630133 B2 JP 2630133B2 JP 3253355 A JP3253355 A JP 3253355A JP 25335591 A JP25335591 A JP 25335591A JP 2630133 B2 JP2630133 B2 JP 2630133B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pixels
scanning
crystal panel
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3253355A
Other languages
Japanese (ja)
Other versions
JPH0594152A (en
Inventor
尚英 脇田
好則 古林
正三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3253355A priority Critical patent/JP2630133B2/en
Publication of JPH0594152A publication Critical patent/JPH0594152A/en
Application granted granted Critical
Publication of JP2630133B2 publication Critical patent/JP2630133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は強誘電性液晶パネル、特
に画素サイズの大きな液晶パネルの駆動法と駆動回路お
よび表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a ferroelectric liquid crystal panel, particularly a liquid crystal panel having a large pixel size, a driving circuit, and a display device.

【0002】[0002]

【従来の技術】強誘電性液晶は層構造を取り、また液晶
分子長軸と直交する自発分極が電界の方向に並ぶことに
よりスイッチングする。(図5)は強誘電性液晶パネル
の断面図であるが、液晶分子50は層法線に対していつ
も一定の角度で傾いた方向にあり、このためコーン51
で示す円錐の側面上を動く。電極52、53間に電圧を
印加すると自発分極54は電界の方向を向き、(図5)
(a)では上電極方向を、(図5)(b)では下電極方
向に揃っている。液晶分子は電極表面にほぼ水平に並ぶ
ため、(図5)(a),(図5)(b)の配向状態は電
場を取り去っても保持される。直交させた偏光板でパネ
ルを挟み複屈折効果により、例えば(図5)(a)の分
子長軸方向に偏光子の偏光軸を合わせると、(図5)
(a)は黒表示となり、(図5)(b)は明表示とな
る。電極間の厚み(液晶層の厚み)を2μm前後とする
と(図5)(b)は白表示となる。
2. Description of the Related Art A ferroelectric liquid crystal has a layer structure, and switches when spontaneous polarization perpendicular to the long axis of liquid crystal molecules is arranged in the direction of an electric field. FIG. 5 is a cross-sectional view of the ferroelectric liquid crystal panel, in which the liquid crystal molecules 50 are always inclined at a fixed angle with respect to the layer normal.
Move on the side of the cone indicated by. When a voltage is applied between the electrodes 52 and 53, the spontaneous polarization 54 points in the direction of the electric field (FIG. 5).
5A, the direction of the upper electrode is aligned with the direction of the upper electrode, and FIGS. Since the liquid crystal molecules are arranged substantially horizontally on the electrode surface, the alignment states of FIGS. 5A, 5A and 5B are maintained even after the electric field is removed. For example, when the polarizing axis of the polarizer is aligned with the molecular long axis direction (FIG. 5A) by the birefringence effect with the panel interposed between orthogonal polarizing plates (FIG. 5)
(A) shows a black display, and (FIG. 5) and (b) show a bright display. When the thickness between the electrodes (the thickness of the liquid crystal layer) is about 2 μm (FIG. 5), (b) shows a white display.

【0003】(図5)(a)から(図5)(b)の状態
へ反転させるためには分極の方向が逆転するので、強誘
電性液晶自発分極量の2倍の電荷移動が生じる。
[0005] Since the direction of polarization is reversed to reverse the state shown in FIG. 5A to FIG. 5B, charge transfer occurs twice as large as the spontaneous polarization of the ferroelectric liquid crystal.

【0004】(図6)に従来の強誘電性液晶の駆動波形
図の例を示す。走査電極に走査電圧60を信号電極に信
号電圧61を印加し、このとき画素には走査電圧と信号
電圧の差である画素印加電圧62が印加される。リセッ
トパルス65により黒状態(白状態)にリセットした
後、選択パルス66により、ある走査電極が選択され、
そのときの信号電圧がオン電圧67のときは画素にはし
きい値電圧を越える選択電圧69が印加され、白状態に
(黒状態)に反転され、オフ電圧68のときはしきい値
電圧以下となる半選択電圧70が印加されてリセット状
態が保持される。(図7)も強誘電性液晶の駆動波形の
従来例であり、画素印加電圧のみを示している。この場
合は、走査を2フィールドに分け、第1フィールドで白
(黒)、第2フィールドで黒(白)への書き込み(反転
または保持)を行って画像を書き込む。(図6)、(図
7)、いずれの場合も、強誘電性液晶パネルはパルス幅
によってしきい値電圧が変わるので、選択電圧と半選択
電圧の間にパネルのしきい値電圧が入るように、パルス
幅を設定する必要がある。
FIG. 6 shows an example of a driving waveform diagram of a conventional ferroelectric liquid crystal. A scan voltage 60 is applied to the scan electrode and a signal voltage 61 is applied to the signal electrode. At this time, a pixel applied voltage 62 which is a difference between the scan voltage and the signal voltage is applied to the pixel. After resetting to a black state (white state) by a reset pulse 65, a certain scan electrode is selected by a selection pulse 66,
When the signal voltage at that time is the ON voltage 67, the selection voltage 69 exceeding the threshold voltage is applied to the pixel, and the pixel is inverted to a white state (black state). And the reset state is maintained. FIG. 7 is also a conventional example of the driving waveform of the ferroelectric liquid crystal, and shows only the pixel applied voltage. In this case, the scanning is divided into two fields, and the image is written by writing (inverting or holding) white (black) in the first field and black (white) in the second field. In either case (FIG. 6) or (FIG. 7), since the threshold voltage of the ferroelectric liquid crystal panel changes depending on the pulse width, the threshold voltage of the panel falls between the selection voltage and the half selection voltage. Needs to set the pulse width.

【0005】[0005]

【発明が解決しようとする課題】自発分極を反転させる
際に流れる反転電流は駆動LSIから走査電極、信号電
極を通じて流れるが、画素のサイズが大きい場合や、パ
ネルの長さが長い場合、あるいは液晶の自発分極が非常
に大きい場合は、充電する電荷量が大きくなり、充電時
間が長くなる。リセットパルスにより、走査電極上のす
べての画素を反転させる場合は充電時間は一定なので、
パルス幅を長くすればよいが問題ないが、走査電極を選
択するときは、オン画素の数により充電電荷量が大きく
変わるので、適正なパルス幅がパターンによって異な
る。したがって、固定のパルス幅では表示パターンによ
りコントラストが異なり、表示むらが生じてしまう。反
転電流の限界は、駆動LSI、特に走査側の駆動LSI
の最大出力電流、または、LSI出力端子から走査電極
へ至るまでの、引き回し電極抵抗や実装部の接続抵抗、
及びLSIの出力抵抗を足し合わせた抵抗値で、出力電
圧を割った電流値、のいずれか小さい方で決まる。
The reversal current flowing when reversing the spontaneous polarization flows from the driving LSI through the scanning electrode and the signal electrode. However, when the pixel size is large, the panel length is long, or the liquid crystal is When the spontaneous polarization of is extremely large, the amount of charge to be charged becomes large, and the charging time becomes long. When all pixels on the scan electrode are inverted by the reset pulse, the charging time is constant,
Although it is sufficient to increase the pulse width, there is no problem. However, when selecting the scanning electrode, the amount of charge changes greatly depending on the number of ON pixels, so that an appropriate pulse width differs depending on the pattern. Therefore, with a fixed pulse width, the contrast differs depending on the display pattern, and display unevenness occurs. The limit of the reversal current is limited to the driving LSI, especially the scanning LSI
The maximum output current, or routing electrode resistance and connection resistance of the mounting part from the LSI output terminal to the scanning electrode,
And the current value obtained by dividing the output voltage by the resistance value obtained by adding the output resistance of the LSI and the resistance value.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め本発明の液晶パネルの駆動法は、対向する走査電極と
信号電極の間に強誘電性液晶を挟持する液晶パネルの駆
動法において、任意の走査電極上の画素を所定の数の群
に分割し、1回の走査で1つの群内の画素を選択的に反
転し、前記走査では前記1つの群以外の群内の画素の反
転を禁じ、前記所定の数の回数の走査で順次各群の画素
の書き込みを行うものである。
In order to solve the above-mentioned problems, a liquid crystal panel driving method according to the present invention is a liquid crystal panel driving method in which a ferroelectric liquid crystal is sandwiched between opposing scanning electrodes and signal electrodes. Pixels on an arbitrary scan electrode are divided into a predetermined number of groups, and pixels in one group are selectively inverted by one scan, and pixels in groups other than the one group are inverted in the scan. And writing of pixels of each group is sequentially performed by the predetermined number of scans.

【0007】また、課題を解決するもう一つの手段とし
て、本発明の液晶パネルの駆動法は、対向する走査電極
と信号電極の間に強誘電性液晶を挟持する液晶パネルの
駆動法において、任意の走査電極上の反転する画素の数
に応じてパルス幅を変更するものである。
As another means for solving the problem, a method of driving a liquid crystal panel according to the present invention is an arbitrary method for driving a liquid crystal panel in which a ferroelectric liquid crystal is sandwiched between opposing scanning electrodes and signal electrodes. The pulse width is changed according to the number of pixels to be inverted on the scanning electrode.

【0008】さらに、本発明の表示装置は、対向する走
査電極と信号電極の間に強誘電性液晶を挟持する液晶パ
ネルと前記走査電極と信号電極から駆動電圧を供給する
走査ドライバーと信号ドライバーを挟持し、前記液晶パ
ネルの任意の走査電極上の画素の強誘電性液晶の自発分
極量の合計の2倍を、走査ドライバーLSIの1つの出
力端子の最大出力電流で割った値が、前記走査電極の選
択時間の20%以上であり、前記走査電極に前記走査ド
ライバーLSIの複数の出力端子を接続し、前記複数の
出力端子には同じ信号データを供給することにより、課
題を解決するものである。
Further, the display device of the present invention comprises a liquid crystal panel having a ferroelectric liquid crystal interposed between the opposing scan electrode and signal electrode, a scan driver for supplying a drive voltage from the scan electrode and the signal electrode, and a signal driver. The value obtained by dividing twice the sum of the spontaneous polarization amounts of the ferroelectric liquid crystal of the pixels on the arbitrary scanning electrodes of the liquid crystal panel by the maximum output current of one output terminal of the scanning driver LSI is obtained by the scanning. The problem is solved by connecting the plurality of output terminals of the scan driver LSI to the scan electrodes and supplying the same signal data to the plurality of output terminals, which is 20% or more of the electrode selection time. is there.

【0009】[0009]

【作用】自発分極の反転に必要な充電電荷Qは、反転す
る画素の面積Sと単位面積あたりの液晶の自発分極Ps
の積の2倍である。充電電流の最大値をImaxとする
と、充電時間τ=Ps・S/Imaxとなる。
The charge Q required for reversing the spontaneous polarization is determined by the area S of the pixel to be reversed and the spontaneous polarization Ps of the liquid crystal per unit area.
Twice the product of Assuming that the maximum value of the charging current is Imax, the charging time τ = Ps · S / Imax.

【0010】充電電流を十分とれる場合に液晶を反転さ
せるときのしきい値電圧Vonおよびパルス幅Tは液晶材
料により決っており、電流が制限される場合はパルス幅
TをさらにT+τに大きくしなければならない。2値表
示のマトリクス駆動の場合、液晶のしきい値電圧が、選
択電圧V1より十分小さく、半選択電圧(1−2/a)
V1より十分大きいときコントラストが付くので、コン
トラストが一定となる駆動条件には幅(マージン)があ
る。aはバイアス比で3から5程度がよい。例えばバイ
アス比を4とすると半選択電圧は選択電圧の1/2にな
るので、電圧マージンは(1/2)V1未満になる。しきい値
特性の急峻性や、駆動波形に依存して実際のマージン
は、パネル構成(液晶材料や配向膜、絶縁膜)により異
なるが20〜40%程度である。マージンは電圧を固定
にしたときには、パルス幅で表現できる。従って、充電
時間τがパルス幅TのマージンΔTより大きくなると、
コントラストむらが生じてしまう。
The threshold voltage Von and the pulse width T for inverting the liquid crystal when the charging current is sufficient are determined by the liquid crystal material. If the current is limited, the pulse width T must be further increased to T + τ. Must. In the case of matrix driving of binary display, the threshold voltage of the liquid crystal is sufficiently smaller than the selection voltage V1, and the half selection voltage (1-2 / a)
Since the contrast is provided when the voltage is sufficiently larger than V1, there is a width (margin) in the driving conditions under which the contrast is constant. a is preferably about 3 to 5 in bias ratio. For example, if the bias ratio is 4, the half-selection voltage is の of the selection voltage, so that the voltage margin is less than (1/2) V1. The actual margin depending on the steepness of the threshold characteristic and the drive waveform varies depending on the panel configuration (liquid crystal material, alignment film, insulating film), but is about 20 to 40%. The margin can be expressed by a pulse width when the voltage is fixed. Therefore, when the charging time τ becomes larger than the margin ΔT of the pulse width T,
Contrast unevenness occurs.

【0011】反転する画素の面積は表示パターンによっ
て異なり、従来の駆動法では、走査電極上のすべての画
素が反転する場合が最大となり、全く反転画素が0の場
合が最小となる。そこで、本発明の液晶パネルの駆動法
では、一回の選択で反転する画素数に制限を設けること
により充電時間τの最大値を抑えて表示むらを防ぐ。具
体的には、走査電極上の画素をいくつかの群に分け、1
回の選択走査パルスに対しては、1個の群の画素のみデ
ータに応じて選択電圧の印加(書き込み)を行い、他の
群には半選択電圧しか印加されないようにし、同じ走査
電極を複数回選択し、順次各群に書き込みを行う。
The area of the pixel to be inverted differs depending on the display pattern. In the conventional driving method, the case where all the pixels on the scanning electrode are inverted is the maximum, and the case where the inverted pixel is 0 is minimum. Therefore, in the driving method of the liquid crystal panel of the present invention, the maximum value of the charging time τ is suppressed by limiting the number of pixels that are inverted by one selection, thereby preventing display unevenness. Specifically, the pixels on the scanning electrodes are divided into several groups,
For one selection scan pulse, a selection voltage is applied (written) to only one group of pixels in accordance with data, and only a half-selection voltage is applied to the other groups. And write to each group sequentially.

【0012】また、もう一つの本発明の液晶パネルの駆
動法では、反転する画素の数に応じて、選択走査パルス
のパスル幅を変更して表示むらを防止している。
In the liquid crystal panel driving method according to another aspect of the present invention, the pulse width of the selective scanning pulse is changed according to the number of pixels to be inverted to prevent display unevenness.

【0013】さらに、本発明の表示装置では、1本の走
査電極に複数のドライバー出力を接続して、最大充電電
流Imaxを増やすことにより充電時間を減らし、表示む
らを防止する。
Further, in the display device of the present invention, a plurality of driver outputs are connected to one scanning electrode to increase the maximum charging current Imax, thereby reducing the charging time and preventing display unevenness.

【0014】[0014]

【実施例】以下、具体例について図面を参照しながら詳
細に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples will be described in detail with reference to the drawings.

【0015】(実施例1)(図1)は本発明の表示装置
の構成図である。液晶パネル1は、上基板2と下基板3
の間に、自発分極24nC/cm2のカイラルスメクチック
C相の強誘電性液晶を厚み2ミクロンで挟んでいる。上
基板2上には走査電極4、下基板3上には信号電極5が
あり、どちらも32本、幅2.45mm、ピッチ2.5mm
で酸化インジウム錫からなる。それぞれの電極上にはS
iO2からなる絶縁膜と、その上に有機高分子の配向膜
を形成し、ラビング処理を施して、液晶を配向させてい
る。
Embodiment 1 (FIG. 1) is a configuration diagram of a display device of the present invention. The liquid crystal panel 1 includes an upper substrate 2 and a lower substrate 3
A ferroelectric liquid crystal of a chiral smectic C phase having a spontaneous polarization of 24 nC / cm 2 is sandwiched by a thickness of 2 μm. There are a scanning electrode 4 on the upper substrate 2 and a signal electrode 5 on the lower substrate 3, both of which have 32 lines, a width of 2.45 mm and a pitch of 2.5 mm.
And made of indium tin oxide. S on each electrode
An insulating film made of iO 2 and an alignment film of an organic polymer are formed thereon, and rubbing treatment is performed to align the liquid crystal.

【0016】液晶パネル1の1本の走査電極上の画素に
(図6)の従来の駆動波形を印加し、パルス幅と透過光
量の関係を測定した特性図が(図2)である。測定は、
反転させる画素の数を変えて4度行っており、3aが1
画素、3bが8画素、3cが16画素、3dが32画素
の場合で、実線が選択電圧での透過光量、点線が半選択
電圧での透過光量である。但し、バイアス比は1/4と
し、選択電圧を20ボルトに固定している。3aのコン
トラストが一定のパルス幅はおよそ50μ秒から70μ
秒で、約20μ秒のマージンがある。反転画素数が増え
るに従ってほぼ平行に特性(図は)移動しており、3d
は3aより約26μ秒遅くなっている。
A characteristic diagram (FIG. 2) is obtained by applying the conventional drive waveform (FIG. 6) to the pixels on one scanning electrode of the liquid crystal panel 1 and measuring the relationship between the pulse width and the amount of transmitted light. The measurement is
It is performed four times by changing the number of pixels to be inverted.
Pixels, 3b are 8 pixels, 3c is 16 pixels, and 3d is 32 pixels. The solid line is the transmitted light amount at the selected voltage, and the dotted line is the transmitted light amount at the half-selected voltage. However, the bias ratio is 1/4 and the selection voltage is fixed at 20 volts. The pulse width of the constant 3a pulse is approximately 50 μsec to 70 μsec.
In seconds, there is a margin of about 20 μs. As the number of inversion pixels increases, the characteristics (shown in the figure) move almost in parallel, and 3d
Is about 26 μs later than 3a.

【0017】(図6)の従来の駆動法では、パルス幅マ
ージンより反転画素数に依存した充電時間の変化の方が
大きいので、駆動パルス幅をどのように設定しても表示
パターンによってコントラストにむらが生じた。この理
由として第1には、反転する画素の数が異なるために自
発分極の反転電荷が大きくなり、充電時間が長くなるこ
とが上げられる。すべての画素が反転するときに自発分
極の反転により流れる電荷は 24nC/cm2×2×0.2452cm2×32=92.2nC となり、本実施例の走査ドライバーLSIの1出力端子
の最大出力電流は4mAなので、充電時間は 92.2nC
/4mA=23μ秒 である。
In the conventional driving method shown in FIG. 6, the change in the charging time depending on the number of inversion pixels is larger than the pulse width margin. Irregularities occurred. The first reason is that, since the number of pixels to be inverted is different, the inversion charge of the spontaneous polarization becomes large, and the charging time becomes long. When all the pixels are inverted, the charge flowing due to the inversion of the spontaneous polarization is 24 nC / cm 2 × 2 × 0.245 2 cm 2 × 32 = 92.2 nC, which is the maximum of one output terminal of the scan driver LSI of this embodiment. Output current is 4mA, charging time is 92.2nC
/ 4 mA = 23 μs.

【0018】第2には、印加電圧の違いによってLSI
の出力抵抗が変わり、常誘電成分の容量による波形のな
まり方が異なることが上げられる。最大出力電流である
4mAの電流が流れ、さらに電圧が上昇すると、等価的に
ドライバーLSIの出力抵抗が増すので、より多くの画
素に選択電圧が印加されるときの方が電圧波形のなまり
は大きいといえる。強誘電性液晶の応答速度は印加電圧
と印加時間の積にほぼ比例するので、充電電圧波形の時
定数が2倍になったとすると、
Second, LSIs differ depending on the applied voltage.
Is changed, and the way in which the waveform is rounded due to the capacitance of the paraelectric component is different. When a current of 4 mA, which is the maximum output current, flows and the voltage further rises, the output resistance of the driver LSI equivalently increases, so that the voltage waveform is more distorted when the selection voltage is applied to more pixels. It can be said that. Since the response speed of the ferroelectric liquid crystal is almost proportional to the product of the applied voltage and the applied time, if the time constant of the charging voltage waveform is doubled,

【0019】[0019]

【数1】 (Equation 1)

【0020】を満たすとき、同じ応答を示す。ここで、
T、T’は電圧の印加時間を示す。T=τとして、これ
を解くと、およそ、T’=1.4T となり、時定数の
比よりも小さくなる。本実施例の強誘電性液晶の常誘電
項に関する誘電率は約3.5であるので、1走査線上の
画素の容量Cは約3.5nFになる。出力抵抗が10v/
4mA=2.5kΩのとき、時定数は8.75μ秒である。
充電が進んで、出力抵抗の差がなくなってくると印加電
圧による差はなくなってくる。このため、この第2の要
因による差は、本実施例では数μ秒程度となっており、
自発分極による差が大きくなっている。
If so, it shows the same response. here,
T and T 'indicate the voltage application time. Solving this assuming T = τ results in approximately T ′ = 1.4T, which is smaller than the ratio of the time constants. Since the dielectric constant of the ferroelectric liquid crystal according to the present embodiment with respect to the paraelectric term is about 3.5, the capacitance C of the pixel on one scanning line is about 3.5 nF. Output resistance is 10v /
When 4 mA = 2.5 kΩ, the time constant is 8.75 μsec.
When charging progresses and the difference in output resistance disappears, the difference due to the applied voltage disappears. For this reason, the difference due to the second factor is about several microseconds in this embodiment,
The difference due to spontaneous polarization is large.

【0021】そこで、本発明の液晶パネルの駆動法で
は、走査電極上の画素を複数の群に分け、走査選択パル
スで反転する画素の数を制限して、最大の充電時間をパ
ルス幅マージン以内とすることにより、表示むらを防い
でいる。(図1)の表示装置は、この駆動法を実現する
駆動回路を含んでいる。
Therefore, in the liquid crystal panel driving method of the present invention, the pixels on the scanning electrodes are divided into a plurality of groups, the number of pixels inverted by the scanning selection pulse is limited, and the maximum charging time is within the pulse width margin. By doing so, display unevenness is prevented. The display device shown in FIG. 1 includes a driving circuit for realizing this driving method.

【0022】走査電極4には走査ドライバーLSI6の
出力端子が、信号電極5には信号ドライバーLSI7が
フレキシブル基板を介して数10Ωの接続抵抗で接続さ
れている。タイミング信号発生器10の同期信号に基づ
いて走査ドライバーLSI6が走査を行い、信号ドライ
バーLSI7には画像メモリー8から対応するデータが
AND素子9a、9bを通して送られる。走査はLSI
6によって2回続けて行われ、1回目の走査時には、群
Aの画素(16個)に対応するAND素子9aには1が
送られて画像データが信号LSIへ渡り、群BのAND
素子9bには0が送られて画素にはオフ電圧しか印加さ
れない。
An output terminal of a scan driver LSI 6 is connected to the scan electrode 4, and a signal driver LSI 7 is connected to the signal electrode 5 via a flexible substrate with a connection resistance of several tens of ohms. The scanning driver LSI 6 performs scanning based on the synchronization signal of the timing signal generator 10, and corresponding data is sent from the image memory 8 to the signal driver LSI 7 through the AND elements 9a and 9b. Scanning is LSI
6 is performed twice consecutively, and at the time of the first scanning, 1 is sent to the AND element 9a corresponding to the pixels (16) of the group A, and the image data is transferred to the signal LSI, and the AND of the group B is performed.
0 is sent to the element 9b, and only the off voltage is applied to the pixel.

【0023】2回目の走査では群Bのみに画像データが
送られて、2回の走査で正しい画像が液晶パネル1に書
き込まれる。電圧は20ホ゛ルトで、パルス幅は65〜70
μ秒のとき、表示むらがなくなった。さらに、走査を3
回以上にするとコントラスト一定の条件範囲が広がり温
度変化等の影響を避けることもできた。
In the second scan, image data is sent only to the group B, and a correct image is written on the liquid crystal panel 1 in the second scan. The voltage is 20 volts and the pulse width is 65-70
At μ seconds, display unevenness disappeared. In addition, scan 3
When the number of times is increased, the condition range in which the contrast is constant is widened, and the influence of temperature change and the like can be avoided.

【0024】なお、具体的な駆動波形は、本実施例で
は、(図6)の従来の駆動法の波形に準じており、リセ
ットパルスを印加した後、走査を2回行っている。2回
の走査は、必ずしも、1回目にすべての走査電極を選択
した後に、2回目の走査を行う必要はなく、ある走査電
極を2回選択する走査を意味するものである。また、駆
動波形は(図6)の波形に限るものではない。
In this embodiment, the specific driving waveform is in accordance with the waveform of the conventional driving method shown in FIG. 6, and the scanning is performed twice after applying the reset pulse. The two scans do not necessarily mean that the second scan is required to be performed after all the scan electrodes are selected for the first time, and means a scan for selecting a certain scan electrode twice. The drive waveform is not limited to the waveform shown in FIG.

【0025】また、本実施例で用いた走査ドライバーL
SIの最大出力電流は4mAだが、市販のドライバーLS
Iの場合最大出力電流は1.7mA程度の物が多いので、
走査電極上の自発分極が20nC以上のとき本発明は特に
有効である。また、走査電極への最大供給電流は、本実
施例ではドライバーLSIの定格により定められている
が、LSI出力端子から走査電極の画素部に至るまで
の、実装接続抵抗や、電極の配線抵抗が大きい場合に
は、最大供給電流はLSIの出力電圧を前記の抵抗の合
計で割った値で規定される。
The scanning driver L used in this embodiment is
The maximum output current of SI is 4mA, but a commercially available driver LS
In the case of I, the maximum output current is often about 1.7 mA, so
The present invention is particularly effective when the spontaneous polarization on the scanning electrode is 20 nC or more. In this embodiment, the maximum supply current to the scanning electrode is determined by the rating of the driver LSI. However, the mounting connection resistance and the wiring resistance of the electrode from the LSI output terminal to the pixel portion of the scanning electrode are reduced. If it is larger, the maximum supply current is defined by the value obtained by dividing the output voltage of the LSI by the sum of the resistors.

【0026】(実施例2)本発明の液晶パネルの駆動法
を実現する駆動回路を具備した表示装置の構成図を(図
3)に示す。(実施例1)に示したように、画素サイズ
の大きな強誘電性液晶パネルでは、しきい値パルス幅が
反転画素数に大きく依存する。そこで、信号ドライバー
LSIへ送る画像データに応じて駆動パルス幅を最適な
パルス幅とする駆動法により、表示むらをなくした。
(Embodiment 2) FIG. 3 shows a configuration diagram of a display device provided with a driving circuit for realizing the liquid crystal panel driving method of the present invention. As shown in (Example 1), in a ferroelectric liquid crystal panel having a large pixel size, the threshold pulse width greatly depends on the number of inversion pixels. Accordingly, display unevenness has been eliminated by a driving method in which the driving pulse width is set to an optimum pulse width in accordance with image data sent to the signal driver LSI.

【0027】具体的には、画像メモリー8から、ある走
査電極が選択される直前に信号ドライバーLSI7へシ
リアルにデータを送り、同時に前記データを積分器11
で加算する。積分器11の出力を、スイッチ12へ出力
し、スイッチ12はタイミング信号発生器からの基本ク
ロックを分周した分周器13からの入力を積分器11の
出力に応じて選択して出力し、これが信号ドライバーL
SI7および走査ドライバーLSI6へ入力され、出力
パルスの幅が可変となる。
More specifically, data is sent serially from the image memory 8 to the signal driver LSI 7 immediately before a certain scanning electrode is selected, and at the same time, the data is sent to the integrator 11.
Add with The output of the integrator 11 is output to the switch 12, and the switch 12 selects and outputs the input from the frequency divider 13 obtained by dividing the basic clock from the timing signal generator according to the output of the integrator 11, This is the signal driver L
The width of the output pulse that is input to the SI 7 and the scan driver LSI 6 is variable.

【0028】但し、1選択期間(1H)の長さは一定と
し、出力パルスが短い場合の残りの期間は走査及び信号
ドライバーを同電位とした。本発明により、表示むらは
なくなり、駆動マージンも非常に大きくなった。
However, the length of one selection period (1H) was fixed, and the scanning and signal driver were set to the same potential during the remaining period when the output pulse was short. According to the present invention, display unevenness has been eliminated and the driving margin has been greatly increased.

【0029】(実施例3)(実施例1)では、走査ドラ
イバーLSIの定格最大出力電流が走査電極への最大供
給電流となっており、電流に制限が有るために表示パタ
ーンによっては充電時間が長くなり、表示むらとなっ
た。そこで、このような場合に、走査電極への供給電流
を増やすために、本実施例では、1本の走査電極に複数
の走査ドライバーLSIの出力を接続した。
(Embodiment 3) In (Embodiment 1), the rated maximum output current of the scan driver LSI is the maximum supply current to the scan electrodes. Since the current is limited, the charging time depends on the display pattern. It became longer and the display became uneven. Therefore, in such a case, in order to increase the supply current to the scanning electrodes, in this embodiment, the outputs of a plurality of scanning driver LSIs are connected to one scanning electrode.

【0030】(図4)の構成図のように、フレキシブル
基板上でLSIの2つの出力端子を短絡し、また、画像
データはフリップフロップ20により2回同じデータが
送られるようにして、短絡した端子の出力が同じ電圧を
出力するようにした。これにより、自発分極の反転に伴
う電荷の充電時間は半分となり、表示パターンによる充
電時間の差は11.5μ秒となりマージン内に収まった
ので、表示むらはなくなった。ただし、LSI全体の最
大出力電流が8mAなので、3端子以上を短絡させても効
果はさらに改善されることはない。
As shown in FIG. 4, the two output terminals of the LSI are short-circuited on the flexible substrate, and the image data is short-circuited by the flip-flop 20 so that the same data is sent twice. The output of the terminal outputs the same voltage. As a result, the charge time of the charge due to the reversal of the spontaneous polarization was halved, and the difference in the charge time depending on the display pattern was 11.5 μsec, which was within the margin. However, since the maximum output current of the entire LSI is 8 mA, the effect is not further improved even if three or more terminals are short-circuited.

【0031】[0031]

【発明の効果】以上のように、本発明よれば特に、画素
サイズが大きく、自発分極の大きな強誘電性液晶材料を
用いた液晶パネルで生じる表示パターンに依存したコン
トラストむらを改善することができる。
As described above, according to the present invention, in particular, it is possible to improve the contrast unevenness depending on the display pattern generated in a liquid crystal panel using a ferroelectric liquid crystal material having a large pixel size and a large spontaneous polarization. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の表示装置の構成図FIG. 1 is a configuration diagram of a display device according to a first embodiment of the present invention.

【図2】強誘電性液晶パネルの特性図FIG. 2 is a characteristic diagram of a ferroelectric liquid crystal panel.

【図3】本発明の実施例2の表示装置の構成図FIG. 3 is a configuration diagram of a display device according to a second embodiment of the present invention.

【図4】本発明の実施例3の表示装置の構成図FIG. 4 is a configuration diagram of a display device according to a third embodiment of the present invention.

【図5】強誘電性液晶パネルの断面図FIG. 5 is a sectional view of a ferroelectric liquid crystal panel.

【図6】従来の強誘電性液晶パネルの駆動波形図FIG. 6 is a driving waveform diagram of a conventional ferroelectric liquid crystal panel.

【図7】従来の強誘電性液晶パネルの駆動波形図FIG. 7 is a driving waveform diagram of a conventional ferroelectric liquid crystal panel.

【符号の説明】[Explanation of symbols]

1 液晶パネル 2 上基板 3 下基板 4 走査電極 5 信号電極 6 走査ドライバーLSI 7 信号ドライバーLSI 8 画像メモリー 9a、9b AND素子 10 タイミング信号発生器 11 積分器 12 スイッチ 13 分周期 14 フリップフロップ DESCRIPTION OF SYMBOLS 1 Liquid crystal panel 2 Upper substrate 3 Lower substrate 4 Scan electrode 5 Signal electrode 6 Scan driver LSI 7 Signal driver LSI 8 Image memory 9a, 9b AND element 10 Timing signal generator 11 Integrator 12 Switch 13 Minute period 14 Flip-flop

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対向する走査電極と信号電極の間に強誘
電性液晶を挟持する液晶パネルの駆動法において、任意
の走査電極上の画素を所定の数の群に分割し、1回の走
査で1つの群内の画素を選択的に反転し、前記走査では
前記1つの群以外の群内の画素の反転を禁じ、前記所定
の数の回数の走査で順次各群の画素の書き込みを行い、
前記任意の走査電極上の1つの群の画素の強誘電性液晶
の自発分極量の合計の2倍を、前記走査電極への最大供
給電流で割った値をtとしたときに、前記走査電極の選
択時間のコントラスト一定な駆動マージンTよりtが小
さくなる最小整数値に前記所定の数を設定したことを特
徴とする液晶パネルの駆動法。
In a method of driving a liquid crystal panel in which a ferroelectric liquid crystal is sandwiched between opposing scanning electrodes and signal electrodes, pixels on an arbitrary scanning electrode are divided into a predetermined number of groups, and one scanning is performed. To selectively invert the pixels in one group, inhibit the inversion of the pixels in the groups other than the one group in the scanning, and sequentially write the pixels in each group by the predetermined number of scans. I
Ferroelectric liquid crystal of a group of pixels on any of the scanning electrodes
Twice the total amount of spontaneous polarization of
When the value divided by the supply current is t, the selection of the scanning electrodes is performed.
T is smaller than the drive margin T where the contrast of the selection time is constant.
A method for driving a liquid crystal panel , wherein the predetermined number is set to a minimum integer value that decreases .
【請求項2】 tが走査電極の選択時間の30%以下で
ある請求項記載の液晶パネルの駆動法。
2. A driving method of a liquid crystal panel according to claim 1, wherein t is less than 30% of the selection time of the scanning electrodes.
JP3253355A 1991-10-01 1991-10-01 Driving method of liquid crystal panel, its driving circuit and display device Expired - Lifetime JP2630133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253355A JP2630133B2 (en) 1991-10-01 1991-10-01 Driving method of liquid crystal panel, its driving circuit and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253355A JP2630133B2 (en) 1991-10-01 1991-10-01 Driving method of liquid crystal panel, its driving circuit and display device

Publications (2)

Publication Number Publication Date
JPH0594152A JPH0594152A (en) 1993-04-16
JP2630133B2 true JP2630133B2 (en) 1997-07-16

Family

ID=17250186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253355A Expired - Lifetime JP2630133B2 (en) 1991-10-01 1991-10-01 Driving method of liquid crystal panel, its driving circuit and display device

Country Status (1)

Country Link
JP (1) JP2630133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW581906B (en) 1995-10-14 2004-04-01 Semiconductor Energy Lab Display apparatus and method
JP4573552B2 (en) 2004-03-29 2010-11-04 富士通株式会社 Liquid crystal display
KR100759476B1 (en) * 2005-09-20 2007-09-20 이디텍 주식회사 Liquid crystal display device and method of driving the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291687A (en) * 1988-09-28 1990-03-30 Nec Corp Display device
JPH02176627A (en) * 1988-12-28 1990-07-09 Canon Inc Driving method for ferroelectric liquid crystal panel and driving controller

Also Published As

Publication number Publication date
JPH0594152A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US4818078A (en) Ferroelectric liquid crystal optical modulation device and driving method therefor for gray scale display
US4763994A (en) Method and apparatus for driving ferroelectric liquid crystal optical modulation device
EP0510606A1 (en) Liquid crystal display apparatus
EP0564263A2 (en) Display apparatus
US5436743A (en) Method for driving optical modulation device
US6351256B1 (en) Addressing method and apparatus
US5225919A (en) Optical modulation element including subelectrodes
JP2630133B2 (en) Driving method of liquid crystal panel, its driving circuit and display device
JPS6033535A (en) Driving method of optical modulating element
EP0475770B1 (en) Method for driving an electro-optical device
JPH06202081A (en) Ferroelectric liquid crystal display element
JPS61166590A (en) Liquid crystal display element and driving thereof
JPH09325319A (en) Simple matrix type liquid crystal display device and driving circuit therefor
JPH1054976A (en) Liquid crystal display device, circuit and method for driving it
US5841419A (en) Control method for ferroelectric liquid crystal matrix display
KR100279684B1 (en) Liquid crystal device and method for addressing liquid crystal device
JP2630027B2 (en) Liquid crystal panel and manufacturing method thereof
JP3254731B2 (en) Driving method of liquid crystal panel
JP3276417B2 (en) Driving method of ferroelectric liquid crystal display device
JP2614220B2 (en) Display device
JPS61235897A (en) Driving of liquid crystal element
JPS617828A (en) Driving method of liquid-crystal element
JPS62238533A (en) Driving method for optical modulation element
JPH06235904A (en) Ferroelectric liquid crystal display element
GB2205984A (en) Electro-optical apparatus