JP2629852B2 - Method for producing glycosyl compound - Google Patents

Method for producing glycosyl compound

Info

Publication number
JP2629852B2
JP2629852B2 JP17352888A JP17352888A JP2629852B2 JP 2629852 B2 JP2629852 B2 JP 2629852B2 JP 17352888 A JP17352888 A JP 17352888A JP 17352888 A JP17352888 A JP 17352888A JP 2629852 B2 JP2629852 B2 JP 2629852B2
Authority
JP
Japan
Prior art keywords
group
methylene chloride
benzyl
compound
acetyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17352888A
Other languages
Japanese (ja)
Other versions
JPH0225496A (en
Inventor
光昭 向山
哲郎 新福
修 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17352888A priority Critical patent/JP2629852B2/en
Publication of JPH0225496A publication Critical patent/JPH0225496A/en
Application granted granted Critical
Publication of JP2629852B2 publication Critical patent/JP2629852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規なグリコシル化合物の製造方法に関す
る。詳しくは、アシル糖を原料として高収率でグリコシ
ル化合物を製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a novel glycosyl compound. More specifically, the present invention relates to a method for producing a glycosyl compound in high yield from an acyl sugar as a raw material.

(従来の技術及び発明が解決しようとする問題点) グリコシル化合物は天然においては、例えば生薬成分
や抗生物質として広く存在しており、種々の生理活性を
持つことが知られている。これらのグリコシル化合物の
糖成分としては、中性糖をはじめアミノ糖、デオキシ
糖、ウロン酸、分枝糖などが挙げられる。これらの糖成
分の中で、特にシアル酸は生物の各種組成に糖蛋白質や
糖脂質の構成単位として広く存在することが知られてい
る。この化合物は、神経機能、癌、分化、ホルモンレセ
プター等に関連運することより注目を集めており、応用
という見地から、その類縁体、誘導体やグリコシル化合
物等の合成研究が盛んに行なわれている。特にシアル酸
のグリコシル化合物については医薬としての有用性が報
告されている。(特開昭62−265229、特開昭63−68526
号) 従来アシル糖を原料として対応するグリコシル化合物
を製造する方法として、例えば、1−O−アセチル−2,
3,5−トリ−O−ベンジル−β−D−リボースと3β−
コレスタノール等のアルコール類を、触媒として過塩素
酸トリチルの存在下に反応させて3β−コレスタニル2,
3,5−トリ−O−ベンジル−D−リボフラノシドを製造
する方法が知られている。(Chemistry Letters,907−9
10(1984);有機合成反応(東京化学同人)、p.185〜1
87) また、ハロゲン糖を原料として対応するグリコシル化
合物を製造する方法としては、下記の式(1) (式中、Acはアセチル基を表す) で示される化合物とコレステロールを、触媒としてトリ
フルオロメタンスルホン酸銀の存在下に反応させて、下
記一般式(2) (式中、Acはアセチル基、R1及びR2は、いずれか一方が
−COOCH3基であり、他方が下記の式(3)で表わされ
る) で示される化合物 を製造する方法(特開昭63−636397)、あるいは下記の
式: (式中、Bnはベンジル基を表す) で示される化合物と3β−コレスタノールを、触媒とし
て塩化第1スズと過塩素酸銀を用いることにより反応さ
せて、下記の式(4) (式中、Bnはベンジル基を表す)で示される化合物を製
造する方法(Chemistry Letters,431−432(1981)。)
が知られている。
(Problems to be Solved by Conventional Techniques and Inventions) Glycosyl compounds are naturally present in nature as, for example, crude drug components and antibiotics, and are known to have various physiological activities. Examples of the sugar component of these glycosyl compounds include neutral sugars, amino sugars, deoxy sugars, uronic acids, and branched sugars. Among these sugar components, particularly, sialic acid is known to be widely present as a constituent unit of glycoproteins and glycolipids in various compositions of living organisms. This compound has attracted much attention because it is related to nerve function, cancer, differentiation, hormone receptor, etc., and from the viewpoint of application, synthetic studies of its analogs, derivatives, glycosyl compounds, etc. have been actively conducted. . Particularly, glycosyl compounds of sialic acid have been reported to be useful as pharmaceuticals. (JP-A-62-265229, JP-A-63-68526)
No.) Conventionally, as a method for producing a corresponding glycosyl compound using an acyl sugar as a raw material, for example, 1-O-acetyl-2,
3,5-tri-O-benzyl-β-D-ribose and 3β-
An alcohol such as cholestanol is reacted in the presence of trityl perchlorate as a catalyst to give 3β-cholestanyl 2,2.
A method for producing 3,5-tri-O-benzyl-D-ribofuranoside is known. (Chemistry Letters, 907-9
10 (1984); Organic synthesis reaction (Tokyo Kagaku Doujin), pp. 185-1
87) Further, as a method for producing a corresponding glycosyl compound using a halogen sugar as a raw material, the following formula (1) (Where Ac represents an acetyl group) is reacted with cholesterol in the presence of silver trifluoromethanesulfonate as a catalyst to give the following general formula (2) (In the formula, Ac is an acetyl group, and one of R 1 and R 2 is a —COOCH 3 group, and the other is represented by the following formula (3)) Or a compound represented by the following formula: (Where Bn represents a benzyl group) and 3β-cholestanol are reacted by using stannous chloride and silver perchlorate as a catalyst to obtain the following formula (4) (Wherein, Bn represents a benzyl group) (Chemistry Letters, 431-432 (1981)).
It has been known.

しかしながら、従来の方法では、特にアシル糖として
シアル酸を用いた場合に、必ずしも収率が十分ではな
く、またシアル酸のハロゲン化合物である下記の式
(5) (式中、Acはアセチル基を表す) で示される化合物を用いる場合には、取扱いの容易さ安
定性の面など出発物質の調製を含め問題点が数多く存在
している。
However, in the conventional method, especially when sialic acid is used as the acyl sugar, the yield is not always sufficient, and the following formula (5), which is a halogen compound of sialic acid, is used. (Where Ac represents an acetyl group), there are many problems including the preparation of the starting material such as ease of handling and stability.

更に従来の方法では、得られたシアル酸のグリコシル
化合物は2α−及び2β−O−グリコシド結合の混合物
であり、一方の化合物のみを高い選択性で得ることがで
きなかったのでこれら点についって改善が望まれてい
た。
Furthermore, in the conventional method, the obtained glycosyl compound of sialic acid is a mixture of 2α- and 2β-O-glycosidic bonds, and it was not possible to obtain only one compound with high selectivity. Improvement was desired.

(問題点を解決するための手段) そこで本発明者らは、アシル糖とアルコール類又はそ
のシリルエーテル誘導体とを反応させてグリコシル化合
物を製造する際に使用する触媒に着目し、種々検討した
結果、2価のスズ化合物と4価のスズ化合物の併用によ
り、所期の目的が達成できることを見い出し本発明を完
成するに至った。即ち本発明の要旨は2価のスズ化合物
及び4価のスズ化合物の存在下、アシル糖とアルコール
類又はそのシリルエーテル誘導体とを反応させて該アシ
ル糖をグリコシル化することを特徴とするグリコシル化
合物の製造方法に存する。
(Means for Solving the Problems) The inventors of the present invention focused on a catalyst used for producing a glycosyl compound by reacting an acyl sugar with an alcohol or a silyl ether derivative thereof, and conducted various studies. The present inventors have found that the intended purpose can be achieved by using a divalent tin compound and a tetravalent tin compound in combination, and have completed the present invention. That is, the gist of the present invention is to provide a glycosyl compound characterized by reacting an acyl sugar with an alcohol or a silyl ether derivative thereof in the presence of a divalent tin compound and a tetravalent tin compound to glycosylate the acyl sugar. In the manufacturing method.

以下、本発明を説明する。 Hereinafter, the present invention will be described.

本発明のアシル糖としては、例えばリボース、デオキ
シリボース、グルコース、シアル酸等の炭素数5〜9の
糖類の1位又は2位の炭素に結合した水酸基(アノメリ
ック炭素位の水酸基)がアシル化された糖が挙げられ
る。アシル基としては、アセチル基、2−ヨウ化アセチ
ル基、ベンゾイル基、p−ニトロベンゾイル基等が挙げ
られる。又、上記各種の、他の炭素に結合した遊離の水
酸基は、好ましくない反応を避けるために、アセチル
基、ベンゾイル基、ベンジル基等の保護基で保護してお
く。かかるアシル糖としては、具体的には例えば次の様
なものが挙げられる。
As the acyl sugar of the present invention, for example, a hydroxyl group bonded to the 1- or 2-position carbon of a saccharide having 5 to 9 carbon atoms such as ribose, deoxyribose, glucose, and sialic acid (an hydroxyl group at an anomeric carbon position) is acylated. Sugar. Examples of the acyl group include an acetyl group, an acetyl group of 2-iodide, a benzoyl group, a p-nitrobenzoyl group, and the like. The above-mentioned various free hydroxyl groups bonded to other carbon atoms are protected with protecting groups such as acetyl group, benzoyl group and benzyl group in order to avoid undesired reactions. Specific examples of such acyl sugars include the following.

(式中、Acはアセチル基、Bzはベンゾイル基、Bnはベン
ジル基、Meはメチル基を表す)特に上記アシル糖の中で
もシアル酸を用いると従来の方法に比べて収率が著しく
向上するため、好ましい。
(In the formula, Ac represents an acetyl group, Bz represents a benzoyl group, Bn represents a benzyl group, and Me represents a methyl group.) In particular, when sialic acid is used among the above acyl sugars, the yield is significantly improved as compared with the conventional method. ,preferable.

アルコール類としては、ステアリルアルコール、3β
−コレスタノール、コレステロール、ジアルキルグリセ
ロール、グルコール誘導体、ガラクトース誘導体等が挙
げられる。また、本発明においてはこれらアルコール類
の水酸基の水素を、トリメチルシリル基、t−ブチルジ
メチルシリル基、ジメチルフェニルシリル基等のシリル
基で置換したシリルエーテル誘導体も使用できる。かか
るアルコール類としては、具体的には例えば次の様なも
のが挙げられる。
As alcohols, stearyl alcohol, 3β
-Cholestanol, cholesterol, dialkylglycerol, glycol derivatives, galactose derivatives and the like. Further, in the present invention, a silyl ether derivative in which hydrogen of a hydroxyl group of these alcohols is substituted with a silyl group such as a trimethylsilyl group, a t-butyldimethylsilyl group, and a dimethylphenylsilyl group can also be used. Specific examples of such alcohols include the following.

CH3(CH217OR4, (式中、Bnはベンジル基、Meはメチル基R4は水素又はシ
リル基を表す) 本発明で使用する2価のスズ化合物としては、フッ化
第1スズ(SnF2)、塩化第1スズ(SnCl2)、臭化第1
スズ(SnBr2)、酢酸第1スズ(Sn(OAc))、トリフ
ルオロメタンスルホン酸第1スズ(Sn(OSO2CF3
等が挙げられる。又、4価のスズ化合物としては塩化第
2スズ(SnCl4)、4価のスズトリフラート誘導体、ジ
メチルジクロロスズ((CH32SnCl2)等が挙げられ
る。2価のスズ化合物と4価のスズ化合物の使用割合は
0.5:1.5〜1.5:0.5(モル比)、好ましくは0.8:1.2〜1.
2:0.8(モル比)の範囲にある。
CH 3 (CH 2 ) 17 OR 4 , (In the formula, Bn represents a benzyl group, Me represents a methyl group, R 4 represents hydrogen or a silyl group.) As the divalent tin compound used in the present invention, stannous fluoride (SnF 2 ), stannous chloride (SnCl 2 ), first bromide
Tin (SnBr 2 ), stannous acetate (Sn (OAc) 2 ), stannous trifluoromethanesulfonate (Sn (OSO 2 CF 3 ) 2 )
And the like. Examples of the tetravalent tin compound include stannic chloride (SnCl 4 ), tetravalent tin triflate derivative, dimethyldichlorotin ((CH 3 ) 2 SnCl 2 ), and the like. The usage ratio of divalent tin compound and tetravalent tin compound is
0.5: 1.5 to 1.5: 0.5 (molar ratio), preferably 0.8: 1.2 to 1.
2: 0.8 (molar ratio).

本発明においては、更に過ハロゲン酸金属塩類を添加
すると収率が向上するので好ましい。過ハロゲン酸金属
塩類としては、下記一般式: MXO4 (式中、Mはリチウム、ナトリウム、銀又はテトラ−n
−ブチルアンモニウムを表し、Xは塩素又はヨウ素を表
す) で表される化合物が挙げられる。具体的には例えば次の
化合物が挙げられる。
In the present invention, it is preferable to further add a metal perhalogenate salt because the yield is improved. Examples of the metal perhalates include the following general formula: MXO 4 (where M is lithium, sodium, silver or tetra-n
-Represents butylammonium, and X represents chlorine or iodine). Specific examples include the following compounds.

過塩素酸リチウム(LiClO4)、過ヨウ素酸ナトリウム
(NaIO4)、過塩素酸カリウム(KClO4)、過塩素酸銀
(AgClO4)、過塩素酸テトラn−ブチルアンモニム(n
−Bu4NClO4) (式中、Buはブチル基を表す) 本発明においては、アシル糖とアルコール類又はその
シリルエーテル誘導体を上記2価及び4価のスズ化合
物、更に好ましくは追加の過ハロゲン酸金属塩類の存在
下、通常、溶媒中で反応させる。溶媒としては、塩化メ
チレン、1,2−ジクロロエタン等のハロゲン化炭化水素
類、ジエチルエーテル、テトラヒドロフラン、ジメトキ
シエタン等のエーテル類、トルエン等の芳香族炭化水素
類、アセトニトリル等が挙げられる。これらは単独もし
くは混合溶媒として使用される。
Lithium perchlorate (LiClO 4), sodium periodate (NaIO 4), potassium perchlorate (KClO 4), silver perchlorate (AgClO 4), perchloric acid tetra n- Buchiruanmonimu (n
—Bu 4 NClO 4 ) (in the formula, Bu represents a butyl group) In the present invention, the acyl sugar and the alcohol or the silyl ether derivative thereof are combined with the above-mentioned divalent and tetravalent tin compounds, more preferably additional perhalogen. The reaction is usually performed in a solvent in the presence of an acid metal salt. Examples of the solvent include halogenated hydrocarbons such as methylene chloride and 1,2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran and dimethoxyethane, aromatic hydrocarbons such as toluene, and acetonitrile. These are used alone or as a mixed solvent.

アルコール類又はそのシリルエーテル誘導体は、通常
アシル糖に対して0.9〜2.0当量、好ましくは1.1〜1.6当
量の範囲で使用する。
The alcohol or its silyl ether derivative is used usually in an amount of 0.9 to 2.0 equivalents, preferably 1.1 to 1.6 equivalents, based on the acyl sugar.

2価のスズ化合物及び4価のスズ化合物は、アシル糖
に対して合計で0.05〜5.0当量、好ましくは0.1〜1.5当
量の範囲で使用する。
The divalent tin compound and the tetravalent tin compound are used in a total amount of 0.05 to 5.0 equivalents, preferably 0.1 to 1.5 equivalents, based on the acyl sugar.

又、過ハロゲン酸金属塩類を添加する場合は、アシル
糖に対して0.05〜5.0当量、好ましくは0.1〜2.0当量の
範囲で使用する。
When a metal perhalate is added, it is used in an amount of 0.05 to 5.0 equivalents, preferably 0.1 to 2.0 equivalents, based on the acyl sugar.

反応は−30℃〜50℃、好ましくは−25℃〜室温の温度
で数時間〜48時間程度行われる。この際、反応操作及び
反応は無水条件下に行なうのが好ましい。
The reaction is carried out at a temperature of -30C to 50C, preferably -25C to room temperature, for several hours to 48 hours. At this time, the reaction operation and the reaction are preferably performed under anhydrous conditions.

以上のようにして得られたグリコシル化合物は、常法
に従いシリカゲルカラムクロマトグラフィー等により精
製することができる。
The glycosyl compound obtained as described above can be purified by silica gel column chromatography or the like according to a conventional method.

かくして、本発明方法によればグリコシル化合物を高
収率で得ることができる。
Thus, according to the method of the present invention, a glycosyl compound can be obtained in a high yield.

(発明の効果) 本発明の方法に従い、触媒として2価スズ化合物と4
価スズ化合物を併用することによって、アシル糖とアル
コール類又はそのシリルエーテル誘導体から、対応する
グリコシル化合物が高収率で得られる。また、後述の実
施例に示す通り、本発明の方法に従えば、α−又はβ−
O−グリコシド結合の一方を高い選択性で得ることがで
きる。
(Effect of the Invention) According to the method of the present invention, a divalent tin compound and 4
By using a valence tin compound in combination, a corresponding glycosyl compound can be obtained in high yield from an acyl sugar and an alcohol or a silyl ether derivative thereof. In addition, as shown in Examples described below, according to the method of the present invention, α- or β-
One of the O-glycosidic bonds can be obtained with high selectivity.

(実施例) 以下、本発明を実施例により説明する。ただし本発明
は、その要旨を越えな限りこれら実施例により何ら制約
を受けるものではない。
(Examples) Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited at all by these examples unless it exceeds the gist.

(実施例1) 3β−コルスタニル2,3,4−トリ−O−ベンジル−D−
リボフラノシドの合成 15mgのSn(OTf)(以下、式中OTfはOSO2CF3を表
す)と21mgのLiClO4とを塩化メチレン2mlに懸濁した
後、SnCl4(0.5M)の塩化メチレン溶液0.07mlを添加
し、室温で1時間撹拌した。次に、−23℃に冷却した
後、1−O−アセチル−2,3,5−トリ−O−ベンジル−
β−D−リボース83mg(0.18mmol)と3β−コレスタニ
ルトリメチルシリルエーテル100mg(0.21mmol)の塩化
メチレン溶液2mlを滴下し21時間撹拌した。
(Example 1) 3β-corstanyl 2,3,4-tri-O-benzyl-D-
Synthesis of Ribofuranoside 15 mg of Sn (OTf) 2 (hereinafter, OTf represents OSO 2 CF 3 ) and 21 mg of LiClO 4 were suspended in 2 ml of methylene chloride, and then a solution of SnCl 4 (0.5 M) in methylene chloride was prepared. 0.07 ml was added and the mixture was stirred at room temperature for 1 hour. Next, after cooling to −23 ° C., 1-O-acetyl-2,3,5-tri-O-benzyl-
A solution of 83 mg (0.18 mmol) of β-D-ribose and 100 mg (0.21 mmol) of 3β-cholestanyltrimethylsilyl ether in 2 ml of methylene chloride was added dropwise and stirred for 21 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え、
塩化メチレンで抽出した。有機層は飽和食塩水で洗い、
無水硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added,
Extracted with methylene chloride. Wash the organic layer with saturated saline,
It was dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式の3β−コレスタニル2,3,5−トリ−O
−ベンジル−D−リボフラノシド123mgを得た(収率86
%)。
The crude product obtained by evaporating the solvent was purified by a silica gel column, and 3β-cholestanyl 2,3,5-tri-O of the following formula was used.
-Benzyl-D-ribofuranoside 123 mg was obtained (yield 86
%).

(式中、Bnはベンジル基を表す。) 高速液体クロマトグラフィーによれば異性体α体とβ
体の比は、α体:β体=9:1である。
(In the formula, Bn represents a benzyl group.) According to the high performance liquid chromatography, the isomer α-isomer and β-isomer
The ratio of bodies is α-form: β-form = 9: 1.

(α体) m.p.:112−112.4℃ IR(KBr):2940、2870、1455cm-1 NMR(CDCl3) δ(ppm): 0.4−2.2(46H)、3.37(1H,dd) 3.42(1H,dd)、3.55−3.95(3H) 4.15−4.3(1H)、4.42(2H,S) 4.59(2H)、4.63(2H,S)、5.13(1H,d,J=3.5Hz)、
7.1−7.4(15H) (実施例2) 3β−コレスタニル 2,3,4,6−テトラ−O−ベンジル
−D−グルコピラノシドの合成 21mgのSn(OTf)と38mgのLiClO4とを塩化メチレン2
mlに懸濁した後、SnCl4(0.5M)の塩化メチレン溶液0.1
mlを添加し室温で1時間撹拌した。次に、0℃に冷却し
た後、1−O−アセチル−2,3,4,6−テトラ−O−ベン
ジル−D−グルコース117mg(0.20mmol)と3β−コレ
スタニル トリメチルシリルエーテル135mg(0.29mmo
l)の塩化メチレン溶液2mlを滴下し、16時間撹拌した。
(Α form) mp: 112-112.4 ° C IR (KBr): 2940, 2870, 1455 cm -1 NMR (CDCl 3 ) δ (ppm): 0.4-2.2 (46H), 3.37 (1H, dd) 3.42 (1H, dd) ), 3.55-3.95 (3H) 4.15-4.3 (1H), 4.42 (2H, S) 4.59 (2H), 4.63 (2H, S), 5.13 (1H, d, J = 3.5Hz),
7.1-7.4 (15H) (Example 2) Synthesis of 3β-cholestanyl 2,3,4,6-tetra-O-benzyl-D-glucopyranoside 21 mg of Sn (OTf) 2 and 38 mg of LiClO 4 were treated with methylene chloride 2
After suspending in SnCl 4, a solution of SnCl 4 (0.5M) in methylene chloride 0.1
ml was added and stirred at room temperature for 1 hour. Next, after cooling to 0 ° C., 117 mg (0.20 mmol) of 1-O-acetyl-2,3,4,6-tetra-O-benzyl-D-glucose and 135 mg (0.29 mmol) of 3β-cholestanyl trimethylsilyl ether
2 ml of a methylene chloride solution of l) was added dropwise, and the mixture was stirred for 16 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え塩
化メチレンで抽出した。有機層は飽和食塩水で洗い無水
硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added, and the mixture was extracted with methylene chloride. The organic layer was washed with saturated saline and dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式の3β−コレスタニル2,3,4,6−テトラ
−O−ベンジル−D−グルコピラノシド149mgを得た
(収率82%)。
The solvent was distilled off, and the obtained crude product was purified by a silica gel column to obtain 149 mg of 3β-cholestanyl 2,3,4,6-tetra-O-benzyl-D-glucopyranoside of the following formula (82% yield). ).

(式中、Bnはベンジル基を表す。) α体:β体=81:19 (α体) m.p.:140−141℃ IR(KBr):2930、1050、750、730cm-1 NMR(CDCl3) δ(ppm): 0.6−2.5(46H)、3.2−5.3(16H) 7.0−7.3(20H) (実施例3) メチル 5−アセトアミド−4,7,8,9−テトラ−0−ア
セチル−2−O−(3β−コレスタニル)−3,5−デキ
オキシ−D−グリセロ−D−ガラクト−2−ノニュロピ
ラノソネートの合成 15mgのSn(OTf)と42mgのNaIO4とを塩化メチレン2m
lに懸濁した後、SnCl4(1.0M)の塩化メチレン溶液0.04
mlを添加し室温で1時間撹拌した。次に、下記の式
(I) (式中、Acはアセチル基、Meはメチル基を表わす。) で示される化合物98mg(0.18mmol)と3β−コレスタニ
ル トリメチルシリルエーテル103mg(0.22mmol)の塩
化メチレン溶液2mlを滴下し、41時間撹拌した。
(In the formula, Bn represents a benzyl group.) Α-form: β-form = 81:19 (α-form) mp: 140-141 ° C IR (KBr): 2930, 1050, 750, 730 cm -1 NMR (CDCl 3 ) δ (ppm): 0.6-2.5 (46H), 3.2-5.3 (16H) 7.0-7.3 (20H) (Example 3) Methyl 5-acetamido-4,7,8,9-tetra-0-acetyl-2- Synthesis of O- (3β-cholestanyl) -3,5-dexoxy-D-glycero-D-galact-2-nonulopyranosonate 15 mg of Sn (OTf) 2 and 42 mg of NaIO 4 were treated with 2 m of methylene chloride.
After suspending in SnCl 4, a solution of SnCl 4 (1.0 M) in methylene chloride 0.04
ml was added and stirred at room temperature for 1 hour. Next, the following formula (I) (In the formula, Ac represents an acetyl group and Me represents a methyl group.) 98 mg (0.18 mmol) of the compound represented by the following formula and 103 ml (0.22 mmol) of 3β-cholestanyl trimethylsilyl ether in 2 ml of methylene chloride were added dropwise, and the mixture was stirred for 41 hours. .

反応終了後、炭酸水素ナトリウム飽和水溶液を加え、
塩化メチレンで抽出した。有機層は飽和食塩水で洗い、
無水硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added,
Extracted with methylene chloride. Wash the organic layer with saturated saline,
It was dried over anhydrous magnesium sulfate.

溶媒を留去し、得られた粗生成物をシリカゲルカラム
で精製し、下記式のメチル 5−アセトアミド−4,7,8,
9−テトラ−O−アセチル−2−O−(3β−コレスタ
ニル)−3,5−ジデオキシ−D−グリセロ−D−ガラク
ト−2−ノニュロピラノソネート127mgを得た(収率80
%)。
The solvent was distilled off, and the obtained crude product was purified with a silica gel column, and methyl 5-acetamide-4,7,8,
127 mg of 9-tetra-O-acetyl-2-O- (3β-cholestanyl) -3,5-dideoxy-D-glycero-D-galact-2-nonulopyranosonate was obtained (yield 80).
%).

(式中、Acはアセチル基を表わす。) α体:β体=2:98 (β体) NMR(CDCl3) δ(ppm): 0.4−2.17(62H)、2.40−2.25(1H,dd,J=12.8,4.8Hz,
H3eq)、3.60−3.73(1H)、3.77(3H,S)、4.00−4.23
(3H) 4.93−4.98(1H)、5.08−5.12(1H) 5.20−5.33(1H)、5.40(1H) 5.53−5.67(1H) (実施例4) メチル 5−アセトアミド−4,7,8,9−テトラ−O−ア
セチル−2−O−(3β−コレスタニル)−3,5−ジデ
オキシ−D−グリセロ−D−ガラクト−2−ノニュロピ
ラノソネートの合成19mgのSn(OTf)と7mgのLiClO4
をテトラヒドロフラン2mlに溶かし、0℃に冷却した
後、SnCl4(1.0M)のテトラヒドロフラン溶液0.05mlを
添加し1時間撹拌した。次に室温に戻した後、前記化合
物(I)123mg(0.23mmol)と3β−コレスタニル ト
リメチルシリルエーテル127mg(0.28mmol)のテトラヒ
ドロフラン溶液2mlを滴下し48時間撹拌した。
(In the formula, Ac represents an acetyl group.) Α-form: β-form = 2:98 (β-form) NMR (CDCl 3 ) δ (ppm): 0.4-2.17 (62H), 2.40-2.25 (1H, dd, J = 12.8,4.8Hz,
H 3 eq), 3.60-3.73 (1H ), 3.77 (3H, S), 4.00-4.23
(3H) 4.93-4.98 (1H), 5.08-5.12 (1H) 5.20-5.33 (1H), 5.40 (1H) 5.53-5.67 (1H) (Example 4) Methyl 5-acetamide-4,7,8,9 Synthesis of tetra-O-acetyl-2-O- (3β-cholestanyl) -3,5-dideoxy-D-glycero-D-galact-2-nonulopyranosonate 19 mg of Sn (OTf) 2 and 7 mg LiClO 4 was dissolved in 2 ml of tetrahydrofuran, cooled to 0 ° C., 0.05 ml of a tetrahydrofuran solution of SnCl 4 (1.0 M) was added, and the mixture was stirred for 1 hour. Then, after returning to room temperature, 2 ml of a tetrahydrofuran solution of 123 mg (0.23 mmol) of the above compound (I) and 127 mg (0.28 mmol) of 3β-cholestanyl trimethylsilyl ether was added dropwise, and the mixture was stirred for 48 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え塩
化メチレンで抽出した。有機層は飽和食塩水で洗い、無
水硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added, and the mixture was extracted with methylene chloride. The organic layer was washed with saturated saline and dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式のメチル 5−アセトアミド−4,7,8,9
−テトラ−O−アセチル−2−O−(3β−コレスタニ
ル)−3,5−ジデオキシ−D−グリセロ−D−ガラクト
−2−ノニュロピラノソネート105mgを得た(収率53
%)。
The crude product obtained by evaporating the solvent was purified by a silica gel column, and methyl 5-acetamide-4,7,8,9 of the following formula was used.
105 mg of -tetra-O-acetyl-2-O- (3β-cholestanyl) -3,5-dideoxy-D-glycero-D-galact-2-nonulopyranosonate was obtained (yield 53).
%).

(式中、Acはアセチル基を表わす。) α体:β体=74:26 (α体) NMR(CDCl3) δ(ppm): 2.52−2.63(1H,dd,J=12.8,4.7Hz,H3eq) (実施例5) ステアリル 2,3,5−トリ−O−ベンジル−D−リボフ
ラノシドの合成 16mgのSn(OTf)と20mgのLiClO4とを塩化メチレン2
mlに懸濁した後、SnCl4(0.5M)の塩化メチレン溶液0.0
8mlを添加し室温で1時間撹拌した。次に−23℃に冷却
した後、1−O−アセチル−2,3,5−トリ−O−ベンジ
ル−β−D−リボース88mg(0.19mmol)とステアリル
トリメチルシリルエーテル78mg(0.23mmol)の塩化メチ
レン溶液2mlを滴下し9時間撹拌した。
(In the formula, Ac represents an acetyl group.) Α-form: β-form = 74:26 (α-form) NMR (CDCl 3 ) δ (ppm): 2.52-2.63 (1H, dd, J = 12.8, 4.7 Hz, H 3 eq) (example 5) stearyl 2,3,5 Sn (OTf bird -O- benzyl -D- ribofuranoside synthesis 16 mg) 2 and LiClO 4 and the methylene chloride 2 of 20mg
After suspending in SnCl 4, a solution of SnCl 4 (0.5M) in methylene chloride 0.0
8 ml was added and the mixture was stirred at room temperature for 1 hour. Then, after cooling to -23 ° C, 88 mg (0.19 mmol) of 1-O-acetyl-2,3,5-tri-O-benzyl-β-D-ribose and stearyl
2 ml of a methylene chloride solution containing 78 mg (0.23 mmol) of trimethylsilyl ether was added dropwise, and the mixture was stirred for 9 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え、
塩化メチレンで抽出した。有機層は飽和食塩水で洗い無
水硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added,
Extracted with methylene chloride. The organic layer was washed with saturated saline and dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式のステアリル 2,3,5−トリ−O−ベン
ジル−D−リボフラノシド93mgを得た(収率73%)。
The crude product obtained by evaporating the solvent was purified by a silica gel column to obtain 93 mg of stearyl 2,3,5-tri-O-benzyl-D-ribofuranoside of the following formula (yield 73%).

(式中、Bnはベンジル基を表す。) α体:β体=91:9 (α体) NMR(CDCl3) δ(ppm): 0.85−0.90(3H)、1.17−1.73(32H) 3.25−3.7(4H)、3.85(1H)、4.0(1H) 4.3(1H)、4.42(2H,S)、4.59(2H) 4.63(2H,S)、5.13(1H,d,J=3.5Hz) 7.1−7.4(15H) (実施例6) メチル 5−アセトアミド−4,7,8,8−テトラ−O−ア
セチル−2−O−ステアリル−3,5−ジデオキシ−D−
グリセロ−D−ガラクト−2−ノニュロピラノソネート
の合成 17mgのSn(OTf)を塩化メチレン2mに懸濁した後、S
nCl4(0.5M)の塩化メチレン溶液0.10mlを添加し、室温
で1時間撹拌した。次に前記化合物(I)122mg(0.23m
mol)とステアリル トリメチルシリルエーテル73mg
(0.21mmol)の塩化メチレン溶液を滴下し16時間撹拌し
た。
(In the formula, Bn represents a benzyl group.) Α-form: β-form = 91: 9 (α-form) NMR (CDCl 3 ) δ (ppm): 0.85-0.90 (3H), 1.17-1.73 (32H) 3.25- 3.7 (4H), 3.85 (1H), 4.0 (1H) 4.3 (1H), 4.42 (2H, S), 4.59 (2H) 4.63 (2H, S), 5.13 (1H, d, J = 3.5Hz) 7.1− 7.4 (15H) (Example 6) Methyl 5-acetamido-4,7,8,8-tetra-O-acetyl-2-O-stearyl-3,5-dideoxy-D-
Synthesis of glycero-D-galact-2-nonulopyranosonate After suspending 17 mg of Sn (OTf) 2 in 2 m of methylene chloride,
0.10 ml of a methylene chloride solution of nCl 4 (0.5M) was added, and the mixture was stirred at room temperature for 1 hour. Next, 122 mg of the compound (I) (0.23 m
mol) and stearyl trimethylsilyl ether 73mg
(0.21 mmol) in methylene chloride was added dropwise and stirred for 16 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え、
塩化メチレンで抽出した。有機層は飽和食塩水で洗い無
水硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added,
Extracted with methylene chloride. The organic layer was washed with saturated saline and dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式のメチル 5−アセトアミド−4,7,8,9
−テトラ−O−アセチル−2−O−ステアリル−3,5−
ジデオキシ−D−グリセロ−D−ガラクト−2−ノニュ
ロピラノソネート127mgを得た(収率80%)。
The crude product obtained by evaporating the solvent was purified by a silica gel column, and methyl 5-acetamide-4,7,8,9 of the following formula was used.
-Tetra-O-acetyl-2-O-stearyl-3,5-
127 mg of dideoxy-D-glycero-D-galact-2-nonulopyranosonate were obtained (80% yield).

(式中、Acはアセチル基を表す。) α体:β体=2:98 (β体) NMR(CDCl3) δ(ppm): 0.77−0.93(3H)、1.10−1.67(32H) 1.67−2.23(16H)、2.37−2.53(1H,dd,J=12.9,4,8H
z,H3eq)、3.23−3.53(2H)、3.80(3H,S)、3.81−4.
20(3H) 4.73−4.90(1H)、5.10−5.60(4H) (実施例7) メチル 2,3,4−トリ−O−ベンジル−6−O−(2,3,5
−トリ−O−ベンジル−D−リボフラノシル)−α−D
−グルコピラノシド 7mgのSn(OTf)と19mgのLiClO4及び4mgのNaIO4を塩
化メチレン2mlに懸濁した後、SnCl4(0.5M)の塩化メチ
レン溶液0.02mlを添加し、室温で1時間撹拌した。次に
−23℃に冷却した後、1−O−アセチル−2,3,5−トリ
−O−ベンジル−β−D−リボース76mg(0.16mmol)と
メチル2,3,4−トリ−O−ベンジル−6−O−トリメチ
ルシリル−α−D−グルコピラノシド105mg(0.20mmo
l)の塩化メチレン溶液2mlを滴下し25時間撹拌した。
(In the formula, Ac represents an acetyl group.) Α-form: β-form = 2:98 (β-form) NMR (CDCl 3 ) δ (ppm): 0.77-0.93 (3H), 1.10-1.67 (32H) 1.67- 2.23 (16H), 2.37−2.53 (1H, dd, J = 12.9,4,8H
z, H 3 eq), 3.23-3.53 (2H), 3.80 (3H, S), 3.81-4.
20 (3H) 4.73-4.90 (1H), 5.10-5.60 (4H) (Example 7) Methyl 2,3,4-tri-O-benzyl-6-O- (2,3,5
-Tri-O-benzyl-D-ribofuranosyl) -α-D
- glucopyranoside 7mg of Sn (OTf) 2 and LiClO 4 and 4 mg NaIO 4 of 19mg was suspended in methylene chloride 2 ml, was added a methylene chloride solution 0.02ml of SnCl 4 (0.5M), stirred for 1 hour at room temperature did. Next, after cooling to −23 ° C., 76 mg (0.16 mmol) of 1-O-acetyl-2,3,5-tri-O-benzyl-β-D-ribose and methyl 2,3,4-tri-O- Benzyl-6-O-trimethylsilyl-α-D-glucopyranoside 105 mg (0.20 mmo
2 ml of methylene chloride solution of l) was added dropwise and stirred for 25 hours.

反応終了後、炭酸水素ナトリウム飽和水溶液を加え、
塩化メチレンで抽出した有機層を飽和食塩水で洗い無水
硫酸マグネシウムで乾燥した。
After completion of the reaction, a saturated aqueous solution of sodium hydrogen carbonate was added,
The organic layer extracted with methylene chloride was washed with saturated saline and dried over anhydrous magnesium sulfate.

溶媒を留去し得られた粗生成物をシリカゲルカラムで
精製し、下記式のメチル 2,3,4−トリ−O−ベンジル
−6−O−(2,3,5−トリ−O−ベンジル−D−リボフ
ラノシル)−α−D−グルコピラノシド93mgを得た(収
率66%)。
The crude product obtained by evaporating the solvent was purified by a silica gel column, and methyl 2,3,4-tri-O-benzyl-6-O- (2,3,5-tri-O-benzyl -D-ribofuranosyl) -α-D-glucopyranoside 93 mg was obtained (66% yield).

(式中、Bnはベンジル基、Meはメチル基を表す。) α体:β体=100:0 (α体) NMR(CDCl3) δ(ppm): 3.3(3H,S)、3.4−5.0(24H)、5.15(1H) 7.0−7.4(30H)13 C−NMR(CDCl3) δ(ppm): 101.9(リボース1位炭素)、98.1(グリコース1位炭
素)
(In the formula, Bn represents a benzyl group and Me represents a methyl group.) Α-form: β-form = 100: 0 (α-form) NMR (CDCl 3 ) δ (ppm): 3.3 (3H, S), 3.4-5.0 (24H), 5.15 (1H) 7.0-7.4 (30H) 13 C-NMR (CDCl 3 ) δ (ppm): 101.9 (1st ribose carbon), 98.1 (1st carbon glucose)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2価のスズ化合物及び4価のスズ化合物の
存在下、アシル糖とアルコール類又はそのシリルエーテ
ル誘導体とを反応させて該アシル糖をグリコシル化する
ことを特徴とするグリコシル化合物の製造方法。
A glycosyl compound characterized by reacting an acyl sugar with an alcohol or a silyl ether derivative thereof in the presence of a divalent tin compound and a tetravalent tin compound to glycosylate the acyl sugar. Production method.
JP17352888A 1988-07-12 1988-07-12 Method for producing glycosyl compound Expired - Lifetime JP2629852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17352888A JP2629852B2 (en) 1988-07-12 1988-07-12 Method for producing glycosyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17352888A JP2629852B2 (en) 1988-07-12 1988-07-12 Method for producing glycosyl compound

Publications (2)

Publication Number Publication Date
JPH0225496A JPH0225496A (en) 1990-01-26
JP2629852B2 true JP2629852B2 (en) 1997-07-16

Family

ID=15962197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17352888A Expired - Lifetime JP2629852B2 (en) 1988-07-12 1988-07-12 Method for producing glycosyl compound

Country Status (1)

Country Link
JP (1) JP2629852B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013079A1 (en) * 1990-02-27 1991-09-05 Drug Delivery System Institute, Ltd. Derivative of glycolipid containing sialic acid
JP2563712B2 (en) * 1990-02-27 1996-12-18 株式会社ディ・ディ・エス研究所 Sialic acid-containing glycolipid derivative
ATE289576T1 (en) * 2000-09-08 2005-03-15 Dhw Deutsche Hydrierwerke Gmbh METHOD FOR PRODUCING MEDIUM AND LONG CHAIN DIALKYL ETHERS

Also Published As

Publication number Publication date
JPH0225496A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
EP2417144B1 (en) Synthesis of 2'-o-fucosyllactose
Kondo et al. Glycosyl phosphites as glycosylation reagents: scope and mechanism
IE872509L (en) Sucrose derivatives
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
CN103958537A (en) Synthesis of HMO core structures
KR100312389B1 (en) Process for preparing alpha-anomer enriched ribofuranosyl derivative at low temperature
JPH0899989A (en) New glycolipid derivative and intermediate for its production
Marino et al. Synthesis of galactofuranose disaccharides of biological significance
CN113527388A (en) Stereoselective synthesis method of beta-2-deoxy sugar, 2-deoxy-2-azido sugar and glucoside bond
Chmielewski et al. Reverse anomeric effect of the carbamoyl group of 2, 6-anhydroheptonamides
JP2629852B2 (en) Method for producing glycosyl compound
JP2540400B2 (en) Method for producing L-talopyranoside derivative
Liang et al. Efficient one-pot syntheses of α-D-arabinofuranosyl tri-and tetrasaccharides present in cell wall polysaccharide of Mycobacterium tuberculosis
Yang et al. Stereoselective synthesis of 2-S-ethyl (phenyl)-2-thio-β-glucopyranosides via 1, 2-migration and concurrent glycosidation of ethyl (phenyl) 2, 3-orthoester-1-thio-α-mannopyranosides
Vera-Ayoso et al. Towards cyclic, conformationally constrained, fluorine-containing β-amino acid derivatives from d-glucose
Koike et al. Stereoselective total synthesis of wheat flour ceramide dihexoside
Lafont et al. Syntheses of neoglycolipids with hexitol spacers between the saccharidic and the lipidic parts
van Boeckel et al. Synthesis of two purple-membrane glycolipids and the glycolipid sulfate O-(β-d-glucopyranosyl 3-sulfate)-(1→ 6)-O-α-d-mannopyranosyl-(1→ 2)-O-α-d-glucopyranosyl-(1→ 1)-2, 3-di-O-phytanyl-sn-glycerol
JPH02292295A (en) Preparation of etoposide
Byun et al. A short synthesis of antitumor ether thioglycolipids: Thioglycosidation of a glucose donor with a tributylstannyl sulfide acceptor
Kuszmann et al. Two approaches to the synthesis of 3-β-d-glucopyranosyl-d-glucitol
Goursaud et al. New synthesis of 2, 6-anhydro-β-d-fructofuranoses, pivotal [2.2. 1] bicyclic acetals for the conversion of d-fructose into 2, 2, 5-trisubstituted tetrahydrofurans
Strumpel et al. Synthesis and structural studies of anomeric 2, 3, 4, 6-tetra-O-acetyl-5-thio-d-glucopyranosyl azides
JPH0710895A (en) Production of glycosyl compound
JPH08283285A (en) Glycolipid having antiinflammatory action

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090418

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12