JP2627788C - - Google Patents
Info
- Publication number
- JP2627788C JP2627788C JP2627788C JP 2627788 C JP2627788 C JP 2627788C JP 2627788 C JP2627788 C JP 2627788C
- Authority
- JP
- Japan
- Prior art keywords
- plating
- steel sheet
- corrosion resistance
- appearance
- plated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 claims description 63
- 238000005260 corrosion Methods 0.000 claims description 35
- 229910000831 Steel Inorganic materials 0.000 claims description 28
- 239000010959 steel Substances 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- -1 zinc-aluminum Chemical compound 0.000 claims description 4
- 229910000611 Zinc aluminium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 17
- 229910007570 Zn-Al Inorganic materials 0.000 description 15
- 230000005496 eutectics Effects 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 206010040844 Skin exfoliation Diseases 0.000 description 5
- 238000010422 painting Methods 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 241000270666 Testudines Species 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000004923 Acrylic lacquer Substances 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000719332 Cephaleuros virescens Species 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910008355 Si-Sn Inorganic materials 0.000 description 1
- 229910006453 Si—Sn Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N [Si].[Si] Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 231100000078 corrosive Toxicity 0.000 description 1
- 231100001010 corrosive Toxicity 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000005712 crystallization Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000001747 exhibiting Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は溶融亜鉛−アルミニウム合金めっき鋼板(以下、単にZn−Alめっ
き鋼板という)特有の亀甲スパングル模様を低減し、めっき及び塗装後の外観向
上を図ると共に耐食性、めっき密着性をも向上させた鋼板に関するものである。
(従来の技術)
溶融亜鉛めっき鋼板は、表面処理鋼板の中でも最も広い需要分野をもっている
製品である。需要家における品質要求は年々高度化し、最近では耐食性をはじめ
加工性、塗装性の向上に関する多元系のZn−Alめっき鋼板に関する製品開発
が盛んに行われるようになった。Zn−Alめっき鋼板の代表的なものとしては
、ガルバリウムの名称で市販されているAl:55wt%、Si:1.5wt%
及び残ZnからなるZn−Al−Si系Zn−Alめっき鋼板がある。めっき層
はα相(Alリッチ)とβ相(Znリッチ)+α相の共晶相とからなっているた
め、錆の広がりには高い防錆性を示すものの犠牲防食作用が十分でないためエッ
ジ防錆性が十分でない。また、特開昭50−104731号公報にAl:5〜2
0wt%、Si:<5wt%及び残ZnからなるZn−Al−Si系Zn−Al
めっき鋼板が、特開昭54−23033号公報にはAl:2〜20wt%、Si
:0.001〜0.5wt%、Sn:0.01〜0.1wt%及び残Znからな
るZn−Al−Si−Sn系Zn−Alめっき鋼板がある。しかしながら、いず
れもAlが5wt%を越える領域においてはAlリッチの発達したα相が初晶と
してめっき被膜中に析出しめっき層の犠牲防食作用が低下する問題がある。ある
いはまた、厳しい腐食環境では優れた耐食性を示す一方で、添加されるSnの影
響により粒間腐食が極めて起こりやすく実用上問題がある。
Zn−Alめっき鋼板の外観には通常の溶融亜鉛めっき鋼板と異なり、亀甲状
の特有のスパングル模様が生じる。ところが、これが耐食性に対して粒界腐食と
いう悪影響をもたらしたり、塗装外観にスパングル模様を浮き出させたりする欠
点がある。この改善方法としてはめっき後の急冷処理があるが、これのみでは上
述した亀甲スパングル模様の消去効果は十分ではない。
(発明が解決しようとする課題)
本発明はZn−Alめっき鋼板に生ずる急冷処理でも消失しにくい特有の亀甲
スパングル模様の発生を抑制するものである。
(課題を解決するための手段)
本発明は、Al:3.0〜10wt%、Si:Alの0.2〜0.45%、M
g:0.01〜1.0wt%で、且つ不可避的不純物の合計が0.02wt%未
満で残部がZnのめっき浴でめっきしたことを特徴とする表面平滑性に優れた高
耐食性溶融亜鉛−アルミニウム合金めっき鋼板である。
(作用)
本発明は、亀甲スパングル模様が鉄素地界面のめっき浴の濡れ性に起因する点
に着眼し、鋭意検討した結果、Zn−Alめっき浴への微量のSi添加が有効で
あるという知見に基づいてなされたものである。
本発明における技術的改善のポイントは以下の通りである。
Zn−Alめっき浴に微量のSiを添加し鋼板とめっきとの濡れ性を上げるこ
とにより、Zn−Alめっき鋼板特有の亀甲スパングル模様を低減する。また、
同時にめっき層の粒界やFe系合金層またはその近傍に富化するAlをSiによ
って共晶固化させることによって活性なAlを不働態化し、めっき密着性を上げ
ると共に耐食性をも向上する。
Zn−Alめっき層においてPb等不可避的不純物による粒界腐食を防止し、
また、Znリッチのβ相中のアノード腐食を抑制して、不働態化領域を拡大し、
更に高耐食性化させるにあたりMgを併用する。
以下、本発明におけるめっき浴成分についての限定理由を述べる。
・アルミニウム
本発明のZn−Alめっき鋼板において、Alの作用効果はめっき浴中のAl
量に応じて異なる。めっき浴中のAlが増大するにつれてめっき層は異相化しη
相(Zn)、β相、α相が複雑に混在し、更にAl量が高くなるとα相とβ相の
晶出が支配的になり、Zn−Alめっき鋼板の高耐食化をもたらす。Alが3.
0wt%未満ではAl−Znの共晶体の形成が少ないためめっき層の耐食性は十
分ではない。一方、浴中のAl量が10.0wt%を越えてはめっき−鋼界面で
のAlとFeの相互拡散反応が過剰に進み加工に脆いFe−Al系合金層の異常
成長があり、初期のめっき密着性はもとより湿潤雰囲気下における点状赤錆の発
生など、耐食性に対する弊害を招く。更には、めっき浴中に鋼板あるいはめっき
釜の溶食が大きく、溶出したFeがFe−Al系化合物(浮遊ドロス)としてめ
っき層中に混入しめっき外観を損なうため実用的ではない。
以上から、Al量としては3.0〜10.0wt%とするが、好ましくは4.
0〜7.0wt%とする。
・シリコン
シリコンは亀甲スパングルを消去し、より平滑な外観を得る上で最も重要な元
素である。
Zn−Alめっき浴に対し微量のSiを添加すると鋼板とめっきとの濡れ性が
向上し、また、めっき層の凝固過程でSiは各Zn−Al共晶体に取り込まれ更
に融点降下を生じて粒界と共晶体との凝固点の差を縮め、比較的均一に凝固する
ためと考えられるが、Zn−Alめっき鋼板特有の亀甲スパングル模様が解消さ
れめっき外観が平滑化する。また、同時にめっき層の粒界やFe系合金層または
その近傍に富化するAlをSiによって共晶固化させることによって活性なAl
を不働態化し、粒界からの腐食を防ぐことにより耐食性を向上する。SiがAl
の0.2%未満では鋼板との濡れ性向上に対する寄与は弱く、また、めっき層中
の粒界等に富化したAlと共晶し、めっき層へのSi絶対量が低下するため耐食
性を向上させる効果はあまり期待できない。また、SiによるFe系合金層の成
長を抑制する効果はAlの作用に支配されほとんどその効果は認められない。一
方、SiがAlの0.45%超においては亀甲スパングル模様の低減効果は飽和
する。
以上の観点からSiの範囲をAlの0.2〜0.45%とするが、好ましくは
Alの0.3〜0.45%とする。
・マグネシウム
MgはZn−Al−Siめっき層のZnリッチなβ相に晶出し耐食性を更に向
上させる効果があるが、その作用に際してはめっき層の脆性破壊及び局部腐食を
生じない範囲で用いる必要がある。Mg0.01wt%未満ではPb等の不純物
の感受性を防ぎめっき層の粒界腐食を防止する効果は殆どなく、また、めっき浴
成分のZn、Al、Siとの共晶体形成があったとしてもめっき層の不働態化領
域を広げる効果は殆どなく、高耐食化は難しい。またMg1wt%超においては
めっき層の結晶粒界等に偏析するMgがカソードになりβ相の選択腐食を引き起
こし、めっき層の粒間腐食による脆性破壊からめっき剥離を招くため実用上問題
がある。
以上から、Mgの範囲は0.01〜1.0wt%であるが、好ましくは0.0
3〜0.5wt%である。
・不可避的不純物
不可避的不純物とはZnと接触し局部電池を形成した際、自らがカソード化し
てZnのアノード化(Zn→Zn2++2e)を促進させる作用をもつPb、Sn
及びCd等の元素をいう。従って、これらの元素はめっき層の粒間腐食とその脆
性破壊を誘発しめっき剥離に至らせたり、めっき層の高耐食化に対しても決して
好ましくなく、本発明においては極力これを排除する必要がある。
以上の理由から本発明では、めっき用地金の製錬過程で不可避的に混入してく
る不純物元素に止どめその合計量を0.02wt%未満とするが、好ましくは0
.01wt%以下とする。
(実施例)
第1表は板厚0.3mm、板幅914mmの未焼鈍アルミキルド鋼板を溶融め
っきしたものでめっき外観、塗装後外観、裸耐食性、及びめっき密着性について
一括してまとめたものである。溶融めっきはゼンジマー式溶融めっきラインを用
いて次の条件で行った。
ライン速度 150m/分
前処理
無酸化炉出側板温 600〜650℃
還元炉出側板温 790〜830℃
還元炉ガス組成 25%H2、75%N2溶融めっき
浴温 450℃
めっき付着量(ガスワイピング制御)
片面100〜120g/m2めっき後冷却
リン酸塩系水溶液を特殊ノズルを用いて溶融状態にあるめっき面に対し、圧
力、距離を調整して冷却を調整した。
また、このようにして得られたZn−Al合金めっき鋼板の性能評価は次の方
法により行った。
めっき外観
目視で次の基準で評価
◎:粒界が殆ど認められない
○:粒界がごく僅か認められる
△:粒界がかなり認められる
×:粒界が明瞭に認められる(手触りでも分かる)
塗装後外観
ラッカースプレー塗装(赤:大日本塗料製アクリルラッカー塗料)15μ
m後の外観を次の基準で目視判定
◎:スパングル模様の浮き出し殆ど認められない
○:スパングル模様の浮き出し部分的に軽度認められる
△:スパングル模様の浮き出し全面に軽度認められる
×:スパングル模様の浮き出し全面に明瞭に認められる
裸耐食性
JIS Z−2371の塩水噴霧試験72時間後の発錆状態で評価。
◎:白錆発生小
○:白錆発生中
△:白錆発生大
×:白錆発生激しい
めっき密着性
半径3/4インチの半球をもった荷重5kgの鋼塊を高さ500mmより
自然落下させ凸部めっき面をセロテープ(登録商標)により強制剥離し次の基準
で評価した。
◎:全くめっき剥離なし
○:微小点状(数点)剥離
△:ある面積をもって剥離
×:全面剥離
以下、第1表に基づいて若干説明する。
めっき外観
本発明の最大の特長であるSiによるめっき表層の平滑性向上効果は実施例N
o.1〜17において明瞭に発揮されている。Zn−Alめっき鋼板に特有な亀
甲スパングル模様はSi無しの比較例No.28〜31に示すようにAlの多少
に拘わらず生じる現象であり、これを防止するには、微量Siによる鋼板とめっ
きとの濡れ性の向上及び粒界のAlの共晶固化が有効であることが明確に分かる
。
塗装後外観
のめっき外観と結果は基本的に同じであり、下地のめっき層のスパングル模
様の程度により塗装後外観は支配される。実施例No.1〜17においてSi添
加効果が明瞭に発揮されている。
裸耐食性
本発明ではめっき層の高耐食化に関し合金成分としてAl、Si及びMgの有
効性を唱えたが、その効果については比較例No.18〜22(Al少)、No
.23〜27(Al多)、No.28〜31(Si少)、No.32〜35(M
g少)と全実施例との比較で明確である。めっき層の高耐食化に関して各合金成
分の機能はそれぞれ異なると考えられるが共通して言えることはベースメタルの
Znと何等かの形で共晶させるところに高耐食性化の重要な点があり、電気化学
的に共晶化がZnの不働態化領域を広げ、腐食電流の低下があったものと考えら
れる。
めっき密着性
AlによるFe−Al−Zn系3元合金層の均一な生成は、密着性確保の上で
最も重要な要素である。比較例No.23〜27はAlが高いためにFe−Al
合金層の制御が十分でなかったために密着性が確保できなかったものと考えられ
る。また、Siによるめっき密着性の向上効果は比較例No.28〜31と実施
例との比較で示され、Alと同様SiもFe系合金層の制御効果があることがわ
かる。
*Alに対するwt%
(発明の効果)
以上のように本発明はZn−Alめっき鋼板の基本的な欠点である特有の亀甲
スパングル模様を消失させることにより、めっき外観及び塗装後外観を平滑化し
、より美麗にするとともに、耐食性、めっき密着性をも向上させることに成功し
た画期的な溶融亜鉛−アルミニウム合金めっき鋼板である。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention reduces the spangle pattern unique to hot-dip zinc-aluminum alloy-plated steel sheets (hereinafter simply referred to as Zn-Al-plated steel sheets), and shows the appearance after plating and painting. The present invention relates to a steel sheet which is improved and has improved corrosion resistance and plating adhesion. (Prior art) Hot-dip galvanized steel sheet is a product having the widest demand field among surface-treated steel sheets. The quality requirements of consumers have become more advanced year by year, and recently, product development of multi-component Zn-Al plated steel sheets for improving workability and paintability, including corrosion resistance, has been actively performed. Representative examples of Zn-Al plated steel sheets include commercially available Al: 55 wt% and Si: 1.5 wt% under the name of Galvalume.
And a Zn-Al-Si-based Zn-Al-plated steel sheet composed of the remaining Zn. The plating layer is composed of α phase (Al rich) and β phase (Zn rich) + eutectic phase of α phase, so it shows high rust prevention to spread rust, but does not have sufficient sacrificial anticorrosion action, so it prevents edge protection. Not enough rust. Also, Japanese Patent Application Laid-Open No. 50-104731 discloses Al: 5-2.
Zn-Al-Si-based Zn-Al composed of 0 wt%, Si: <5 wt% and residual Zn
Japanese Patent Application Laid-Open No. 54-23033 discloses that a plated steel sheet contains Al: 2 to 20 wt%,
: 0.001 to 0.5 wt%, Sn: 0.01 to 0.1 wt%, and a Zn-Al-Si-Sn-based Zn-Al-plated steel sheet comprising Zn. However, in any case where the Al content exceeds 5 wt%, there is a problem that the α-phase in which Al-rich is developed precipitates as a primary crystal in the plating film, and the sacrificial corrosion protection effect of the plating layer is reduced. Alternatively, while exhibiting excellent corrosion resistance in a severely corrosive environment, intergranular corrosion is extremely likely to occur due to the effect of added Sn, which poses a practical problem. Unlike a normal hot-dip galvanized steel sheet, the appearance of the Zn-Al-plated steel sheet has a unique spangle-like spangle pattern. However, this has a disadvantage that it has an adverse effect of intergranular corrosion on the corrosion resistance, and a spangle pattern appears on the appearance of the coating. As a method of improving this, there is a quenching treatment after plating, but this alone is not sufficient for the above-mentioned effect of eliminating the turtle shell spangle pattern. (Problems to be Solved by the Invention) The present invention is to suppress the generation of a unique tortoiseshell spangle pattern which hardly disappears even in a quenching treatment generated in a Zn-Al plated steel sheet. (Means for Solving the Problems) The present invention relates to the following: Al: 3.0 to 10 wt%; Si: Al: 0.2 to 0.45%;
g: 0.01 to 1.0 wt%, the total of unavoidable impurities is less than 0.02 wt%, and the balance is plated with a Zn plating bath. It is an aluminum alloy plated steel sheet. (Action) The present invention focuses on the fact that the turtle shell spangle pattern is caused by the wettability of the plating bath at the interface with the iron base material, and as a result of intensive studies, it is found that the addition of a small amount of Si to the Zn-Al plating bath is effective. It was made based on. The technical improvement points in the present invention are as follows. A small amount of Si is added to the Zn-Al plating bath to increase the wettability between the steel plate and the plating, thereby reducing the spangle pattern unique to the Zn-Al plated steel plate. Also,
At the same time, Al enriched at or near the grain boundaries of the plating layer or the Fe-based alloy layer is eutectic-solidified by Si, so that the active Al is passivated, thereby improving the plating adhesion and the corrosion resistance. Prevent intergranular corrosion due to unavoidable impurities such as Pb in the Zn-Al plating layer,
Further, Mg is used in combination to suppress the anode corrosion in the Zn-rich β phase, expand the passivation region, and further increase the corrosion resistance. Hereinafter, the reasons for limiting the components of the plating bath in the present invention will be described.・ Aluminum In the Zn—Al plated steel sheet of the present invention, the effect of Al is Al in the plating bath.
Depends on quantity. As the amount of Al in the plating bath increases, the plating layer becomes out of phase and η
The phase (Zn), the β phase, and the α phase are intricately mixed, and when the Al content is further increased, the crystallization of the α phase and the β phase becomes dominant, resulting in high corrosion resistance of the Zn-Al plated steel sheet. Al is 3.
If it is less than 0 wt%, the formation of the eutectic Al-Zn is small, so that the corrosion resistance of the plating layer is not sufficient. On the other hand, when the amount of Al in the bath exceeds 10.0 wt%, the interdiffusion reaction between Al and Fe at the plating-steel interface excessively progresses, causing abnormal growth of the Fe-Al-based alloy layer which is brittle for processing. This causes adverse effects on corrosion resistance such as generation of spot-like red rust in a humid atmosphere as well as plating adhesion. Furthermore, corrosion of the steel plate or the plating pot is large in the plating bath, and the eluted Fe is mixed in the plating layer as an Fe-Al-based compound (floating dross) to impair the plating appearance, which is not practical. From the above, the amount of Al is set to 3.0 to 10.0 wt%, preferably 4.
0 to 7.0 wt%.・ Silicon Silicon is the most important element in eliminating tortoiseshell spangles and obtaining a smoother appearance. When a small amount of Si is added to the Zn-Al plating bath, the wettability between the steel sheet and the plating is improved, and in the solidification process of the plating layer, Si is taken into each Zn-Al eutectic, causing a further decrease in melting point and a decrease in grain size. This is thought to reduce the difference in solidification point between the boundary and the eutectic, and to solidify relatively uniformly. However, the spangle pattern peculiar to the Zn-Al plated steel sheet is eliminated and the plating appearance is smoothed. Simultaneously, the enriched Al at or near the grain boundaries of the plating layer or the Fe-based alloy layer is eutectic-solidified by Si, so that active Al
To improve the corrosion resistance by preventing corrosion from the grain boundaries. Si is Al
If it is less than 0.2%, the contribution to the improvement of wettability with the steel sheet is weak, and eutectic with Al enriched in the grain boundary etc. in the plating layer, and the absolute amount of Si in the plating layer is reduced, so that the corrosion resistance is reduced. The effect of improvement cannot be expected very much. Further, the effect of suppressing the growth of the Fe-based alloy layer by Si is governed by the action of Al, and the effect is hardly recognized. On the other hand, when Si exceeds 0.45% of Al, the effect of reducing the tortoiseshell spangle pattern is saturated. From the above viewpoints, the range of Si is set to 0.2 to 0.45% of Al, preferably 0.3 to 0.45% of Al. -Magnesium Mg has the effect of further improving the corrosion resistance by crystallizing into the Zn-rich β phase of the Zn-Al-Si plating layer, but it is necessary to use Mg within a range that does not cause brittle fracture and local corrosion of the plating layer. is there. If the content of Mg is less than 0.01 wt%, there is almost no effect of preventing the sensitivity of impurities such as Pb or the like to prevent intergranular corrosion of the plating layer, and even if the eutectic body is formed with Zn, Al, and Si as plating bath components. There is almost no effect of expanding the passivation region of the layer, and it is difficult to achieve high corrosion resistance. If Mg exceeds 1% by weight, Mg segregating at the crystal grain boundaries of the plating layer becomes a cathode, causing selective corrosion of the β phase, causing brittle destruction due to intergranular corrosion of the plating layer, and thus causing a practical problem. From the above, the range of Mg is 0.01 to 1.0 wt%, preferably 0.0 to 1.0 wt%.
3 to 0.5 wt%. Inevitable impurities Inevitable impurities are Pb and Sn which have the effect of forming themselves as a cathode and promoting the anodization of Zn (Zn → Zn 2+ + 2e) when a local battery is formed by contact with Zn.
And elements such as Cd. Therefore, these elements induce intergranular corrosion of the plating layer and its brittle fracture, leading to plating exfoliation, and are not always desirable for increasing the corrosion resistance of the plating layer. In the present invention, it is necessary to eliminate this as much as possible. There is. For the above reasons, in the present invention, the total amount of impurity elements which are inevitably mixed in the smelting process of the plating metal is set to less than 0.02 wt%, but preferably 0%.
. 01 wt% or less. (Examples) Table 1 shows the results of hot-dip coating of an annealed aluminum killed steel sheet having a thickness of 0.3 mm and a width of 914 mm, and summarizes the plating appearance, the appearance after painting, the bare corrosion resistance, and the plating adhesion. is there. Hot-dip plating was performed using a Sendzimer hot-dip line under the following conditions. Line speed 150m / min Pretreatment Non-oxidizing furnace outlet plate temperature 600-650 ° C Reduction furnace outlet plate temperature 790-830 ° C Reduction furnace gas composition 25% H 2 , 75% N 2 hot-dip bath temperature 450 ° C Plating weight (gas Wiping control) 100-120 g / m 2 plating after cooling on one side Cooling was adjusted by adjusting the pressure and distance to the plating surface in a molten state using a phosphate-based aqueous solution using a special nozzle. In addition, the performance evaluation of the Zn—Al alloy plated steel sheet thus obtained was performed by the following method. Plating appearance Visually evaluated according to the following criteria ◎: Almost no grain boundaries are observed ○: Very few grain boundaries are observed △: Grain boundaries are considerably observed ×: Grain boundaries are clearly observed (can also be felt by touch) Rear appearance Lacquer spray coating (red: Acrylic lacquer paint made by Dai Nippon Paint) 15μ
The appearance after m was visually judged according to the following criteria. :: Spangled pattern was hardly recognized. ○: Spangled pattern was slightly observed partially. △: Spangled pattern was slightly observed. ×: Spangled pattern was observed. Bare corrosion resistance clearly observed on the entire surface Evaluated by rusting after 72 hours of salt spray test according to JIS Z-2371. ◎: White rust generation small ○: White rust generation large △: White rust generation large ×: Severe white rust generation Plating adhesion Adhesive steel ingot with a load of 5 kg having a hemisphere with a radius of 3/4 inch was naturally dropped from a height of 500 mm. The convex-plated surface was forcibly peeled off with Cellotape (registered trademark) and evaluated according to the following criteria. :: No plating peeling ○: Fine point-like (several points) peeling :: Peeling with a certain area ×: Peeling over the whole The following is a brief description based on Table 1. Plating Appearance The most significant feature of the present invention, the effect of improving the smoothness of the plating surface layer by Si, is shown in Example N.
o. 1 to 17 clearly show. The spikelet pattern unique to the Zn-Al-plated steel sheet is comparative example No. As shown in Nos. 28 to 31, this phenomenon occurs regardless of the amount of Al. To prevent this, it is effective to improve the wettability between the steel sheet and the plating by a trace amount of Si and to solidify the eutectic Al at the grain boundaries. You can see clearly. The appearance after plating is basically the same as the plating appearance, and the appearance after painting is governed by the degree of spangle pattern of the underlying plating layer. Example No. In Nos. 1 to 17, the effect of adding Si is clearly exhibited. Bare Corrosion Resistance In the present invention, the effectiveness of Al, Si, and Mg as alloying components for increasing the corrosion resistance of the plating layer was discussed. No. 18-22 (low Al), No. 23 to 27 (rich in Al), No. 28 to 31 (Si small), 32-35 (M
g small) and comparison with all examples. It is thought that the function of each alloy component is different for the high corrosion resistance of the plating layer, but it can be said in common that the eutectic in some form with the base metal Zn has an important point of high corrosion resistance, It is considered that the eutectic electrochemically widened the passivation region of Zn and the corrosion current was reduced. Plating Adhesion Uniform formation of the Fe-Al-Zn-based ternary alloy layer by Al is the most important factor for ensuring adhesion. Comparative Example No. 23 to 27 are Fe-Al because Al is high.
It is probable that the adhesion could not be ensured due to insufficient control of the alloy layer. Further, the effect of improving the plating adhesion by Si is shown in Comparative Example No. It is shown by comparison between Examples 28 to 31 and the Examples, and it can be seen that Si, like Al, has an effect of controlling the Fe-based alloy layer. * Wt% to Al (Effect of the Invention) As described above, the present invention smoothes the plating appearance and the appearance after painting by eliminating the peculiar turtle shell spangle pattern, which is a basic defect of the Zn-Al plated steel sheet, This is an epoch-making hot-dip zinc-aluminum alloy-plated steel sheet that has succeeded in improving the corrosion resistance and plating adhesion while making it more beautiful.
Claims (1)
めっきしたことを特徴とする表面平滑性に優れた高耐食性溶融亜鉛−アルミニウ
ム合金めっき鋼板。Claims (1) Al: 3.0 to 10 wt%, Si: 0.2 to 0.45% of Al, Mg: 0.01 to 1.0 wt%, and the sum of unavoidable impurities is A highly corrosion-resistant hot-dip zinc-aluminum alloy-plated steel sheet having excellent surface smoothness, characterized by being plated with a plating bath of Zn at less than 0.02 wt%.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880000458B1 (en) | Ferrous product having an alloy coating thereon of al-zn-mg-si alloy,and method | |
EP2388353B1 (en) | HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE | |
JP3779941B2 (en) | Galvanized steel sheet with excellent post-painting corrosion resistance and paint clarity | |
US4812371A (en) | Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating | |
JPS648702B2 (en) | ||
JP7549965B2 (en) | Hot-dip Al-Zn-Mg-Si plated steel sheet and its manufacturing method, and coated steel sheet and its manufacturing method | |
JP2000328214A (en) | HIGH CORROSION RESISTANCE Mg-CONTAINING HOT DIP Zn-Al ALLOY PLATED STEEL SHEET GOOD IN SURFACE APPEARANCE | |
JP5601771B2 (en) | Multi-layer plated steel sheet and manufacturing method thereof | |
JP4970231B2 (en) | Hot-dip galvanized steel and its manufacturing method | |
JPS6330984B2 (en) | ||
KR102527548B1 (en) | plated steel | |
CN114846171B (en) | Hot dip plated alloy steel material having excellent corrosion resistance and method for producing same | |
JP7496876B2 (en) | Zn-Al-Mg hot-dip alloy plated steel with excellent corrosion resistance at processed parts and its manufacturing method | |
JP2627788B2 (en) | High corrosion resistance hot-dip zinc-aluminum alloy coated steel sheet with excellent surface smoothness | |
JPH02175852A (en) | Production of hot dip zinc-aluminum alloy plated steel sheet having superior surface smoothness and high corrosion resistance | |
JP5521932B2 (en) | Sn-Zn hot-dip galvanized steel sheet excellent in corrosion resistance, solder strength and spot weldability and method for producing the same | |
JP4696364B2 (en) | Hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance | |
JP2002371342A (en) | Hot-dip galvanized steel sheet and manufacturing method therefor | |
JP2627788C (en) | ||
JPH0354188B2 (en) | ||
JP2756547B2 (en) | Hot-dip Zn-based plating of hard-to-plate steel sheet | |
JP7460887B2 (en) | Multi-layer plated steel plate | |
JP2765078B2 (en) | Alloyed hot-dip coated steel sheet and method for producing the same | |
JP4253927B2 (en) | Plated steel sheet | |
CA1065204A (en) | Zinc-aluminum eutectic alloy coating process and article |