JP2626226B2 - Four-wheel steering control device - Google Patents

Four-wheel steering control device

Info

Publication number
JP2626226B2
JP2626226B2 JP2258576A JP25857690A JP2626226B2 JP 2626226 B2 JP2626226 B2 JP 2626226B2 JP 2258576 A JP2258576 A JP 2258576A JP 25857690 A JP25857690 A JP 25857690A JP 2626226 B2 JP2626226 B2 JP 2626226B2
Authority
JP
Japan
Prior art keywords
wheel
steering
slip
lateral force
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2258576A
Other languages
Japanese (ja)
Other versions
JPH04133867A (en
Inventor
隆志 今関
雄一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2258576A priority Critical patent/JP2626226B2/en
Publication of JPH04133867A publication Critical patent/JPH04133867A/en
Application granted granted Critical
Publication of JP2626226B2 publication Critical patent/JP2626226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、後輪転舵機構を持ち、前輪駆動車(FF車)
や後輪駆動車(FR車)等の車両に適用される四輪操舵制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention has a rear wheel steering mechanism and is a front-wheel drive vehicle (FF vehicle).
And a four-wheel steering control device applied to a vehicle such as a rear-wheel drive vehicle (FR vehicle).

(従来の技術) 従来、四輪操舵制御装置としては、例えば、特開昭62
−71761号公報記載の装置が知られていて、この公報に
は、前後輪回転速度差を駆動スリップ情報とし、前後輪
回転速度差に基づき前後輪の舵角比を安定サイドに変更
することで、駆動スリップに基づく車両の強オーバステ
ア化または強アンダーステア化の防止を図る技術が示さ
れている。
(Prior Art) Conventionally, as a four-wheel steering control device, for example,
A device described in -71761 is known, in which the front and rear wheel rotation speed difference is used as drive slip information, and the steering angle ratio of the front and rear wheels is changed to a stable side based on the front and rear wheel rotation speed difference. A technique for preventing the vehicle from being over-steered or under-steered based on driving slip is disclosed.

また、上記従来装置の改良技術としては、特開昭63−
166664号公報記載の装置が知られていて、この公報に
は、前後輪回転速度差の変化率を単に路面u情報として
取り込み、前後輪回転速度差の変化率が大きい時、駆動
スリップに基づく舵角比変更を禁止することで、悪路や
低u路での操縦安定性の向上を図る技術が示されてい
る。
Further, as an improvement technique of the above-mentioned conventional device, Japanese Patent Application Laid-Open
A device described in Japanese Patent Publication No. 166664 is known. In this publication, the change rate of the front and rear wheel rotation speed difference is simply taken as road surface u information, and when the change rate of the front and rear wheel rotation speed difference is large, the steering based on the drive slip is performed. There is disclosed a technology for improving steering stability on a rough road or a low u road by prohibiting a change in the angle ratio.

(発明が解決しようとする課題) しかしながら、上記従来装置は、駆動スリップが発生
した場合には、その大小にかかわらず舵角比を変更補正
制御する装置であり、タイヤの駆動スリップに対する横
力特性については何ら考慮されていない為、例えば、タ
イヤ特性によっては、スリップ率0.05付近が最大横力を
発生し得るにもかかわらず、単に駆動スリップが発生し
たとみなし、舵角比が補正されるので、不要に車両の旋
回限界を下げてしまう。
(Problems to be Solved by the Invention) However, the above-described conventional device is a device that, when a driving slip occurs, performs change correction control of the steering angle ratio regardless of the magnitude of the driving slip. Is not taken into account at all, for example, depending on the tire characteristics, although a slip ratio of around 0.05 may generate the maximum lateral force, it is simply considered that drive slip has occurred, and the steering angle ratio is corrected. This unnecessarily lowers the turning limit of the vehicle.

本発明は、上述のような問題に着目してなされたもの
で、後輪転舵機構を持つ四輪操舵制御装置において、車
両の旋回限界をできるだけ引き上げると共に、タイヤ特
性の非線形領域での後輪転舵制御を的確に行うことを課
題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems. In a four-wheel steering control device having a rear-wheel steering mechanism, a turning limit of a vehicle is increased as much as possible, and a rear-wheel steering in a nonlinear region of tire characteristics is performed. It is an object to perform control appropriately.

(課題を解決するための手段) 上記課題を解決するため本発明の四輪操舵制御装置で
は、後輪を転舵可能な後輪転舵機構aを持ち、前輪の操
舵状態に関連して後輪転舵量が決められる四輪操舵制御
装置において、 駆動輪のスリップ状態を検出する駆動スリップ検出手
段bと、 駆動輪の装着されているタイヤの駆動スリップに対す
る横力特性、すなわち、非スリップ状態から駆動輪スリ
ップの上昇に伴い横力が増して最大となりそれ以降は駆
動輪スリップの上昇に伴い減少するタイヤ横力特性を設
定するタイヤ横力特性設定手段cと、 前記検出された駆動スリップと設定されたタイヤ横力
特性に基づいて求められるタイヤ横力に応じて前後輪の
舵角比を演算する舵角比演算手段dと、 演算された舵角比と前輪転舵角との乗算により後輪転
舵量を決めて後輪を転舵制御する後輪転舵制御手段e
と、 を設けた。
(Means for Solving the Problems) In order to solve the above problems, the four-wheel steering control device of the present invention has a rear wheel turning mechanism a capable of turning the rear wheels, and performs rear wheel rotation in relation to the steering state of the front wheels. In a four-wheel steering control device in which a steering amount is determined, a driving slip detecting means b for detecting a slip state of a driving wheel, a lateral force characteristic with respect to a driving slip of a tire on which the driving wheel is mounted, that is, driving from a non-slip state. The lateral force increases with the increase of the wheel slip and increases to a maximum, and thereafter, the tire lateral force characteristic setting means c for setting the tire lateral force characteristic which decreases with the increase of the drive wheel slip, and the detected drive slip is set. Steering angle ratio calculating means d for calculating the steering angle ratio of the front and rear wheels in accordance with the tire lateral force determined based on the tire lateral force characteristics, and rear wheel rotation by multiplying the calculated steering angle ratio by the front wheel steering angle. Rudder Wheel steering control means e after that steering control of the rear wheels decide
And.

(作 用) 駆動輪スリップが生じるような旋回時には、舵角比演
算手段dにおいて、駆動スリップ検出手段bにより検出
された駆動スリップと、タイヤ横力特性設定手段cにお
いて設定されたタイヤ横力特性に基づいて求められるタ
イヤ横力に応じて前後輪の舵角比が演算される。そし
て、後輪転舵制御手段eにおいて、舵角比演算手段dに
より演算された舵角比と前輪転舵角との乗算により後輪
転舵量を決めて後輪が転舵制御される。
(Operation) At the time of turning in which a driving wheel slip occurs, the steering angle ratio calculating means d detects the driving slip detected by the driving slip detecting means b and the tire lateral force characteristic set by the tire lateral force characteristic setting means c. The steering angle ratio of the front and rear wheels is calculated according to the tire lateral force obtained based on the above. Then, in the rear wheel turning control means e, the rear wheel turning amount is determined by multiplying the front wheel turning angle by the steering angle ratio calculated by the steering angle ratio calculating means d, and the rear wheels are turned.

よって、単純に駆動スリップの発生により前後輪の舵
角比を決めるのではなく、駆動スリップに対するタイヤ
横力特性、すなわち、非スリップ状態から駆動輪スリッ
プの上昇に伴い横力が増して最大となりそれ以降は駆動
輪スリップの上昇に伴い減少する特性に基づいて求めら
れるタイヤ横力に応じて前後輪の舵角比が決められるた
め、タイヤ特性の横力最大点や非線形性に対し最適な量
で後輪が転舵される。
Therefore, instead of simply determining the steering angle ratio between the front and rear wheels due to the occurrence of the drive slip, the tire lateral force characteristic with respect to the drive slip, that is, the lateral force increases from the non-slip state to the drive wheel slip and increases to the maximum. Thereafter, since the steering angle ratio of the front and rear wheels is determined according to the tire lateral force required based on the characteristic that decreases with the rise of the drive wheel slip, the optimal amount for the lateral force maximum point and nonlinearity of the tire characteristic The rear wheels are steered.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

まず、構成を説明する。 First, the configuration will be described.

第2図は本発明第1実施例の四輪操舵制御装置を示す
全体図である。
FIG. 2 is an overall view showing the four-wheel steering control device according to the first embodiment of the present invention.

第1実施例の四輪操舵制御装置は、FF車に適用されて
いて、1,2は前輪、3,4は後輪、5はハンドル、6は操舵
角センサ、7はトランスミッション、8はエンジン、9
はコントローラ、10は後輪転舵アクチュエータ(後輪転
舵機構)、11は左前輪速センサ、12は右前輪速センサ、
13は左後輪速センサ、14は右後輪速センサ、15は車速セ
ンサである。
The four-wheel steering control device of the first embodiment is applied to a front-wheel-drive vehicle, where 1, 2 are front wheels, 3, 4 are rear wheels, 5 is a steering wheel, 6 is a steering angle sensor, 7 is a transmission, and 8 is an engine. , 9
Is a controller, 10 is a rear wheel steering actuator (rear wheel steering mechanism), 11 is a front left wheel speed sensor, 12 is a front right wheel speed sensor,
13 is a left rear wheel speed sensor, 14 is a right rear wheel speed sensor, and 15 is a vehicle speed sensor.

前記コントローラ9は、各センサ5,11,12,13,14,(1
5)からのセンサ信号を入力し、これらの操舵角情報,
車輪速情報,(車速情報)に基づいて後輪転舵量δ
演算し、この後輪転舵量δが得られる駆動指令を後輪
転舵アクチュエータ10に出力する。
The controller 9 controls each of the sensors 5, 11, 12, 13, 14, (1
5) Input the sensor signal from
Wheel speed information, calculates a rear-wheel steering amount [delta] r based on the (vehicle speed information), and outputs a drive command the rear wheel steering amount [delta] r is obtained in the rear wheel steering actuator 10.

そして、コントローラ9には、演算による駆動スリッ
プ率Sと予め設定されたタイヤの横力特性マップに基づ
いて舵角比K(S)を演算し、この舵角比K(S)と前
輪転舵角δの乗算により後輪転舵量δを求める後輪
転舵制御部(後輪転舵制御手段)を有する。尚、前記前
輪転舵角δは、ハンドル操舵角θを車両固有のステア
リングギア比Nで除した値であり、前記コントローラ9
内で演算される。
The controller 9 calculates a steering angle ratio K (S) based on the calculated driving slip ratio S and a preset tire lateral force characteristic map, and calculates the steering angle ratio K (S) and the front wheel steering. There is a rear wheel turning control unit (rear wheel turning control means) for obtaining a rear wheel turning amount δ r by multiplication of the angle δ f . Incidentally, the front wheel steering angle [delta] f is the steering angle θ is a value obtained by dividing the vehicle-specific steering gear ratio N, the controller 9
Is calculated within.

前記タイヤの横力特性マップは、駆動輪に装着される
個々のタイヤについて実験データを得、このデータに基
づき非線形特性を持つテーブルまたは演算式の形で設定
される。
The lateral force characteristic map of the tire is set in the form of a table having a non-linear characteristic or an arithmetic expression based on experimental data obtained from individual tires mounted on the driving wheels.

次に、作用を説明する。 Next, the operation will be described.

第3図はコントローラ9で行なわれる後輪転舵制御作
動の流れを示すフローチャートで、以下、各ステップに
ついて述べる。
FIG. 3 is a flowchart showing the flow of the rear wheel steering control operation performed by the controller 9, and each step will be described below.

ステップ30では、操舵各θと各車輪速NFL,NFR,NRL,N
RRが読み込まれる。
In step 30, each steering θ and each wheel speed N FL , N FR , N RL , N
RR is read.

ステップ31では、各車輪速NFL,NFR,NRL,NRRに基づい
て駆動スリップ率Sが演算される。
In step 31, the drive slip ratio S is calculated based on the wheel speeds N FL , N FR , N RL , N RR .

駆動スリップ率Sの演算式は、従動輪である後輪速を
車体速度と近似した場合、下記の通りである。
The equation for calculating the drive slip ratio S is as follows when the rear wheel speed, which is the driven wheel, is approximated to the vehicle speed.

NF=1/2(NFL+NFR) NR=1/2(NRL+NRR) ステップ32では、固定の特性またはタイヤ横滑りβt
に応じた特性(例えば、ステップ枠内に記載の特性)に
よるタイヤ横力特性f(S)が設定される。尚、本実施
例においては、後述するβf(前輪横滑り角)が前記タ
イヤ横滑り角βtに相当する。
N F = 1/2 (N FL + N FR ) N R = 1/2 (N RL + N RR ) In step 32, the fixed characteristic or tire slip βt
(For example, the characteristics described in the step frame), the tire lateral force characteristics f (S) are set. In this embodiment, βf (front wheel side slip angle) described later corresponds to the tire side slip angle βt.

ステップ33では、ステップ32で設定されたタイヤ横力
特性f(S)と、車両固有の定数Aとに基づいて下記の
式により舵角比K(S)が演算される。
In step 33, the steering angle ratio K (S) is calculated by the following equation based on the tire lateral force characteristic f (S) set in step 32 and the vehicle-specific constant A.

尚、定数Aは下記に式で与えられる。 The constant A is given by the following equation.

a;前輪〜重心間距離 b;後輪〜重心間距離 Cf;前輪コーナリングパワー Cr;後輪コーナリングパワー ステップ34では、舵角比K(S)と前輪転舵角δ
の乗算により後輪転舵量δ(=K(S)・δ)が決
定される。
a; front-centroid distance b; rear-centroid distance between Cf; wheel cornering power Cr; the rear wheel cornering power step 34, the rear rotary by the multiplication of the steering angle ratio K (S) and the front wheel turning angle [delta] f The steering amount δ r (= K (S) · δ f ) is determined.

次に、タイヤの横力特性について述べる。 Next, the lateral force characteristics of the tire will be described.

第4図はタイヤ特性(駆動スリップ率Sに対する横力
特性及び駆動力特性)である。
FIG. 4 shows tire characteristics (lateral force characteristics and driving force characteristics with respect to the driving slip ratio S).

この第4図でいずれの特性も駆動スリップ率Sに依存
していることが分かるが、このうち、横力特性に着目す
ると、駆動スリップ率Sの上昇に伴ない直ちに横力の低
下がみられず、タイヤ横滑り角βtにかかわらず駆動ス
リップ率Sが0.05付近で横力は最大となり、それ以降で
減少するという特性を示している。
It can be seen from FIG. 4 that all the characteristics depend on the driving slip ratio S. Of these, when focusing on the lateral force characteristics, the lateral force immediately decreases as the driving slip ratio S increases. Instead, the lateral force is maximum when the drive slip ratio S is around 0.05 regardless of the tire side slip angle βt, and decreases after that.

ところが、上記従来技術は駆動スリップの発生度合に
応じて舵角比の補正を行なう制御であり、この横力最大
点を全く考慮していない。
However, the above-mentioned prior art is a control for correcting the steering angle ratio in accordance with the degree of occurrence of the driving slip, and does not consider this lateral force maximum point at all.

従って、この従来装置をFF車に適用し、前輪の駆動ス
リップが少しでも生じた時点から後輪転舵量を逆相方向
に補正し、アンダーステアを防止するようにした場合、
不要に旋回限界を下げてしまうことになる。
Therefore, when this conventional device is applied to a front-wheel drive vehicle and the rear wheel steering amount is corrected in the opposite phase from the point in time when the front wheel drive slip occurs even a little, understeer is prevented.
Unnecessarily lowering the turning limit.

これに対し、本実施例では、タイヤ横力の駆動スリッ
プ率依存性に着目し、K(S)・δにより後輪転舵量
δを決定するようにしているが、この物理的な意味に
ついて、第5図に示す解析モデルを参照しながら述べ
る。
In contrast, in the present embodiment, focusing on the driving slip ratio dependency of tire lateral force, but so as to determine a rear-wheel steering amount [delta] r by K (S) · δ f, the physical meaning Will be described with reference to the analysis model shown in FIG.

まず、4WSの場合、車両のヨーモーメントmは下記の
式であらわされる。
First, in the case of 4WS, the yaw moment m of the vehicle is represented by the following equation.

m=a・Cf・βf−b・Cr・βr …(1) βf;前輪横滑り角 βr;後輪横滑り角 ここで、前輪コーナリングパワーCfは駆動スリップ率
Sにより変化する為、駆動スリップ率Sの関数としてCf
・f(S)とおくと、舵の効き量(ハンドル操舵角θの
変化に対する車両のヨーモーメントmの変化)は、 但し、 δ=K・δ βf=δ+β−(a/R) βr=δ+β+(b/R) β;車体重心点横滑り角 R;旋回半径 K;舵角比 となる。
m = a · Cf · βf−b · Cr · βr (1) βf; front wheel side slip angle βr; rear wheel side slip angle Here, the front wheel cornering power Cf changes according to the drive slip ratio S. Cf as function
If f (S) is set, the effective amount of the rudder (the change in the yaw moment m of the vehicle with respect to the change in the steering angle θ) is However, δ r = K · δ f βf = δ f + β- (a / R) βr = δ r + β + (b / R) β; a steering angle ratio; vehicle gravity center point sideslip angle R; turning radius K.

ここで、前記舵の効き量 が駆動スリップ率Sに依存しないとする下記の条件を与
える。
Here, the effectiveness of the rudder Does not depend on the drive slip ratio S.

前記舵角比Kを駆動スリップ率Sの関数K(S)とし
て上記(1),(2)式を解くと、 但し、 となる。
Solving the above equations (1) and (2) using the steering angle ratio K as a function K (S) of the drive slip ratio S, However, Becomes

よって、 とすればよいことがわかる(ステップ33)。Therefore, (Step 33).

つまり、舵角比K(S)は、駆動スリップ率Sに対す
るタイヤ横力特性f(S)に基づき決定すればよいこと
がわかる。
That is, it is understood that the steering angle ratio K (S) may be determined based on the tire lateral force characteristic f (S) with respect to the driving slip ratio S.

以上説明してきたように、実施例の四輪操舵制御装置
にあっては、タイヤ横力の駆動スリップ依存性f(S)
に着目し、タイヤの駆動スリップ率Sに対する横力特性
f(S)に基づき前後輪の舵角比K(S)を決定する装
置とした為、駆動スリップ発生時にタイヤ特性の横力最
大点や非線形性に対し最適な量で後輪3,4が転舵される
ことになり、車両の旋回限界をできるだけ引き上げるこ
とが出来ると共に、タイヤ特性の非線形領域での後輪転
舵制御を的確に行うことが出来る。
As described above, in the four-wheel steering control device of the embodiment, the drive slip dependence f (S) of the tire lateral force is obtained.
And a device for determining the steering angle ratio K (S) of the front and rear wheels based on the lateral force characteristic f (S) with respect to the driving slip ratio S of the tire. The rear wheels 3 and 4 are steered by the optimum amount for the non-linearity, so that the turning limit of the vehicle can be raised as much as possible, and the rear wheel steering control in the non-linear region of the tire characteristics is accurately performed. Can be done.

次に、第2実施例について説明する。 Next, a second embodiment will be described.

第1実施例装置は、上記(5)式でK(0)=0とし
て設定、つまり、駆動スリップ率Sが零の時、舵角比K
(S)を零としていることからも明らかなように、駆動
スリップ率Sが零の時には後輪を転舵せず(2WS)、駆
動スリップが発生した時にのみ駆動スリップ率Sに応じ
て後輪を転舵する例となっている。
The device of the first embodiment is set as K (0) = 0 in the above equation (5), that is, when the drive slip ratio S is zero, the steering angle ratio K
As is clear from the fact that (S) is set to zero, the rear wheel is not steered when the drive slip ratio S is zero (2WS), and only when a drive slip occurs, the rear wheel is changed according to the drive slip ratio S. This is an example of turning the steering wheel.

これに対し、この第2実施例装置は、基本的には車速
Vに応じた舵角比K(V)で後輪3,4を転舵し、これに
加えて、駆動スリップ率Sに応じた舵角比K(S)によ
る転舵量で後輪3,4の転舵量を補正するようにした例で
ある。
On the other hand, in the second embodiment, the rear wheels 3 and 4 are basically steered at a steering angle ratio K (V) corresponding to the vehicle speed V. This is an example in which the steering amount of the rear wheels 3 and 4 is corrected by the steering amount based on the steering angle ratio K (S).

第2実施例装置の構成は、第2図に示す構成と同様で
あるので説明を省略する。
The configuration of the device of the second embodiment is the same as the configuration shown in FIG.

尚、コントローラ9には、車速Vに基づいて演算され
た主舵角比K(V)から主後輪転舵量δr1を決定し、駆
動スリップ率Sとタイヤ横力特性f(S)に基づいて演
算された補正舵角比K(S)から補正後輪転舵量δr2
決定し、両後輪転舵量δr1r2の和により総後輪転舵
量δを求める後輪転舵制御部(後輪転舵制御手段)を
有する。
The controller 9 determines the main rear wheel turning amount δ r1 from the main steering angle ratio K (V) calculated based on the vehicle speed V, and based on the driving slip ratio S and the tire lateral force characteristic f (S). Rear wheel turning control which determines the corrected rear wheel turning amount δ r2 from the corrected steering angle ratio K (S) calculated in the above, and obtains the total rear wheel turning amount δ r by the sum of both rear wheel turning amounts δ r1 and δ r2. (Rear wheel steering control means).

次に、作用を説明する。 Next, the operation will be described.

第6図はコントローラ9で行なわれる後輪転舵制御作
動の流れを示すフローチャートで、以下、各ステップに
ついて述べる。
FIG. 6 is a flowchart showing the flow of the rear wheel steering control operation performed by the controller 9, and each step will be described below.

ステップ60では、操舵各θと車速Vと各車輪速NFL,N
FR,NRL,NRRが読み込まれる。
In step 60, the steering θ, the vehicle speed V, and the wheel speeds N FL , N
FR , NRL , and NRR are read.

ステップ61では、車速Vに応じて主舵角比K(V)が
決定される。
In step 61, the main steering angle ratio K (V) is determined according to the vehicle speed V.

即ち、前輪転舵角δに対する後輪転舵量δの比で
ある主舵角比K(V)は、第7図に示すように、低車速
であるほど大きな逆相後輪転舵量とし、高車速であるほ
ど大きな同相後輪転舵量とし、車速Vの上昇に従って滑
らかにその比が逆相側から同相側に変化するように与え
られる。
That is the ratio of the rear wheel steering amount [delta] r with respect to the front wheel steering angle [delta] f the main steering ratio K (V), as shown in FIG. 7, and as is the low-speed large after reverse phase wheel steering amount The higher the vehicle speed, the larger the in-phase rear wheel steering amount, and the ratio is smoothly changed from the opposite phase to the same phase as the vehicle speed V increases.

ステップ62では、主舵角比K(V)と前輪転舵角δ
により主後輪転舵量δr1が下記の式で決定される。
In step 62, the main steering angle ratio K (V) and the front wheel turning angle δ f
Accordingly, the main rear wheel steering amount δr1 is determined by the following equation.

δr1=・K(V)δ ステップ63では、ステップ31と同様に、各車輪速NFL,
NFR,NRL,NRRに基づいて駆動スリップ率Sが演算され
る。
δ r1 = · K (V) δ f In step 63, similarly to step 31, the respective wheel speeds N FL ,
The drive slip ratio S is calculated based on N FR , N RL , and N RR .

ステップ64では、ステップ32と同様に、固定の特性ま
たはタイヤ横滑り角βt(=βf)に応じた特性(例え
ば、ステップ枠内に記載の特性)によるタイヤ横力特性
f(S)が設定される。
In step 64, similarly to step 32, the tire lateral force characteristic f (S) based on the fixed characteristic or the characteristic (for example, the characteristic described in the step frame) according to the tire slip angle βt (= βf) is set. .

ステップ65では、ステップ33と同様に、ステップ64で
設定されたタイヤ横力特性f(S)と、車両固有の定数
Aとに基づいて補正舵角比K(S)が演算される。
In step 65, similarly to step 33, the corrected steering angle ratio K (S) is calculated based on the tire lateral force characteristic f (S) set in step 64 and the vehicle-specific constant A.

ステップ66では、補正舵角比K(S)と前輪転舵角δ
との乗算により補正後輪転舵量δr2(=K(S)・δ
)が決定される。
In step 66, the corrected steering angle ratio K (S) and the front wheel turning angle δ
f , the corrected wheel turning amount δ r2 (= K (S) · δ
f ) is determined.

ステップ67では、主後輪転舵量δr1と補正後輪転舵量
δr2との和である下記の式により総後輪転舵量δが決
定される。
In step 67, the total rear wheel steering amount [delta] r is determined by the following equation which is the sum of the primary rear wheel steering amount [delta] r1 and corrected rear wheel turning amount [delta] r2.

δ=δr1+δr2 従って、この第2実施例装置では、駆動スリップが発
生するような加速旋回時には、第1実施例装置と同様
に、車両の旋回限界をできるだけ引き上げることが出来
ると共に、タイヤ特性の非線形領域での後輪転舵制御を
的確に行うことが出来るし、加えて、駆動スリップの発
生しない旋回時には、δ=δr1により車速Vに応じて
後輪転舵量が与えられることで、低速旋回域での回頭性
と高速旋回域での安定性の両立を図ることが出来る。
δ r = δ r1 + δ r2 Therefore, in the second embodiment, the vehicle turning limit can be raised as much as possible at the time of the acceleration turning in which the driving slip occurs, as in the first embodiment, and the tire can be raised. The rear wheel steering control can be accurately performed in the non-linear region of the characteristic. In addition, at the time of turning without driving slip, the rear wheel steering amount is given according to the vehicle speed V by δ r = δ r1. In addition, it is possible to achieve both turning performance in a low-speed turning range and stability in a high-speed turning range.

以上、実施例を図面に基づいて説明してきたが、具体
的な構成はこの実施例に限られるものではない。
Although the embodiments have been described with reference to the drawings, the specific configuration is not limited to the embodiments.

例えば、実施例ではFF車への適用例を示したが、FR車
に適用しても良い。
For example, in the embodiment, an example in which the present invention is applied to an FF vehicle is shown, but the present invention may be applied to an FR vehicle.

但し、FF車の場合には、駆動スリップに基づく強アン
ダーステア化を防止するべく逆相側に後輪転舵量や補正
後輪転舵量を与えることになるのに対し、FR車の場合に
は、駆動スリップに基づく強オーバステア化を防止する
べく同相側に後輪転舵量や補正後輪転舵量を与えること
になる。
However, in the case of FF vehicles, the rear wheel steering amount and the corrected rear wheel steering amount are given to the opposite phase side to prevent strong understeering based on drive slip, whereas in the case of FR vehicles, A rear wheel turning amount and a corrected rear wheel turning amount are given to the in-phase side in order to prevent a strong oversteer caused by the driving slip.

また、実施例では、駆動スリップ状態をみる制御情報
として、駆動スリップ率を用いた例を示したが、前後輪
回転速度差や駆動スリップ比を駆動スリップ情報として
も良い。
Further, in the embodiment, the example in which the drive slip ratio is used as the control information for checking the drive slip state is shown, but the difference between the front and rear wheel rotational speeds and the drive slip ratio may be used as the drive slip information.

(発明の効果) 以上説明してきたように、本発明にあっては、後輪を
転舵可能な後輪転舵機構を持ち、前輪の操舵状態に関連
して後輪転舵量が決められる四輪操舵制御装置におい
て、駆動輪のスリップ状態を検出する駆動スリップ検出
手段と、駆動輪の装着されているタイヤの駆動スリップ
に対する横力特性、すなわち、非スリップ状態から駆動
輪スリップの上昇に伴い横力が増して最大となりそれ以
降は駆動輪スリップの上昇に伴い減少するタイヤ横力特
性を設定するタイヤ横力特性設定手段と、前記検出され
た駆動スリップと設定されたタイヤ横力特性に基づいて
求められるタイヤ横力に応じて前後輪の舵角比を演算す
る舵角比演算手段と、演算された舵角比と前輪転舵角と
の乗算により後輪転舵量を決めて後輪を転舵制御する後
輪転舵制御手段と、を設けたため、駆動スリップ発生時
にタイヤ特性の横力最大点や非線形性に対し最適な量で
後輪が転舵されることになり、車両の旋回限界をできる
だけ引き上げることが出来ると共に、タイヤ特性の非線
形領域での後輪転舵制御を的確に行なうことが出来ると
いう効果が得られる。
(Effects of the Invention) As described above, according to the present invention, a four-wheeled vehicle having a rear-wheel steering mechanism capable of steering the rear wheels, and in which the rear-wheel steering amount is determined in relation to the steering state of the front wheels. In the steering control device, a driving slip detecting means for detecting a slip state of the driving wheel, and a lateral force characteristic with respect to a driving slip of a tire on which the driving wheel is mounted, that is, a lateral force with a rise of the driving wheel slip from a non-slip state. Tire lateral force characteristic setting means for setting a tire lateral force characteristic that increases to a maximum and thereafter decreases as the drive wheel slip increases, and a tire lateral force characteristic determined based on the detected drive slip and the set tire lateral force characteristic. Steering angle ratio calculating means for calculating the steering angle ratio of the front and rear wheels in accordance with the lateral force of the tire, and determining the amount of rear wheel steering by multiplying the calculated steering angle ratio by the front wheel steering angle to steer the rear wheels. Rear wheel steering to control Control means, the rear wheels are steered by an optimum amount for the lateral force maximum point and the non-linearity of the tire characteristics when a drive slip occurs, and the turning limit of the vehicle can be raised as much as possible. Thus, an effect is obtained that the rear wheel steering control can be accurately performed in the non-linear region of the tire characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の四輪操舵制御装置を示すクレーム対応
図、第2図は第1実施例の四輪操舵制御装置を示す全体
図、第3図は第1実施例の四輪操舵制御装置のコントロ
ーラで行なわれる後輪転舵制御作動の流れを示すフロー
チャート、第4図は駆動スリップ率に対する横力及び駆
動力特性図、第5図は四輪操舵車の解析モデル図、第6
図は第2実施例の四輪操舵制御装置のコントローラで行
なわれる後輪転舵制御作動の流れを示すフローチャー
ト、第7図は車速対応の主舵角比特性図である。 a……後輪転舵機構 b……駆動スリップ検出手段 c……タイヤ横力特性設定手段 d……舵角比演算手段 e……後輪転舵制御手段
FIG. 1 is a claim correspondence diagram showing a four-wheel steering control device of the present invention, FIG. 2 is an overall view showing a four-wheel steering control device of a first embodiment, and FIG. 3 is a four-wheel steering control of the first embodiment. FIG. 4 is a flow chart showing a flow of a rear wheel steering control operation performed by a controller of the apparatus, FIG. 4 is a characteristic diagram of lateral force and driving force with respect to a driving slip ratio, FIG. 5 is an analysis model diagram of a four-wheel steering vehicle, FIG.
FIG. 7 is a flowchart showing the flow of a rear wheel turning control operation performed by the controller of the four-wheel steering control device according to the second embodiment. FIG. 7 is a main steering angle ratio characteristic diagram corresponding to the vehicle speed. a rear wheel turning mechanism b drive slip detecting means c tire lateral force characteristic setting means d steering angle ratio calculating means e rear wheel turning control means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B62D 113:00 137:00 Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B62D 113: 00 137: 00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】後輪を転舵可能な後輪転舵機構を持ち、前
輪の操舵状態に関連して後輪転舵量が決められる四輪操
舵制御装置において、 駆動輪のスリップ状態を検出する駆動スリップ検出手段
と、 駆動輪の装着されているタイヤの駆動スリップに対する
横力特性、すなわち、非スリップ状態から駆動輪スリッ
プの上昇に伴い横力が増して最大となりそれ以降は駆動
輪スリップの上昇に伴い減少するタイヤ横力特性を設定
するタイヤ横力特性設定手段と、 前記検出された駆動スリップと設定されたタイヤ横力特
性に基づいて求められるタイヤ横力に応じて前後輪の舵
角比を演算する舵角比演算手段と、 演算された舵角比と前輪転舵角との乗算により後輪転舵
量を決めて後輪を転舵制御する後輪転舵制御手段と、 を設けたことを特徴とする四輪操舵制御装置。
A four-wheel steering control device having a rear wheel steering mechanism capable of steering a rear wheel and determining a rear wheel steering amount in relation to a front wheel steering state. Slip detecting means and a lateral force characteristic with respect to the drive slip of the tire on which the drive wheel is mounted, that is, the lateral force increases from the non-slip state with the increase of the drive wheel slip and becomes maximum, and thereafter, the drive wheel slip increases. Tire lateral force characteristic setting means for setting a tire lateral force characteristic to be decreased, and a steering angle ratio between the front and rear wheels according to a tire lateral force obtained based on the detected drive slip and the set tire lateral force characteristic. Steering angle ratio calculating means for calculating, and rear wheel turning control means for determining the amount of rear wheel turning by multiplying the calculated steering angle ratio by the front wheel turning angle to control turning of the rear wheels. Featured four wheels Rudder control unit.
JP2258576A 1990-09-26 1990-09-26 Four-wheel steering control device Expired - Lifetime JP2626226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258576A JP2626226B2 (en) 1990-09-26 1990-09-26 Four-wheel steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258576A JP2626226B2 (en) 1990-09-26 1990-09-26 Four-wheel steering control device

Publications (2)

Publication Number Publication Date
JPH04133867A JPH04133867A (en) 1992-05-07
JP2626226B2 true JP2626226B2 (en) 1997-07-02

Family

ID=17322171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258576A Expired - Lifetime JP2626226B2 (en) 1990-09-26 1990-09-26 Four-wheel steering control device

Country Status (1)

Country Link
JP (1) JP2626226B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640051B2 (en) * 1986-04-30 1994-05-25 マツダ株式会社 Road condition determination device

Also Published As

Publication number Publication date
JPH04133867A (en) 1992-05-07

Similar Documents

Publication Publication Date Title
JP3046108B2 (en) Steering force control method for vehicle with differential limiting device
JP3577375B2 (en) Traction control device for four-wheel drive vehicle
JP2600986B2 (en) Rear wheel steering control method
KR100215343B1 (en) Apparatus estimating a vehicle slip-angle
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
EP1741615B1 (en) Steering control system for vehicle
JP2641743B2 (en) Rear wheel control method for four-wheel steering vehicles
JP2600386B2 (en) Rear wheel steering control device
JPH0392483A (en) Rear wheel steering control device
US6810317B2 (en) System and method for controlling and/or regulating the handling characteristics of a motor vehicle
US20190337565A1 (en) Electric power steering apparatus
JP3191708B2 (en) Vehicle skid state quantity detection device
JPH06221968A (en) Road surface friction coefficient detection device
Whitehead Rear wheel steering dynamics compared to front steering
JP2626226B2 (en) Four-wheel steering control device
JPH05139327A (en) Vehicle motion controller
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JP2734285B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP5390289B2 (en) Vehicle rear wheel steering control device
JPH1178933A (en) Method and device for estimating side slip angle of vehicle body
JP3431061B2 (en) Vehicle steering control device
JPH10282138A (en) Slip angular velocity correcting device
JP3166388B2 (en) Steering force control device
JP3033247B2 (en) Vehicle steering characteristic control device
JP2996023B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device