JP2625665B2 - Operation control method in filter press - Google Patents

Operation control method in filter press

Info

Publication number
JP2625665B2
JP2625665B2 JP3235396A JP23539691A JP2625665B2 JP 2625665 B2 JP2625665 B2 JP 2625665B2 JP 3235396 A JP3235396 A JP 3235396A JP 23539691 A JP23539691 A JP 23539691A JP 2625665 B2 JP2625665 B2 JP 2625665B2
Authority
JP
Japan
Prior art keywords
concentration
concentrated sludge
stock solution
volume
filtration chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3235396A
Other languages
Japanese (ja)
Other versions
JPH0549818A (en
Inventor
正昭 小比賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP3235396A priority Critical patent/JP2625665B2/en
Publication of JPH0549818A publication Critical patent/JPH0549818A/en
Application granted granted Critical
Publication of JP2625665B2 publication Critical patent/JP2625665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、一定容積のろ過室に
原液を圧入ろ過し、更に加圧・圧搾して固液分離を行な
うフイルタプレスの運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a filter press in which an undiluted solution is press-fitted and filtered into a filtration chamber having a fixed volume, and further pressurized and pressed to perform solid-liquid separation.

【0002】[0002]

【従来の技術】 従来、フイルタプレスによる脱水で
は、圧入タイム、圧搾タイムともにタイマーを設定して
運転し、脱水したケーキをサンプリングして、含水率の
測定をし、所望の含水率及びろ過速度が得られない場合
は、前記タイマー設定を変更して、運転を継続してい
る。また、配管経路に汚泥流量検出器やろ液流量検出器
を設けて、この検出信号によりコンピュータに演算さ
せ、脱水機の最適運転を行なおうとする運転制御方法も
あった。(例えば、特公昭59−29282号)。
2. Description of the Related Art Conventionally, in the dehydration by a filter press, a timer is set for both a press-in time and a squeezing time, and the dehydration cake is sampled, the moisture content is measured, and the desired moisture content and filtration rate are determined. If not, the timer setting is changed and the operation is continued. There has also been an operation control method in which a sludge flow rate detector or a filtrate flow rate detector is provided in a piping route, and a computer is operated based on the detection signal to perform an optimal operation of the dehydrator. (For example, Japanese Patent Publication No. 59-29282).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来装置において、前段の圧入時間、圧搾時間をタイマ
ーで行なうものにあっては、原液の状態が変化した場合
に、最適な時間となるように試行錯誤を繰り返し、繁雑
な運転管理を行なっていた。また、後段の電磁流量計等
の流量検知器を用いて測定するものにあっては、圧入後
期には、原液あるいはろ液が検知部の配管内において満
管状態とならず測定誤差が生じていた。また、圧入時の
ろ液量を測定するものにあっては、圧入時のろ板シール
面からのろ液漏れが多く、ろ液量の測定誤差が大きかっ
た。本発明は、このような問題を鑑みて、所定の濃縮汚
泥濃度を得るために、過去のろ過データから原液圧入時
と圧搾時とのろ過室の濃縮汚泥濃度を設定し、随時現時
点の原液圧入量と原液濃度からろ過室の濃縮汚泥濃度を
計算して、圧入タイムをコントロールし、圧搾時には、
圧入によってろ過室内に充満した濃縮汚泥から分離され
たろ液量を計測し、圧搾時のろ過室の濃縮汚泥濃度を計
算して圧搾タイムをコントロールするようにした運転制
御方法を提供せんとするものである。
However, in the above-mentioned conventional apparatus, in which the press-fitting time and the squeezing time in the former stage are performed by a timer, the optimum time is set when the state of the stock solution changes. Trial and error were repeated and complicated operation management was performed. In the case of measurement using a flow rate detector such as an electromagnetic flow meter at the subsequent stage, in the latter stage of press-fitting, the undiluted solution or the filtrate does not become full in the piping of the detection unit, and a measurement error occurs. Was. Further, in the apparatus for measuring the amount of filtrate at the time of press-fitting, there was much filtrate leakage from the filter plate sealing surface at the time of press-fitting, and the measurement error of the amount of filtrate was large. In view of such a problem, the present invention provides a method for injecting undiluted liquid from past filtration data in order to obtain a predetermined concentrated sludge concentration.
Set the concentration of concentrated sludge in the filtration chamber at the time of
The concentrated sludge concentration in the filtration chamber is
Calculate and control the press-in time, when pressing,
Separated from the concentrated sludge filled in the filtration chamber by injection
Measure the filtrate volume and measure the concentration of concentrated sludge in the filtration chamber during squeezing.
Operation control method adapted to control the pressing time was calculated there is provided cents.

【0004】[0004]

【課題を解決するための手段】本願発明は、一定容積の
ろ過室に圧入ろ過した原液を、加圧・圧搾して固液分離
を行なうようにしたフイルタプレスにおいて、過去のろ
過データより原液圧入時と圧搾時とのろ過室の濃縮汚泥
濃度を設定し、この濃縮汚泥濃度と、原液圧入時の濃縮
汚泥濃度Cu=原液圧入量Qf×原液濃度Cf÷ろ室容
積Vの方程式と、圧搾時の濃縮汚泥濃度C2=ろ室容積
V×圧入時の濃縮汚泥濃度Cu÷(ろ室容積V−圧搾時
の分離ろ液量Q1)の方程式とをマイクロコンピュータ
に入力すると共に、随時現時点の原液圧入量と原液濃度
とをマイクロコンピュータに入力して原液圧入時の濃縮
汚泥濃度を計算させ、設定した濃縮汚泥濃度となった時
に原液圧入を中止させ、次に、圧搾によるろ液量を計測
してマイクロコンピューターに入力し、圧搾時のろ過室
の濃縮汚泥濃度を計算させ、設定した濃縮汚泥濃度と随
時比較演算させて、所定の濃縮汚泥濃度に到達した時点
でダイヤフラムの圧搾を中止させるようにしたものであ
る。
SUMMARY OF THE INVENTION The present invention is a stock solution was injected filtered to the filtration chamber of constant volume, the filter press was perform pressurization and squeezed by solid-liquid separation, past filtrate
According to excess data, concentrated sludge in the filtration chamber during injection and compression
Set the concentration, and the concentration of this concentrated sludge
Sludge concentration Cu = Stock solution injection amount Qf x Stock solution concentration Cf
Equation of product V and concentration of concentrated sludge during pressing C2 = filter chamber volume
V × Concentrated sludge concentration at injection time Cu ÷ (Filter chamber volume V-pressing time
And the equation of the separated filtrate volume Q1)
As well as the stock solution injection volume and stock solution concentration at any time
And input to the microcomputer to concentrate when the stock solution is injected.
When the sludge concentration is calculated and the set sludge concentration is reached
To stop the injection of undiluted solution, and then measure the amount of filtrate by pressing.
And input to the microcomputer, and the filtration chamber when pressing
Calculate the concentrated sludge concentration of the
Time comparison operation is performed, and the time when the specified concentrated sludge concentration is reached
With this, the compression of the diaphragm is stopped .

【0005】[0005]

【作用】本願発明は上記のように構成してあり、圧入タ
ンクからフイルタプレスに原液を圧入すると、圧入タン
クの水位は低下してくる。この水位をレベル計で検知
し、検出信号をマイクロコンピュータに随時入力してフ
イルタプレスへの原液の圧入量を計算させ、この現時点
の原液圧入量と原液濃度より原液圧入時のろ過室の濃縮
汚泥濃度を算出し、設定した濃縮汚泥濃度と比較演算し
て、ろ過室に圧入した原液の濃縮汚泥濃度が所定の設定
値の濃度になった時、フイルタプレスへの原液の圧入を
停止させる。次に、ダイヤフラムを膨張させてろ過室に
圧入された濃縮汚泥を、更に圧搾し、ろ液を取り出して
計量タンクに貯して計量する。このろ液量の検出信号
をマイクロコンピュータに入力し、上記の圧入された濃
縮汚泥濃度と圧搾ろ液量から圧搾時の濃縮汚泥濃度を計
し、設定した濃縮汚泥濃度と比較演算して所定の濃縮
汚泥濃度に到達した時点でダイヤフラムによる圧搾
止させ、フイルタプレスの脱水は完了する。
The present invention is constructed as described above, and when the stock solution is pressed into the filter press from the press-fitting tank, the water level in the press-fitting tank decreases. The water level is detected by the level meter, to calculate the press-fitting amount of the stock solution of the detection signal to the filter press enter any time the microcomputer, the current
Concentration of filtration chamber at injection of undiluted solution from undiluted solution injection amount and undiluted solution concentration
Calculate the sludge concentration and compare it with the set sludge concentration.
The concentrated sludge concentration of the stock solution injected into the filtration chamber
When the concentration reaches the value, the injection of the stock solution into the filter press is stopped. Next, the concentrated sludge that has been pressed into the filtration chamber to expand the diaphragm, further squeezing, weighed and savings reservoir to the metering tank is taken out of the filtrate. The detection signal of the filtrate amount is input to the microcomputer, and the concentrated sludge concentration at the time of pressing is calculated from the pressed-in concentrated sludge concentration and the compressed filtrate amount, and the calculated sludge concentration is compared with the set concentrated sludge concentration. When the concentration of the concentrated sludge is reached, the compression by the diaphragm is stopped, and the dewatering of the filter press is completed.

【0006】[0006]

【実施例】本願発明を実施例に基づき詳述すると、先ず
図1において、符号1はフイルタプレスであって、この
フイルタプレス1のろ過室(図示せず)に圧入タンク2
の原液を圧入ポンプ3で供給するようになっている。圧
入タンク2にはレベル計4と濃度計5が設けられてお
り、レベル計4は、原液をフイルタプレス1に圧入した
時に、圧入タンク2の液面の下降を検知することができ
るようになっている。また、濃度計5は、圧入タンク2
の原液濃度を検出するようになっている。フイルタプレ
ス1にはマイクロコンピュータ6が並設されており、図
2に示すように、このマイクロコンピュータ6には、処
理原液の圧入時の過去の濃縮汚泥濃度が圧入する濃縮汚
泥濃度の設定値として入力されている。そして、フイル
タプレス1に原液を圧入している時は、レベル計4によ
り初期の液面と現時点の液面を検知し、検知信号をマイ
クロコンピュータに入力してフイルタプレスへの原液圧
入量であるタンク容量を随時計算させ、この原液圧入量
と、濃度計で測定した原液濃度と、全ろ過室のろ室容積
とから原液圧入時のろ過室の濃縮汚泥濃度を計算さ せ、
あらかじめ設定した濃縮汚泥濃度に到達した時点で圧入
を完了する。即ち、フイルタプレス1への原液の圧入時
間を制御する方法として、あらかじめマイクロコンピュ
ータ6にろ過室の濃縮汚泥濃度を設定しておき、この濃
縮汚泥濃度と濃縮汚泥濃度Cu=原液圧入量Qf×原液
濃度Cf÷ろ室容積Vの方程式とをプログラムしてお
き、随時現時点の原液圧入量Qfと原液濃度Cfを入力
して濃縮汚泥濃度Cuを計算させ、あらかじめ設定した
濃縮汚泥濃度となった時に原液圧入を中止するようにし
てある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to an embodiment. First, in FIG. 1, reference numeral 1 denotes a filter press, and a press-fit tank 2 is inserted into a filtration chamber (not shown) of the filter press 1.
Is supplied by the press-fit pump 3. The press-fit tank 2 is provided with a level meter 4 and a concentration meter 5, and the level meter 4 can detect a drop in the liquid level of the press-fit tank 2 when the stock solution is press-fitted into the filter press 1. ing. In addition, the densitometer 5 is
The stock solution concentration is detected. The filter press 1 and the microcomputer 6 is arranged, as shown in FIG. 2, the microcomputer 6, fouling enrichment is past thickened sludge concentration during the press fitting process stock is pressed
It is entered as the set value of the mud concentration. When the undiluted solution is being injected into the filter press 1, the initial level and the current level are detected by the level meter 4, and a detection signal is input to the microcomputer to determine the amount of undiluted solution injected into the filter press. to calculate the tank capacity from time to time, this stock press-fit amount
And the stock solution concentration measured with a densitometer, and the filtration chamber volume of all filtration chambers
And calculate the concentration of concentrated sludge in the filtration chamber at the time of injection of undiluted solution ,
The injection is completed when the concentration of the concentrated sludge reaches a preset value. That is, as a method of controlling the injection time of the stock solution into the filter press 1, the concentration of the concentrated sludge in the filtration chamber is set in the microcomputer 6 in advance, and the concentration of the concentrated sludge and the concentration of the concentrated sludge Cu = stock solution injection amount Qf × stock solution The equation of the concentration Cf filtration chamber volume V is programmed, and the concentrated liquid sludge concentration Cu is calculated by inputting the undiluted liquid injection amount Qf and the concentrated liquid concentration Cf at any time. Stop the press fit
It is.

【0007】ここで、圧入ろ過時におけるマイクロコン
ピュータ6にプログラムする方程式を説明すると、処理
する原液圧入量をQf(m)原液濃度をCf(容量
%)とし、濃縮汚泥量をQu(m)濃縮汚泥濃度をC
u(容量%)、分離ろ液量をQo(m)、分離ろ液濃
度をCo(容量%)とすると、次の関係式が成立する。
Qf・Cf=Qu・Cu+Qo・Co・・・ (1)、
Qf=Qu+Qo・・・(2)、今、固形物の回収率が
100%に近いものとすると、(1)式はCo≒0より
Qf・Cf=Qu・Cu・・・(3)、そこで、フイル
タプレスのろ室容積をV(m)とすると、(3)式は
Qu=Vより、Qf・Cf=V・Cu・・・(4)、即
ち、濃縮汚泥濃度Cu=原液圧入量Qf×原液濃度Cf
÷ろ室容積Vの上記の方程式が導き出せるものである。
従って、原液圧入量と、原液濃度及びろ室容積がわかれ
ば、濃縮汚泥濃度は導き出すことができる。
Here, an equation to be programmed in the microcomputer 6 at the time of press-filtration will be described. The amount of the undiluted solution to be processed is Qf (m 3 ), the concentration of the undiluted solution is Cf (volume%), and the amount of the concentrated sludge is Qu (m 3). ) Concentrated sludge concentration is C
When u (volume%), the separated filtrate amount is Qo (m 3 ), and the separated filtrate concentration is Co (volume%), the following relational expression is established.
Qf · Cf = Qu · Cu + Qo · Co (1),
Qf = Qu + Qo (2) Now, assuming that the solids recovery rate is close to 100%, the equation (1) shows that from Co ≒ 0, Qf · Cf = Qu · Cu (3). Assuming that the filter chamber volume of the filter press is V (m 3 ), the equation (3) is based on Qu = V and Qf · Cf = V · Cu (4), that is, concentrated sludge concentration Cu = stock solution injection amount. Qf x stock solution concentration Cf
The above equation of the perforated chamber volume V can be derived.
Therefore, the stock solution injection volume, stock solution concentration and filtration chamber volume are
If so, the concentration of the concentrated sludge can be derived.

【0008】次に、符号7はろ液の計量槽であって、フ
イルタプレスのろ過室から分離されたろ液を貯留するよ
うになっており、計量槽7は電子天秤8に載置してあ
る。そして、ダイヤフラムを膨張させてろ過室を圧搾し
た時に、圧搾ろ液量を計量できるようになっている。マ
イクロコンピューターには、図2に示すように、過去の
ろ過データより圧搾時のろ過室の濃縮汚泥濃度の設定値
が入力されており、圧搾時の分離ろ液量と、圧入原液の
濃縮汚泥濃度及び全ろ過室のろ室容積とから、圧搾時の
ろ過室の濃縮汚泥濃度を計算させ、あらかじめ設定した
濃縮汚泥濃度となった時に圧搾を完了する。即ち、マイ
クロコンピュータ6には、あらかじめ設定してある圧搾
時の濃縮汚泥濃度が入力されており、この設定した濃縮
汚泥濃度と 、ダイヤフラムによる圧搾後のろ過室の濃縮
汚泥濃度C2=ろ室容積V×圧入時の濃縮汚泥濃度Cu
÷(ろ室容積V−圧搾時の分離ろ液量Q1)の方程式と
がコンピューターにプログラムしてあり、圧搾によるろ
液量Q1を計測して、検出信号をマイクロコンピュータ
6に送信し、上記の方程式に入力して、濃縮汚泥濃度C
2を計算し、あらかじめ設定した濃縮汚泥濃度と随時比
較演算して、所定の濃縮汚泥濃度に到達した時点でマイ
クロコンピュータ6の指令信号によりダイヤフラムによ
る圧搾が中止されるようになっている。なお、原液中の
固形物量をパーセント表示したものが、濃度であって、
さらに脱水後、高濃度汚泥になって流動化しない状態の
ものについては、高濃度汚泥中の水分量のことをケーキ
含水率といっている。従って、濃度と含水率の合計が1
00パーセントになるという関係にることが知られて
いる。
Reference numeral 7 denotes a filtrate measuring tank for storing the filtrate separated from the filtration chamber of the filter press. The measuring tank 7 is mounted on an electronic balance 8. And when a diaphragm is expanded and a filtration chamber is squeezed, the amount of squeezed filtrate can be measured . Ma
As shown in Fig. 2, the microcomputer contains the past
Set value of concentrated sludge concentration in filtration chamber at the time of squeezing from filtration data
Is input, and the amount of separated filtrate at the time of pressing and the
Based on the concentration of the concentrated sludge and the volume of the filter
Calculate the concentration of concentrated sludge in the filtration chamber and set it in advance.
Pressing is completed when the concentrated sludge concentration is reached. That is, the microcomputer 6 has a preset squeeze
Are inputted concentrated sludge concentration of time, concentrated with this set
Sludge concentration and concentrated sludge concentration in the filtration chamber after squeezing by the diaphragm C2 = filtration chamber volume V x concentrated sludge concentration at injection Cu
方程式 (Filter chamber volume V-Separated filtrate volume Q1 during squeezing) Equation and
Is programmed in a computer, measures the filtrate volume Q1 by pressing, sends a detection signal to the microcomputer 6, and inputs the above equation into the concentrated sludge concentration C1.
2 is calculated and compared with a preset concentrated sludge concentration at any time. When the concentration reaches a predetermined concentrated sludge concentration, the diaphragm 6 is stopped from being pressed by the command signal of the microcomputer 6. The solid content in the stock solution is expressed as a percentage, and the concentration is
Further, for those in a state in which the sludge becomes high-concentration sludge and is not fluidized after dehydration, the water content in the high-concentration sludge is referred to as the cake moisture content. Therefore, the sum of the concentration and the moisture content is 1
Oh Rukoto is known in the relationship that it becomes 00 percent.

【0009】上記の圧搾工程におけるマイクロコンピュ
ータ6にプログラムする方程式について説明すると、原
液圧入終了時のろ室容積V(m)に充満した濃縮汚泥
濃度を上記よりCu(容量%)とし、この状態からダイ
ヤフラム圧搾により分離してくるろ液量をQ1
(m)、分離液濃度をC1(容量%)、圧搾によって
さらに濃縮した濃縮汚泥量をV2(m)、そのときの
濃縮汚泥濃度C2(容量%)とすると、次の関係式が成
立する。V・Cu=V2・C2+Q1・C1・・・
(6)、V=V2+Q1・・・(7)今、固形物の回収
率が100%近いものとすると、(6)式はC1≒0よ
り、V・Cu=V2・C2・・・(8)、(7)式を代
入すると、V・Cu=(V−Q1)・C2・・・
(9)、即ち、圧搾後の濃縮汚泥濃度C2=ろ室容積V
×原液圧入後の濃縮汚泥濃度Cu÷(ろ室容積V−圧搾
による分離ろ液量Q1)の上記の方程式が導き出せるも
のである。従って、圧搾による分離ろ液量Q1を測定す
ることで圧搾によりさらに濃縮した濃縮汚泥濃度C2が
計算できるものである。なお、符号9は、圧入タンク2
に設けた撹拌装置である。
The equation to be programmed in the microcomputer 6 in the above-mentioned pressing step will be described. The concentration of the concentrated sludge filled in the filtration chamber volume V (m 3 ) at the end of the injection of the undiluted solution is defined as Cu (% by volume). The amount of filtrate separated from the sample by diaphragm compression is Q1
(M 3 ), the concentration of the separated liquid is C1 (volume%), the amount of the concentrated sludge further concentrated by pressing is V2 (m 3 ), and the concentration of the concentrated sludge C2 (volume%) at that time is as follows. I do. V · Cu = V2 · C2 + Q1 · C1 ...
(6), V = V2 + Q1 (7) Assuming that the recovery rate of the solids is close to 100%, the equation (6) shows that from C1 ≒ 0, V · Cu = V2 · C2 (8) ) And (7), V · Cu = (V−Q1) · C2...
(9) That is, the concentrated sludge concentration after pressing C2 = filter chamber volume V
The above equation of × concentrated sludge concentration after injection of the stock solution Cu ÷ (filter chamber volume V−filtrate volume Q1 by pressing) can be derived. Therefore, by measuring the separated filtrate amount Q1 by pressing, the concentrated sludge concentration C2 further concentrated by pressing is determined.
It can be calculated. Reference numeral 9 denotes the press-fit tank 2
It is a stirring device provided in.

【0010】[0010]

【発明の効果】本願発明は、フイルタプレスの圧入ろ過
運転中の原液の圧入量と、原液濃度を 計測し、圧搾時
は、圧搾ろ液量を随時計測して、ろ室容積を利用してろ
過室内の濃縮汚泥濃度を計算し原液の圧入時間と圧搾時
間を制御することによって所定のケーキ含水率とするこ
とができる。即ち、従来のフイルタプレスの運転制御方
法としては、圧入時間と庄搾時間をタイマーを設定して
運転し、所望の含水率が得られない場合には、タイマー
の設定を変更して運転を継続していたものであるが、本
願発明においては、原液の濃度変動や性状変動、あるい
は、ろ布の目詰り度合に応じて圧入時間をコントロール
することができて、従来頻繁に行なっていた圧入時間の
手動設定が不要となり、また、圧搾によるろ液量を測定
することで、ろ室内の濃縮状態(含水状態)を間接的に
把握することができるものである。しかも、圧入時のろ
液量を測定し圧入時間を設定する従来の制御方法にあっ
ては、ろ板間からのろ液の漏れが多く、ろ液量の測定に
誤差が生じていたものであるが、本願発明においては、
原液圧入時の原液の圧入量やろ過室の濃縮汚泥濃度
ンピュータに演算させているので正確な測定が行なえる
ものである。そして、本願発明においては、電磁流量計
を用いて測定する場合の圧入後期の満管状態にならない
といった欠点もないものである。
According to the present invention, the injection amount of the stock solution during the press-filtration operation of the filter press and the stock solution concentration are measured, and the
Measure the volume of the squeezed filtrate at any time and use the
A predetermined cake moisture content can be obtained by calculating the concentration of concentrated sludge in the chamber and controlling the injection time and pressing time of the stock solution. That is, as a conventional operation control method of the filter press, the operation is performed by setting a timer for the press-in time and the squeezing time, and when the desired water content cannot be obtained, the setting of the timer is changed and the operation is continued. However, in the present invention, the press-in time can be controlled in accordance with the concentration fluctuation and the property fluctuation of the stock solution, or the degree of clogging of the filter cloth, and the press-in time which has conventionally been frequently performed can be controlled. This eliminates the need for manual setting, and allows the indirect grasp of the concentration state (water-containing state) in the filter chamber by measuring the amount of filtrate by pressing. Moreover, in the conventional control method of measuring the amount of filtrate at the time of press-fitting and setting the press-fitting time, the amount of filtrate leaking from between the filter plates was large, and an error occurred in the measurement of the amount of filtrate. However, in the present invention,
Since the concentrated sludge concentration of the press-fitting amount or filtration chamber of the stock at the stock solution pressed is thereby calculating the co <br/> computer those performed an accurate measurement. Further, in the present invention, there is no drawback that the full state is not obtained in the latter half of the press-fitting when the measurement is performed using the electromagnetic flowmeter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明の運転制御方法を説明するためのフ
イルタプレスの全体構造図である。
FIG. 1 is an overall structural diagram of a filter press for explaining an operation control method of the present invention.

【図2】 運転制御方法を説明するために、マイクロコ
ンピュータと検知器との関係を示すブロック図である。
FIG. 2 is a block diagram showing a relationship between a microcomputer and a detector for explaining an operation control method.

【符号の説明】[Explanation of symbols]

1 フイルタプレス 2 圧入タンク 4 レベル計 6 マイクロコンピュータ 7 計量槽 DESCRIPTION OF SYMBOLS 1 Filter press 2 Press-fit tank 4 Level meter 6 Microcomputer 7 Measuring tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定容積のろ過室に圧入ろ過した原液
を、加圧・圧搾して固液分離を行なうようにしたフイル
タプレスにおいて、過去のろ過データより原液圧入時と
圧搾時とのろ過室の濃縮汚泥濃度を設定し、この濃縮汚
泥濃度と、原液圧入時の濃縮汚泥濃度Cu=原液圧入量
Qf×原液濃度Cf÷ろ室容積Vの方程式と、圧搾時の
濃縮汚泥濃度C2=ろ室容積V×圧入時の濃縮汚泥濃度
Cu÷(ろ室容積V−圧搾時の分離ろ液量Q1)の方程
式とをマイクロコンピュータ6に入力すると共に、随時
現時点の原液圧入量Qfと原液濃度Cfとをマイクロコ
ンピュータ6に入力して原液圧入時のろ過室の濃縮汚泥
濃度Cuを計算させ、設定した濃縮汚泥濃度となった時
に原液圧入を中止させ、次に、圧搾によるろ液量Q1を
計測してマイクロコンピューター6に入力し、圧搾時の
ろ過室の濃縮汚泥濃度C2を計算させ、設定した濃縮汚
泥濃度と随時比較演算させて、所定の濃縮汚泥濃度に到
達した時点でダイヤフラムの圧搾を中止させることを特
徴とするフイルタプレスにおける運転制御方法。
The method according to claim 1 stock solution was pressed filtered to the filtration chamber of constant volume, the filter press was perform pressurization and squeezed by solid-liquid separation, and when the stock solution pressed from historical filtering data
Set the concentration of concentrated sludge in the filtration chamber at the time of pressing and
Mud concentration and concentration of concentrated sludge at injection of undiluted solution Cu = injection amount of undiluted solution
The equation of Qf x stock solution concentration Cf filtration chamber volume V
Concentrated sludge concentration C2 = Filtration chamber volume V x Concentrated sludge concentration during injection
Cu ÷ (filter chamber volume V-separated filtrate volume Q1 during pressing)
Is input to the microcomputer 6 and
The current stock solution injection amount Qf and stock solution concentration Cf
Concentrated sludge in the filtration chamber when the stock solution is injected into the computer 6
When the concentration Cu is calculated and the set sludge concentration is reached
To stop the injection of the undiluted solution, and then reduce the filtrate volume Q1 by pressing.
Measure and input to the microcomputer 6
Calculate the concentration C2 of the concentrated sludge in the filtration room, and
Comparing with the mud concentration at any time, it reaches the specified concentrated sludge concentration.
An operation control method in a filter press , wherein the diaphragm squeezing is stopped when the pressure reaches the value .
JP3235396A 1991-08-21 1991-08-21 Operation control method in filter press Expired - Lifetime JP2625665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3235396A JP2625665B2 (en) 1991-08-21 1991-08-21 Operation control method in filter press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3235396A JP2625665B2 (en) 1991-08-21 1991-08-21 Operation control method in filter press

Publications (2)

Publication Number Publication Date
JPH0549818A JPH0549818A (en) 1993-03-02
JP2625665B2 true JP2625665B2 (en) 1997-07-02

Family

ID=16985473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3235396A Expired - Lifetime JP2625665B2 (en) 1991-08-21 1991-08-21 Operation control method in filter press

Country Status (1)

Country Link
JP (1) JP2625665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061387A (en) * 2007-09-06 2009-03-26 Toyo Manufacturing Co Ltd Device and method for detecting time when completing dewatering, for dewatering machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328853A (en) * 1976-08-30 1978-03-17 Kubota Ltd Method of automatically controlling filter press
JPS5644011A (en) * 1979-09-14 1981-04-23 Kubota Ltd Control method of filter press
JPS6443314A (en) * 1987-08-11 1989-02-15 Toshiba Corp Controlling device for sludge dehydrator

Also Published As

Publication number Publication date
JPH0549818A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
US4151080A (en) System and apparatus for control and optimization of filtration process
Landman et al. Solid/liquid separation of flocculated suspensions
EP0814887B1 (en) Filtration monitoring and control system
Usher et al. Validation of a new filtration technique for dewaterability characterization
DE69119420T2 (en) METHOD AND DEVICE FOR ADAPTIVE FLOW CONTROL OF A FILTER
US5484536A (en) Filter backwash control method and apparatus
KR102271270B1 (en) Filter press apparatus being able to adjust dewatering efficiency and method for controlling the same
Landman et al. Determination of the hindered settling factor for flocculated suspensions
JP2625665B2 (en) Operation control method in filter press
US4198298A (en) System and apparatus for control and optimization of filtration process
US4514306A (en) Method of and apparatus for controlling the quantity of filter aid fed to a sediment filter so as to maintain virtually constant a preselected optimum specific cake resistance
US5662805A (en) Process and apparatus for controlling the dewatering of suspensions
JP6909980B2 (en) How to operate the filter press
CN211452497U (en) Automatic measuring device for drilling fluid filtration loss
Tarleton A new approach to variable pressure cake filtration
KR102259840B1 (en) Small pressure type apparatus for evaluating efficiency of liquid-solid separation and method therefor
Shirato et al. Experimental analysis of flux decline mechanism of batch ultrafiltration (filtration characteristics of gel layer)
CN218608449U (en) Pressure filter pan feeding control system based on small flowmeter
JPS6214908A (en) Pressurizing and stopping method of filter press type filtration equipment for dewatering
DE3035658A1 (en) METHOD AND DEVICE FOR CONTROLLING THE TREATMENT OF A LIQUID-SOLID MIXTURE, ESPECIALLY FOR CONTROLLING THE DRAINAGE OF SLUDGE
CN112403046A (en) Intelligent operation equipment of pressure filter with monitoring device
Tarleton Predicting the performance of pressure filters
SU1111796A1 (en) Apparatus for regulating operation of cartridge filter-thickener
DE68908487T2 (en) Process for dewatering wet, fine-grained material using compressed gas.
CN112209593A (en) Squeezing method of continuous deep dehydration equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15