JP2621175B2 - Mirror image optics array - Google Patents

Mirror image optics array

Info

Publication number
JP2621175B2
JP2621175B2 JP11098387A JP11098387A JP2621175B2 JP 2621175 B2 JP2621175 B2 JP 2621175B2 JP 11098387 A JP11098387 A JP 11098387A JP 11098387 A JP11098387 A JP 11098387A JP 2621175 B2 JP2621175 B2 JP 2621175B2
Authority
JP
Japan
Prior art keywords
image
mirror image
magnification
lens
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11098387A
Other languages
Japanese (ja)
Other versions
JPS63274915A (en
Inventor
敬介 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11098387A priority Critical patent/JP2621175B2/en
Publication of JPS63274915A publication Critical patent/JPS63274915A/en
Application granted granted Critical
Publication of JP2621175B2 publication Critical patent/JP2621175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鏡像光学系アレイに関し、特に入射光束像を
等倍の鏡像として結像させる鏡像等倍結像系を複数個一
列に並べた鏡像光学系アレイに関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a mirror image optical system array, and more particularly, to a mirror image in which a plurality of mirror image equal-magnification image forming systems for forming an image of an incident light beam as an equal-magnification image are arranged in a line. It relates to an optical system array.

(従来の技術) 従来よりレンズ系を平行に複数個並べて用いる光学系
アレイとしては正立等倍結像アレイがよく知られてい
る。これは光学系アレイを構成している個々のレンズ
(又はレンズ系)が正立等倍結像をするもので、物体か
らの入射光束像を複数に分割して各々一定面上に結像さ
せ、それらの像を合成して一つの物体像を得るものであ
る。これにはSELFOCと呼ばれているラディアル屈折率分
布型のロッドレンズを平行に複数個束ねたものが用いら
れており、特に複写機やファクシミリ等の入力画像の読
み取り系の小型化を図った結像系に用いられている。
(Prior Art) As a conventional optical system array using a plurality of lens systems arranged in parallel, an erecting equal-magnification imaging array is well known. In this method, each lens (or lens system) constituting an optical system array forms an erect equal-magnification image. An image of an incident light beam from an object is divided into a plurality of images and each image is formed on a fixed surface. Are combined to obtain one object image. For this purpose, a plurality of radial refractive index distribution type rod lenses called SELFOC are bundled in parallel, and in particular, the size of the reading system for input images such as copying machines and facsimile machines has been reduced. Used in imaging systems.

前記の如くのロッドレンズを平行に並べて構成される
レンズアレイとしては前記正立等倍結像の他に鏡像等倍
結像アレイが考えられる。
As the lens array configured by arranging the rod lenses as described above in parallel, a mirror image equal-magnification imaging array can be considered in addition to the erect equal-magnification imaging.

従来より入射光束像を鏡像関係の状態で射出させる為
には奇数枚の反射面を使う方法が用いられている。第3
図は該方法を利用しているDoveのプリズムと呼ばれてい
る光学部材を用いて鏡像を得る従来の一実施例を示した
説明図である。しかしながら第3図に示すプリズムを用
いた場合、プリズムへの入射高速を反射面や屈折面を介
して曲げ、更に奇数回の反射面を経る為、系の入射面と
射出面で光軸をそろえる共軸系にするには射出光束の光
軸を曲げられた状態から光束入射前の元の状態と同じ位
置や向きに直す必要がある。
Conventionally, a method using an odd number of reflecting surfaces has been used to emit an incident light beam image in a mirror image relationship. Third
FIG. 1 is an explanatory view showing one embodiment of a conventional technique for obtaining a mirror image using an optical member called a Dove prism utilizing the method. However, when the prism shown in FIG. 3 is used, the high-speed light incident on the prism is bent through a reflection surface or a refraction surface, and further passes through an odd number of reflection surfaces, so that the optical axis is aligned between the entrance surface and the exit surface of the system. In order to form a coaxial system, it is necessary to change the state of the optical axis of the emitted light beam from the bent state to the same position and direction as the original state before the light beam incidence.

従って第3図に示されている如く光路長が長くなり、
かつ物体光束のプリズムの入射時の光軸が一度曲げられ
て入射光軸の動径方向にプリズムがふくらんで大きくな
ってしまう為、系全体の小型化が難しく、諸収差も出易
い傾向があった。
Therefore, the optical path length becomes longer as shown in FIG.
In addition, the optical axis of the object light beam entering the prism is bent once and the prism expands and expands in the radial direction of the incident optical axis, making it difficult to reduce the size of the entire system and tend to cause various aberrations. Was.

又、この反射面を用いる系においては入射光束像の鏡
像反転を行えるのみで、結像系として用いる為には、前
記反射を用いた系の前かあるいは後の少なくとも一方に
結像系を構成するレンズ系を更に設置する必要があり、
全系を小型化することが一層困難であった。
Further, in a system using this reflecting surface, only a mirror image inversion of an incident light beam image can be performed, and in order to use it as an imaging system, an imaging system is provided at least one of before and after the system using reflection. It is necessary to further install a lens system to
It was more difficult to downsize the entire system.

又、前記の如くの反射面を用いないで鏡像を得る為の
一方法としてシリンドリカルレンズを用いる方法があ
る。これは像面の一方向とそれに対して垂直な一方向の
2方向の内の一つの方向に像を反転して鏡像を得るもの
であり、第4図に該シリンドリカルレンズを用いた系の
概略図を示している。しかしながら、前記方法において
はシリンドリカルレンズを複数枚用いる必要がある為、
系を小型化する事が困難であった。又、このシリンドリ
カルレンズを用いて鏡像を得る系を結像系として構成す
るには、シリンドリカルレンズを用いた系を少なくとも
2つ互いに直交させて配置する必要がある為、やはり系
全体の小型化及び良好なる光学性能を得るのが難しいと
いう欠点を有していた。
As one method for obtaining a mirror image without using a reflecting surface as described above, there is a method using a cylindrical lens. This is to obtain a mirror image by inverting the image in one of two directions, one direction of the image plane and one direction perpendicular thereto, and FIG. 4 schematically shows a system using the cylindrical lens. FIG. However, since it is necessary to use a plurality of cylindrical lenses in the above method,
It was difficult to reduce the size of the system. Further, in order to configure a system that obtains a mirror image using this cylindrical lens as an imaging system, it is necessary to arrange at least two systems using cylindrical lenses so as to be orthogonal to each other. It has a drawback that it is difficult to obtain good optical performance.

(発明が解決しようとする問題点) 本発明は鏡像等倍像が用意に得られる小型の結像系を
複数個用いた簡易な構成の鏡像光学系アレイを提供する
ことを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a mirror image optical system array having a simple configuration using a plurality of small image forming systems capable of easily obtaining a mirror image at the same magnification.

(問題点を解決するための手段) 光軸に垂直で互いに直交する2つの方向の内、一方の
方向を通過する光束は正立等倍結像をする正立系であ
り、他方の方向を通過する光束は倒立等倍結像をする倒
立系であり、物体面を両系で一致させたとき、双方の系
の像面が互いに一致するように光軸に垂直で互いに直交
する2つの方向では、それぞれ異った屈折力を持つよう
なアナモルフィックな屈折率分布を有する単レンズより
構成した鏡像等倍結像系を複数個前記正立等倍結像をす
る方向に一列に並べて構成したことである。
(Means for Solving the Problems) Among two directions perpendicular to the optical axis and orthogonal to each other, a light beam passing in one direction is an erect system that forms an erect equal-magnification image, and The passing light beam is an inverted system that forms an inverted image at the same magnification. When the object planes are coincident with each other, two directions perpendicular to the optical axis and orthogonal to each other so that the image planes of both systems coincide with each other. In this example, a plurality of mirror image equal-magnification imaging systems composed of single lenses having anamorphic refractive index distributions having different refractive powers are arranged in a line in the direction of the erecting equal-magnification imaging. It was done.

(実施例) 第1図は本発明の一実施例の概略図である。同図にお
いて、1は物体面、2は鏡像等倍結像系(以下「レンズ
系」という)、20は鏡像光学系アレイであり、複数のレ
ンズ系2を後述する様に正立等倍をしている方向に一列
に配置している。3は結像面、L1は物体面1からレンズ
系2の入射面までの距離、L2はレンズ系2の射出面から
結像面3までの距離、Z0はレンズ系2の長さである。
(Embodiment) FIG. 1 is a schematic view of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an object plane, 2 denotes a mirror image equal-magnification imaging system (hereinafter, referred to as a "lens system"), and 20 denotes a mirror image optical system array. Are arranged in a line in the direction 3 is the image plane, L 1 is the distance from the object plane 1 to the entrance plane of the lens system 2, L 2 is the distance from the exit plane of the lens system 2 to the image plane 3, and Z 0 is the length of the lens system 2 It is.

物体面1からの光束は鏡像光学系アレイ20を構成する
各レンズ系2により複数に分割されて各々入射する。そ
してレンズ系2中を伝送し、該レンズ系2を射出して
後、結像面3上に結像する際、分割されていた像が再び
合成されて全体として等倍の鏡像反転像として結像する
ようにしている。
The light beam from the object plane 1 is divided into a plurality of parts by each lens system 2 constituting the mirror image optical system array 20, and each of them is incident. Then, when the light is transmitted through the lens system 2 and emitted from the lens system 2 to form an image on the image plane 3, the divided images are combined again and formed as a mirror image inverted image of the same magnification as a whole. I try to image it.

第2図(A),(B)は第1図の実施例に用いられた
鏡像等結像をするレンス系の光軸を3次元座標のx軸に
とった時のxy平面とxz平面内における光束を示した一実
施例の概略図である。同図に示されているレンズ系はx
軸に垂直な2方向(y軸方向、z軸方向)に0でない互
いに異る屈折力を持つアナモルフイックな屈折率分布を
有している。同図(A),(B)はそれぞれ前記レンズ
系の光束の水平面断面(xy断面)、及び垂直面断面(xz
断面)を示している。
FIGS. 2A and 2B show the xy plane and the xz plane when the optical axis of the lens system for forming an image such as a mirror image used in the embodiment of FIG. FIG. 3 is a schematic view of an embodiment showing a light flux in the embodiment. The lens system shown in FIG.
It has an anamorphic refractive index distribution having non-zero mutually different refractive powers in two directions (y-axis direction, z-axis direction) perpendicular to the axis. FIGS. 3A and 3B respectively show a horizontal section (xy section) and a vertical section (xz section) of the light flux of the lens system.
Cross section).

又、同図において1は物体面、2はレンズ系、2Aはレ
ンズ系2の入射面、2Bはレンズ系2の射出面、3は結像
面、4は光軸である。入射面2Aに入射した物立面1から
の光束は光軸を含み互いに直交する2つの断面内でアナ
モルフィックな屈折率分布を持つレンズ系2によりxy断
面ヶ水平面断面)では結像面3上で正立等倍となるよう
に収束し、xz断面(垂直面断面)では結像面3上で倒立
等倍となるように収束する。レンズ系2への入射光束が
前記の如く屈折するようにレンズ長Z0や屈折率分布を決
定している。xy平面からxz平面への途中のアジムスの種
々の角度においても物体面1からの光束は結像面3上に
結像していることは、光束をy成分とz成分に分けて考
えると容易に確かめることができ、全体としては物体面
1からの光束が結像面3上に鏡像となって結像してい
る。尚、第1図の実施例の鏡像鏡像光学系アレイ20は第
2図に示すレンズ2系を複数個正立等倍している方向に
一列に並べた構成にしている。
In FIG. 1, reference numeral 1 denotes an object surface, 2 denotes a lens system, 2A denotes an entrance surface of the lens system 2, 2B denotes an exit surface of the lens system 2, 3 denotes an image forming surface, and 4 denotes an optical axis. The luminous flux incident on the entrance surface 2A from the object surface 1 is formed on the image plane 3 in the xy cross section by a lens system 2 having an anamorphic refractive index distribution in two cross sections including the optical axis and orthogonal to each other. On the xz cross section (vertical plane cross section), the light converges on the imaging plane 3 so that it becomes an inverted equal magnification. The lens length Z 0 and the refractive index distribution are determined so that the light beam incident on the lens system 2 is refracted as described above. Even at various angles of the azimuth on the way from the xy plane to the xz plane, the light flux from the object plane 1 is imaged on the imaging plane 3 if the light flux is divided into the y component and the z component. As a whole, the light beam from the object plane 1 is imaged as a mirror image on the image plane 3. The mirror image mirror optical system array 20 of the embodiment shown in FIG. 1 has a configuration in which a plurality of lenses 2 shown in FIG. 2 are arranged in a line in the direction of erect equal magnification.

ここでレンズ系2の屈折率分布について説明する。n0
を光軸上での屈折率、gy及びgzをy方向とz方向の2次
の訓接率分布定数A,B,Cを4次の屈折率分布定数とする
と、屈折率分布n(y,z)は次式で表わされる。
Here, the refractive index distribution of the lens system 2 will be described. n 0
Is the refractive index on the optical axis, and g y and g z are the secondary refractive index distribution constants A, B, and C in the y and z directions, and the refractive index distribution n ( y, z) is represented by the following equation.

n2(y,z)=n0 2{1−gy 2y2−gz 2z2 +Agyy4+Bgy 2gz 2y2z2+Cgz 4gz 4+(6次以降の項)}
……(1) 又は、4次の屈折率分布定数まで等価な次式で表わさ
れる。
n 2 (y, z) = n 0 2 {1-g y 2 y 2 -g z 2 z 2 + Ag y y 4 + Bg y 2 g z 2 y 2 z 2 + Cg z 4 g z 4 + (6 -order later Section)}
... (1) or the following equation equivalent to the fourth-order refractive index distribution constant.

レンズ系2の入射面2Aと射出面2Bが平面の場合、レン
ズ長をZ0、屈折率分布定数の日hρを とした時、xy平面、xz平面において物体面1と結像面3
が互いに一致するという条件式よりレンズ長Z0、及び分
布定数の日ρを決定することができる。等倍で結像する
場合、その条件式は次式で表わされる。
When the entrance surface 2A and the exit surface 2B of the lens system 2 are flat, the lens length is Z 0 , and the refractive index distribution constant hρ is , The object plane 1 and the imaging plane 3 in the xy plane and the xz plane
The lens length Z 0 and the distribution constant day ρ can be determined from the conditional expression that the two values coincide with each other. When forming an image at the same magnification, the conditional expression is represented by the following expression.

ここで、屈折率分布定数比ρと換算レンズ長uを
(4)式を満足させるように選択する。
Here, the refractive index distribution constant ratio ρ and the converted lens length u are selected so as to satisfy Expression (4).

表1には屈折率分布定数比ρと換算レンズ長u及び両
者の積ρuを(4)式より求めた数値実施例を示してい
る。
Table 1 shows a numerical example in which the refractive index distribution constant ratio ρ, the converted lens length u, and the product ρu of both are obtained from the equation (4).

又、物体面1からレンズ系2の入射面2Aまでの距離を
L1、該レンズ系2の射出面2Bがら結像面3までの距離を
L2とすると、該L1及びL2は次式で表わされる。
Also, the distance from the object surface 1 to the entrance surface 2A of the lens system 2 is
L 1 , the distance from the exit surface 2B of the lens system 2 to the image plane 3
When L 2, said L 1 and L 2 is expressed by the following equation.

以上、説明したようにアナモルフイックな屈折率分布
を有するレンズ系2を単レンズのみにより、等倍の鏡像
が得られる小型の鏡像等倍結像系として実現できる。従
って前述の如く、該鏡像等倍結像系を平行に、かつ正立
等倍倍結する方向に一列に複数個並べることにより第1
図に示した鏡像光学系アレイ20を実現することができ
る。
As described above, the lens system 2 having an anamorphic refractive index distribution can be realized as a small-sized mirror image equal-magnification imaging system capable of obtaining an equal-magnification mirror image with only a single lens. Therefore, as described above, by arranging a plurality of the mirror image equal-magnification imaging systems in parallel and in a direction in which the erecting equal-magnification imaging is performed, the first image is obtained.
The mirror image optical system array 20 shown in the figure can be realized.

尚、第1図及び第2図で示した実施例で用いた単レン
ズの屈折率分布においては(1),(2)式において、
2次の屈折率分布定数までを考慮の対象とした。しか
し、用いるレンズのレンズ径が大きくなるに従って諸収
差も大きくなってくる為、該諸収差を補正する必要が生
じて来る。一般に、前記諸収差を軽減させる為には、
(1),(2)式の屈折率分布の高次の項を制御すれば
良い。しかし、アナモルフイックな屈折率分布において
は、光軸に垂直で互いに直交する2つの方向の屈折率分
布の高次の分布を制御するだけでは不充分であり、光軸
を含み互いに直交する平面の途中のアジムスでの諸収差
を軽減させる必要がある。この場合例えば(1),
(2)式において4次の分布定数B等を制御すれば途中
アジムスで収差量を軽減できる。
Incidentally, in the refractive index distribution of the single lens used in the embodiment shown in FIGS. 1 and 2, in the expressions (1) and (2),
Up to the second-order refractive index distribution constant was considered. However, since various aberrations increase as the lens diameter of the lens used increases, it is necessary to correct the various aberrations. Generally, in order to reduce the various aberrations,
It suffices to control the higher-order terms of the refractive index distribution in the expressions (1) and (2). However, in the case of an anamorphic refractive index distribution, it is not sufficient to control the higher-order distribution of the refractive index distribution in two directions perpendicular to each other and perpendicular to the optical axis. It is necessary to reduce various aberrations at the azimuth on the way. In this case, for example, (1),
By controlling the fourth-order distribution constant B or the like in the equation (2), the amount of aberration can be reduced by azimuth in the middle.

尚、前記実施例はすべて解析式の解析が容易なように
屈折率分布型のレンズ系2の両端が平面である場合だけ
を考慮した。しかし、レンズ2の端面の形状は必ずしも
平面である必要はなく、少なくとも一方の面が球面やシ
リンドリカル面、或はトーリック面等の非球面であって
も良い。この様な場合には屈折率分布によって生じる光
束の曲がりの一部が、前記球面やシリンドリカル面等の
曲面によって生じる屈折に置き換えられる為、動径方向
の屈折力変化Δnを小さくすることや諸収差の補正に効
果がある。又、レンズ系2の光軸方向(x軸方向)にア
キシャルな屈折率分布をアナモルフイックな屈折率分布
に重ね合わせても、前記と同様に諸収差の補正等に効果
がある。
In each of the above embodiments, only the case where both ends of the refractive index distribution type lens system 2 are flat so as to facilitate analysis of the analytical formula is considered. However, the shape of the end face of the lens 2 is not necessarily flat, and at least one surface may be an aspheric surface such as a spherical surface, a cylindrical surface, or a toric surface. In such a case, a part of the bending of the light beam caused by the refractive index distribution is replaced by the refraction caused by the curved surface such as the spherical surface or the cylindrical surface. Has the effect of correcting In addition, even if the axial refractive index distribution is superimposed on the anamorphic refractive index distribution in the optical axis direction (x-axis direction) of the lens system 2, it is effective in correcting various aberrations and the like as described above.

更に、前記実施例において用いた鏡像等倍結像させる
為のレンズ系はアナモルフイックな屈折率分布を有する
単レンズであったが、それに限らず複数の回転対称面、
あるいはシリンドリカルやトーリック等の回転非対称面
等を用いて構成されたレンズ系、又、入射光束の第1屈
折面と最終屈折面との間に反射面を含んだレンズ系等で
あっても良い。
Further, the lens system used to form a mirror image at the same magnification used in the above embodiment was a single lens having an anamorphic refractive index distribution.
Alternatively, a lens system using a rotationally asymmetric surface such as cylindrical or toric, or a lens system including a reflecting surface between the first refracting surface and the final refracting surface of the incident light beam may be used.

(発明の効果) 本発明に依れば互いに直交する方向で異った屈折力を
持つアナモルフイックな屈折率分布を有し、鏡像等倍結
像をするレンズ系を正立等倍をしている方向に一列に並
べることにより物体像を分割して伝送し結像面において
鏡像等倍像として合成することができ、又、物像間の距
離、所謂共役長が短い為、短い距離間で鏡像等倍像を結
像させることのできる簡易な構成の鏡像光学系アレイを
達成することができる。
(Effects of the Invention) According to the present invention, a lens system having an anamorphic refractive index distribution having different refractive powers in directions orthogonal to each other and performing a mirror image equal-magnification image is erectly equalized. The object images can be divided and transmitted by arranging them in a line in the same direction, and can be synthesized as a mirror image at the image forming plane, and the distance between the object images, that is, the so-called conjugate length is short. Thus, a mirror image optical system array having a simple configuration capable of forming a mirror image at the same magnification can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の概略図、第2図は本発明に
係わる鏡像等倍結像をするレンズ系の一実施例の概略
図、第3図は従来例のDoveのプリズムを示す説明図、第
4図は従来例のシリンドリカルレンズを用いて鏡像を得
る方法を示す説明図である。 図中、1は物体面、2は鏡像等倍結像系、20は鏡像光学
系アレイ、3は結像面、4光軸、Z0はレンズ長、L1は物
体面1からレンズ2の入射面までの距離、L2はレンズ2
の射出面から結像面3までの距離である。
FIG. 1 is a schematic view of an embodiment of the present invention, FIG. 2 is a schematic view of an embodiment of a lens system according to the present invention, which forms a mirror image at the same magnification, and FIG. 3 shows a conventional Dove prism. FIG. 4 is an explanatory view showing a method of obtaining a mirror image using a conventional cylindrical lens. In the figure, 1 is the object plane, 2 mirror like Baiyui imaging system, 20 mirror optical system array, 3 imaging surface, 4 the optical axis, Z 0 is the lens length, L 1 from the object plane 1 of the lens 2 Distance to entrance surface, L 2 is lens 2
Is the distance from the exit plane to the image plane 3.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光軸に垂直で互いに直交する2つの方向の
内、一方の方向を通過する光束は正立等倍結像をする正
立系であり、他方の方向を通過する光束は倒立等倍結像
をする倒立系であり、物体面を両系で一致させたとき、
双方の系の像面が互いに一致するように光軸に垂直で互
いに直交する2つの方向では、それぞれ異った屈折力を
持つようなアナモルフィックな屈折率分布を有する単レ
ンズより構成した鏡像等倍結像系を複数個前記正立等倍
結像をする方向に一列に並べて構成したことを特徴とす
る鏡像光学系アレイ。
1. A light beam passing through one of two directions perpendicular to the optical axis and orthogonal to each other is an erecting system that forms an erect equal-magnification image, and a light beam passing through the other direction is inverted. It is an inverted system that forms images at the same magnification, and when the object planes are matched in both systems,
A mirror image composed of a single lens having an anamorphic refractive index distribution having different refractive powers in two directions perpendicular to the optical axis and orthogonal to each other so that the image planes of both systems coincide with each other. A mirror image optical system array comprising a plurality of equal-magnification imaging systems arranged in a line in a direction in which the erect equal-magnification image is formed.
JP11098387A 1987-05-07 1987-05-07 Mirror image optics array Expired - Fee Related JP2621175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098387A JP2621175B2 (en) 1987-05-07 1987-05-07 Mirror image optics array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098387A JP2621175B2 (en) 1987-05-07 1987-05-07 Mirror image optics array

Publications (2)

Publication Number Publication Date
JPS63274915A JPS63274915A (en) 1988-11-11
JP2621175B2 true JP2621175B2 (en) 1997-06-18

Family

ID=14549428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098387A Expired - Fee Related JP2621175B2 (en) 1987-05-07 1987-05-07 Mirror image optics array

Country Status (1)

Country Link
JP (1) JP2621175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230222B2 (en) * 2012-10-12 2017-11-15 キヤノン株式会社 Lens array optical system and method of manufacturing lens array
JP6270314B2 (en) 2012-12-27 2018-01-31 キヤノン株式会社 Optical apparatus, image forming apparatus, and image reading apparatus

Also Published As

Publication number Publication date
JPS63274915A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
US4353617A (en) Optical system capable of continuously varying the diameter of a beam spot
US6278553B1 (en) Optical system having refractive index distribution
US6894263B2 (en) Image reading imaging optical system and image reading apparatus using the same
JP4611111B2 (en) Optical system
US6507444B2 (en) Imaging lens and image reading apparatus using it
JP3269159B2 (en) Laser scanning device and scanning lens
JP2001066503A (en) Zoom lens
US4571032A (en) Zoom lens
US5963376A (en) Variable-magnification image-forming optical system
JP2621175B2 (en) Mirror image optics array
JP2956169B2 (en) Scanning optical device
JP2001174740A (en) Scanning optical system
JP2013228448A (en) Optical scanner, image forming device, and method of manufacturing optical scanner
JP2860221B2 (en) Stereoscopic projection lens
JP2000131632A (en) Optical scanning system and optical scanning device
JP2004294640A (en) Tandem laser scanner
JP2002267976A (en) Optical scanner
JP2000221432A (en) Optical scanner
JP2000066008A (en) Image forming element array
JPS63274916A (en) Mirror image optical system
JP3075540B2 (en) Real image finder optical system
JP2001108927A (en) Scanning and image-forming optical system, optical scanner and image forming device
JP2003287683A (en) Image read optical system
JP3258083B2 (en) Dove prism assembly, imaging element unit and line imaging element
JPH10282409A (en) Scanning optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees