JP2621004B2 - Concentration measurement method using light absorption - Google Patents

Concentration measurement method using light absorption

Info

Publication number
JP2621004B2
JP2621004B2 JP4164100A JP16410092A JP2621004B2 JP 2621004 B2 JP2621004 B2 JP 2621004B2 JP 4164100 A JP4164100 A JP 4164100A JP 16410092 A JP16410092 A JP 16410092A JP 2621004 B2 JP2621004 B2 JP 2621004B2
Authority
JP
Japan
Prior art keywords
sample
concentration
measurement
light
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4164100A
Other languages
Japanese (ja)
Other versions
JPH05332921A (en
Inventor
幸男 中野
Original Assignee
幸男 中野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸男 中野 filed Critical 幸男 中野
Priority to JP4164100A priority Critical patent/JP2621004B2/en
Publication of JPH05332921A publication Critical patent/JPH05332921A/en
Application granted granted Critical
Publication of JP2621004B2 publication Critical patent/JP2621004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガス又は液体試料中の
特定物質の濃度により光の吸収が変化することを利用
して、試料中の光の吸収(又は透過)を測定するこ
とにより特定物質の濃度を測定する濃度測定装置に関す
る。
BACKGROUND OF THE INVENTION This invention utilizes the fact that the absorption of light is changed by the concentration of a specific substance gas or liquid sample, measuring the absorption of light in the sample (or transmittance) The present invention relates to a concentration measuring device for measuring the concentration of a specific substance.

【0002】[0002]

【従来の技術】光の吸収を利用する濃度測定装置は、通
常、測定試料の吸収(又は透過)のみで濃度の決定
を行なう絶対測定ではなく、濃度既知の標準試料の透過
との比較により濃度の決定を行なう相対測定が用いら
れる。この方法では原理的に測定試料と標準試料の2つ
の試料の透過を測定する必要があるが、両測定間で、
光源の強さ、光学フィルタの吸光度、検出器・増幅器の
感度、試料セルの汚染、試料の温度、圧力等の種々の要
因が異なる可能性があり、これにより、ゼロドリフトや
スパンドリフト等が生じて測定精度を低下させる。
BACKGROUND OF THE INVENTION concentration measuring apparatus utilizing absorption of light is usually not an absolute measurement only absorption rate of the measurement sample (or transmittance) the determination of the concentration, the concentration known transmission standard sample
Relative measurements are used to determine the concentration by comparison with the ratio . Although this method it is necessary to measure the transmittance of two samples of principle measurement sample and the standard sample, between the two measurements,
Various factors such as light source intensity, optical filter absorbance, detector / amplifier sensitivity, sample cell contamination, sample temperature, pressure, etc. may differ, resulting in zero drift, span drift, etc. Measurement accuracy.

【0003】物質を通過する間の光の吸収については、
次のLambert-Beerの法則が知られている。図5に示すよ
うに、濃度Cの物質を含んだ試料中を、初期光量I0の
光が長さLだけ通過した後の透過光量Iは、 I=I0・exp(−K・C・L) …(10) となる。ここで、Kは測定対象である試料中の物質に固
有の吸光係数である。
[0003] Regarding the absorption of light while passing through a substance,
The following Lambert-Beer law is known. As shown in FIG. 5, the amount of transmitted light I after the light having the initial light amount I0 has passed through the sample containing the substance having the concentration C by the length L is: I = I0 · exp (−K · C · L) ... (10) Here, K is an absorption coefficient specific to a substance in a sample to be measured.

【0004】この法則は単色光を用いた場合には実際と
よく合うが、工業用又は移動用の自動分析装置では非分
散型である光学フィルタ等で単色光特性を持たせている
に過ぎないため、一般に入射光量I0と透過光量Iの関
係はLambert-Beerの法則に従わない。また、装置全体を
小型化するために入射光を完全に平行光とせず、試料セ
ルの内壁で光を乱反射させて実効セル長さLが長くなる
ようにすることが多い。この場合、セル長さLが一定と
はならないため上記Lambert-Beerの法則を単純に当ては
めることができず、濃度Cと透過光量Iとの関係は複雑
なものとなる。
Although this law fits well with the case where monochromatic light is used, in industrial or mobile automatic analyzers, only monochromatic light characteristics are provided by a non-dispersive optical filter or the like. Therefore, generally, the relationship between the incident light amount I0 and the transmitted light amount I does not follow Lambert-Beer's law. In addition, in order to reduce the size of the entire apparatus, incident light is not completely collimated, and light is irregularly reflected on the inner wall of the sample cell so that the effective cell length L is often increased. In this case, since the cell length L is not constant, the above-mentioned Lambert-Beer's law cannot be simply applied, and the relationship between the density C and the amount of transmitted light I becomes complicated.

【0005】[0005]

【発明が解決しようとする課題】このため従来より、測
定範囲内の数点(例えば、フルスケールの0%,20
%,40%,60%,80%,100%などの点)の濃
度を有する標準試料を準備し、これらの試料の光透過率
を実際に測定することにより予め実際の濃度の値と透過
率の値との関係を表わす検量線を作成しておく検量線法
が用いられている。しかし、一般にこれらの実測点は必
ずしも一直線上に乗らず、校正目盛作成や折線近似等を
行なう直線化装置が必要であった。また、装置各部の経
年変化により実際にはこの検量線特性が変化するため、
1〜6カ月毎に校正を繰り返す必要があった(JIS
K0055「ガス分析装置校正方法通則」、JIS K
0115「吸光光度分析方法通則」、JIS K015
1「赤外線ガス分析計」等を参照)。
For this reason, conventionally, several points within the measurement range (for example, 0% of full scale, 20%
%, 40%, 60%, 80%, 100%, etc.), and by actually measuring the light transmittance of these samples, the actual density value and transmittance are determined in advance. The calibration curve method is used in which a calibration curve representing the relationship with the value is prepared. However, in general, these measured points do not always fall on a straight line, and a linearization device for creating a calibration scale, approximating a broken line, and the like is required. In addition, since this calibration curve characteristic actually changes due to aging of each part of the device,
Calibration had to be repeated every 1 to 6 months (JIS
K0055 “General rules for calibration of gas analyzers”, JIS K
0115 “General rules for spectrophotometry”, JIS K015
1 "Infrared gas analyzer" etc.).

【0006】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、予め多
数の標準試料により検量線を作成しておく必要がなく、
しかも各種の変動要因を一括して補正することにより簡
易に、しかも正確な測定値を求めることのできる濃度測
定装置を提供することにある。
The present invention has been made to solve such a problem, and an object of the present invention is to eliminate the need to prepare a calibration curve from a large number of standard samples in advance.
In addition, it is an object of the present invention to provide a concentration measuring device that can easily and accurately obtain a measured value by correcting various fluctuation factors collectively.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明では、試料を通過する光の吸収率又は
透過率を測定することにより試料中に含まれる特定の成
分の濃度を測定する濃度測定方法において、次の手順を
備えることを特徴とするものである。 a)既知の濃度C1及びC2を有する2種の試料を通過す
る光の透過率TC1及びTC2をそれぞれ測定する。 b)下記の3つの式(1),(2),(3)より補正係
数K3を算出する。 LC1=log((TC1−K3)/(1−K3)) …(1) LC2=log((TC2−K3)/(1−K3)) …(2) LC1/LC2=C1/C2 …(3) c)未知の濃度CMを有する測定試料を通過する光の透
過率TMを測定する。 d)下記式(4)又は式(5)により未知濃度CMを算
出する。 CM=((log((TM−K3)/(1−K3)))/LC1)×C1 …(4) CM=((log((TM−K3)/(1−K3)))/LC2)×C2 …(5)
According to the present invention, which has been made to solve the above problems, the concentration of a specific component contained in a sample is determined by measuring the absorption or transmittance of light passing through the sample. In the method for measuring the concentration, the following procedure is provided. a) Measure the transmittance TC1 and TC2 of light passing through two samples having known concentrations C1 and C2, respectively. b) A correction coefficient K3 is calculated from the following three equations (1), (2) and (3). LC1 = log ((TC1-K3) / (1-K3)) (1) LC2 = log ((TC2-K3) / (1-K3)) (2) LC1 / LC2 = C1 / C2 (3) C) Measure the transmittance TM of light passing through the measurement sample having the unknown concentration CM. d) The unknown concentration CM is calculated by the following equation (4) or (5). CM = ((log ((TM−K3) / (1-K3))) / LC1) × C1 (4) CM = ((log ((TM−K3) / (1-K3))) / LC2) × C2… (5)

【0008】なお上記において、各試料の光の透過率T
A=TC1,TC2,TMを、次のような手順で求める
ことが望ましい。 e)測定光が入射しないときの検出器の出力D0、及
び、測定光が測定対象成分を含まないゼロ試料を通過し
て入射したときの検出器の出力D100を測定する。 f)D0及びD100より次の補正係数K1を算出す
る。 K1=1/(100−D0) …(6 )測定光が測定対象成分を含む試料を通過して入射し
たときの検出器の出力DAより、その試料の光の透過率
TAを TA=(DA−D0)×K1 …(8) で算出する。
In the above description, the light transmittance T of each sample
It is desirable to obtain A = TC1, TC2, and TM in the following procedure. e) Measure the output D0 of the detector when the measurement light is not incident and the output D100 of the detector when the measurement light is incident after passing through a zero sample containing no component to be measured. f) from D0 and D100 calculates the next compensation coefficient K1. K1 = 1 / (100-D0) (6 ) g ) From the output DA of the detector when the measurement light passes through the sample containing the component to be measured, the light transmittance TA of the sample is determined by TA = (DA−D0) × K1 (8)

【0009】[0009]

【作用】前記Lambert−Beerの式(10)を
変形すると、透過T=I/I0は T=I/I0=exp(−K・C・L) …(11) となり、C・Lが大きくなると(すなわち、濃度Cが大
きくなり、又は、セル長Lが長くなると)、本来、図6
(a)に示すようにTは0(ゼロ)に近づくはずであ
る。
SUMMARY OF] By modifying Equation (10) of the Lambert-Beer, transmissivity T = I / I0 T = I / I0 = exp (-K · C · L) ... (11) , and the large C · L 6 (that is, when the concentration C is increased or the cell length L is increased), FIG.
As shown in (a), T should approach 0 (zero).

【0010】しかし、前記種々の要因により、図6
(b)に示すように、Tは0ではなく、0でない或る値
K3に近づく。そこでこのような場合、測定試料の透過
TMから濃度CMを算出する際にTMの値をそのまま
用いるのではなく、図6(b)に示すように、 (TM−K3)/(1−K3) と、K3の分を補正した値を用いるのである。すなわ
ち、透過TMが測定されたとき、未知の濃度CMをL
ambert−Beerの式そのままに log(IM/I0)=log(TM)=−K・CM・
L …(12)と算出するのではなく、補正値K3を入
れた式 log((TM−K3)/(1−K3))=−K・CM・L …(13) により算出する。
However, due to the various factors described above, FIG.
As shown in (b), T is not 0 but approaches a certain non-zero value K3. Therefore, in such a case, the transmission of the measurement sample
When calculating the concentration CM from the ratio TM, the value of TM is not used as it is, but as shown in FIG. 6B, (TM−K3) / (1−K3) and the value corrected for K3 Is used. That is, when the transmissivity TM is measured, an unknown concentration CM L
log- (IM / I0) = log (TM) =-K.CM.
Instead of calculating L ... (12), it is calculated by the equation log ((TM-K3) / (1-K3)) =-K · CM · L (13) including the correction value K3.

【0011】ここで補正値K3は、2種の既知の濃度C
1、C2を有する試料についてそれぞれ透過TC1、
TC2を測定し、上記式に代入して log((TC1−K3)/(1−K3))=LC1 …(14) log((TC2−K3)/(1−K3))=LC2 …(15) LC1/LC2=(−K・C1・L)/(−K・C2・L)=C1/C2 …(16) として得られる3つの式(14)〜(16)から連立方
程式を解くことにより求められる。式(14)〜(1
6)は上記式(1)〜(3)そのものであり、式(1
4)〜(16)のC1又はC2にCMを代入することに
より、式(4)又は(5)が導出される。式(1)〜
(3)による連立方程式は解析的に解くことは難しい
が、コンピュータを用いて数値的に計算することによ
り、K3は容易に求めることができる。
Here, the correction value K3 is determined by two known densities C
1, C2 respectively, for sample transmittance TC1 having,
TC2 is measured and substituted into the above equation. Log ((TC1-K3) / (1-K3)) = LC1 (14) log ((TC2-K3) / (1-K3)) = LC2 (15 LC1 / LC2 = (− K · C1 · L) / (− K · C2 · L) = C1 / C2 (16) By solving simultaneous equations from three equations (14) to (16) obtained as Desired. Expressions (14) to (1)
6) is the equation (1) to (3) itself, and the equation (1)
By substituting CM into C1 or C2 of 4) to (16), Expression (4) or (5) is derived. Formula (1)-
It is difficult to solve the simultaneous equations according to (3) analytically, but K3 can be easily obtained by numerical calculation using a computer.

【0012】なお、上述の各種要因により、検出器出力
にはゼロドリフトやスパンドリフト(変動)が生じるた
め、上記式(1)〜(5)に用いる各試料の光透過率T
A=TC1,TC2,TMも、これらのドリフトを補正
した値を用いることが望ましい。補正係数 K1はスパ
ンドリフト及びゼロドリフトを補正するものである。
Since the detector output causes zero drift and span drift (fluctuation) due to the various factors described above, the light transmittance T of each sample used in the above equations (1) to (5) is used.
It is desirable that A = TC1, TC2, and TM also use values corrected for these drifts. Correction coefficient K1 is spa
And zero drift.

【0013】[0013]

【実施例】本発明の一実施例である濃度測定装置を図1
〜図3により説明する。図1に示すように、直流光源1
1からの光はシャッタ12により遮断/通過制御され
る。ここにおけるシャッタ断続の速さ(繰り返し周波
数)は用途により異なるが、通常1〜3,600cpm
(0.017〜60Hz)の範囲である。なお、光源1
1に同期パルス点灯の光源を使用する場合にはシャッタ
12は不要である。シャッタ12を通過した光は試料セ
ル14を通過する。試料流体切換器15及び16によ
り、試料セル14にはゼロ濃度流体(ゼロ試料)と測定
試料流体又は標準試料流体が交互に切り換えて流され
る。自動分析濃度測定の場合は、この切り換えの周期を
シャッタ12の断続周期の2倍以上(繰り返し周波数で
は1/2以下)とする。用途により異なるが、流体切換
の周波数は0.1〜1,200cpm(0.0017〜
20Hz) の範囲が一般的である。また、比較的安定
な装置の場合は、ゼロ試料の流入を1日1回等と、その
間隔を延長することもできる。
FIG. 1 shows a concentration measuring apparatus according to one embodiment of the present invention.
This will be described with reference to FIG. As shown in FIG.
Light from 1 is blocked / passed by the shutter 12. Here, the shutter intermittent speed (repetition frequency) varies depending on the application, but is usually 1 to 3,600 cpm.
(0.017 to 60 Hz). The light source 1
In the case where a light source for lighting synchronous pulses is used, the shutter 12 is unnecessary. The light that has passed through the shutter 12 passes through the sample cell 14. By the sample fluid switching devices 15 and 16, the zero concentration fluid (zero sample) and the measurement sample fluid or the standard sample fluid are alternately flown into the sample cell 14.
You. In the case of automatic analysis concentration measurement, the switching cycle is set to be at least twice the intermittent cycle of the shutter 12 (1/2 or less at the repetition frequency). Depending on the application, the frequency of fluid switching is 0.1 to 1,200 cpm (0.0017 to
20 Hz) is common. Also relatively stable
In the case of a suitable device, the inflow of zero sample is set to once a day, etc.
The interval can be extended.

【0014】試料セル14内で試料を通過した光は光学
フィルタ(FIL)17により干渉成分が除去され、検出
器18で測光される。検出器18から出力される透過光
量の検出値は増幅器(AMP)19により増幅され、A/
D変換器20を介して制御部21に入力される。
The light that has passed through the sample in the sample cell 14 has its interference component removed by an optical filter (FIL) 17 and is measured by a detector 18. The detected value of the amount of transmitted light output from the detector 18 is amplified by an amplifier (AMP) 19,
The data is input to the control unit 21 via the D converter 20.

【0015】図2に示すように、制御部21はCPU3
1、ROM32、RAM33及び各種I/Oインタフェ
イス34を備えたマイクロコンピュータで構成されてお
り、CPU31はROM32内に格納されたプログラム
に従って本濃度測定装置の各部の動作を制御する。制御
部21は検出器18から入力する透過光量のデータを基
に後述の演算を行なって測定試料の濃度値を算出し、デ
ジタル表示器(DISP)22に表示させる。また、操作者
からの各種指示はキーボード(KB)23より制御部21
に入力される。
As shown in FIG. 2, the control unit 21
1, a microcomputer including a ROM 32, a RAM 33, and various I / O interfaces 34. The CPU 31 controls the operation of each unit of the concentration measuring apparatus according to a program stored in the ROM 32. The control unit 21 calculates the density value of the measurement sample by performing a calculation described later based on the transmitted light amount data input from the detector 18, and causes the digital display (DISP) 22 to display it. Various instructions from the operator are transmitted from the keyboard (KB) 23 to the control unit 21.
Is input to

【0016】本実施例の濃度測定装置では初めに、ゼロ
濃度試料と2種の既知の濃度を有する標準試料を用いて
校正動作を行なう。この校正動作を図3のタイミングチ
ャートを参照しつつ説明する。 (A1)シャッタ12を閉じて試料セル14にゼロ試料
を導入し、所定時間が経過した時点t1の検出器18の
出力(透過光0%の検出信号)をD0としてRAM33
に記憶する。なお、この所定時間とは、検出器18の出
力が安定するのを待つための時間である。 (A2)次にシャッタ12を開き、同様に所定時間経過
した時点t2で検出器18の出力(透過光100%の検
出信号)をD100としてRAM33に記憶する。 (A3)必要であれば、上記(A1)、(A2)を繰り
返し、D0及びD100の各平均値をRAM33に記憶
する。 (A4)0%透過及び100%透過の検出器18からの
信号D0及びD100を、それぞれ正しい透過の値0
及び100に換算するため、次のように補正係数K1の
算出を行なう。 K1=1/(D100−D0) …(21) こうして算出した補正係数K1はRAM33に記憶して
おく。 (A5)シャッタを閉じ、なるべくフルスケールに近い
既知の濃度C1を有する標準試料を試料セル14内に導
入する。試料セル14が標準試料で満たされたタイミン
グでシャッタを開き、所定時間後に検出器18の出力を
DC1としてRAM33に記憶する(時点t3)。これ
についても必要に応じて繰り返し測定を行ない、出力D
C1の平均値を用いるようにしてもよい。 (A6)検出器18の出力DC1より、RAM33から
読み出した上記補正係数K1を用いて、濃度C1の標準
試料の透過TC1を次のように算出する。 TC1=(DC1−D0)×K1 …(23) (A7)別の既知の濃度C2を有する標準試料を試料セ
ル14内に導入し、検出器18の出力DC2から同様に
透過TC2を次のように算出する。 TC2=(DC2−D0)×K1 …(24) (A8)次に、以下の式(25)〜(27)より、係数
K3を求める。 LC1=log((TC1−K3)/(1−K3)) …(25) LC2=log((TC2−K3)/(1−K3)) …(26) LC1/LC2=C1/C2 …(27) 式(25)〜(27)から係数K3を求めるのには、コ
ンピュータによる数値計算を用いる。例えば、K3に0
から徐々に増加する候補値を代入し、式(25)及び
(26)から算出されるLC1及びLC2の比LC1/
LC2がC1/C2の値に近づくまで計算を繰り返すこ
とにより求めることができる。以上のようにして求めた
係数K3もRAM33に記憶しておく。これで、校正動
作が終了する。
In the concentration measuring apparatus of this embodiment, first, a calibration operation is performed using a zero concentration sample and a standard sample having two kinds of known concentrations. This calibration operation will be described with reference to the timing chart of FIG. (A1) The shutter 12 is closed, a zero sample is introduced into the sample cell 14, and the output (detection signal of 0% of transmitted light) of the detector 18 at a time t1 when a predetermined time has elapsed is set to D0 and the RAM 33 is set.
To memorize. Note that this predetermined time is a time for waiting for the output of the detector 18 to stabilize. (A2) Next, the shutter 12 is opened, and the output (detection signal of 100% of transmitted light) of the detector 18 is stored in the RAM 33 as D100 at a time t2 when a predetermined time has elapsed. (A3) If necessary, the above (A1) and (A2) are repeated, and the average values of D0 and D100 are stored in the RAM 33. (A4) a signal D0 and D100 from 0% transmission and 100% transmission detector 18, the value of each correct transmittance 0
And 100, the correction coefficient K1 is calculated as follows. K1 = 1 / (D100-D0) (21) The correction coefficient K1 thus calculated is stored in the RAM 33. (A5) The shutter is closed, and a standard sample having a known concentration C1 as close to full scale as possible is introduced into the sample cell 14. The shutter is opened at the timing when the sample cell 14 is filled with the standard sample, and after a predetermined time, the output of the detector 18 is stored in the RAM 33 as DC1 (time t3). This is also measured repeatedly as necessary, and the output D
The average value of C1 may be used. (A6) from the output DC1 detector 18, by using the correction coefficient K1 read from the RAM 33, calculates the transmittance TC1 of standard sample concentration C1, as follows. TC1 = (DC1-D0) × K1 (23) (A7) A standard sample having another known concentration C2 is introduced into the sample cell 14, and the transmittance TC2 is similarly calculated from the output DC2 of the detector 18 as follows. Is calculated as follows. TC2 = (DC2−D0) × K1 (24) (A8) Next, the coefficient K3 is obtained from the following equations (25) to (27). LC1 = log ((TC1-K3) / (1-K3)) (25) LC2 = log ((TC2-K3) / (1-K3)) (26) LC1 / LC2 = C1 / C2 (27) In order to obtain the coefficient K3 from the equations (25) to (27), a numerical calculation by a computer is used. For example, 0 for K3
Is substituted for the candidate value that gradually increases from
It can be obtained by repeating the calculation until LC2 approaches the value of C1 / C2. The coefficient K3 obtained as described above is also stored in the RAM 33. This completes the calibration operation.

【0017】次に、濃度が未知の試料(測定試料)の濃
度を測定する手順を説明する。 (B1)シャッタ12を閉じ、試料セル14にゼロ試料
を導入する。所定時間後、検出器18の出力を透過光0
%の検出信号D0としてRAM33に記憶する(時点t
1)。 (B2)試料セル14内のゼロ試料はそのままとして、
シャッタ12を開き、同様に所定時間後に検出器18に
よる透過光100%の検出信号D100をRAM33に
記憶する(時点t2)。 (B3)上記校正時の(A4)の場合と同様、0%透過
及び100%透過の検出信号D0及びD100をそれぞ
れ正しい透過の値0及び100に換算するため、次の
ように補正係数の算出を行なう。 K1=1/(D100−D0) …(21) 補正係数K1はRAM33に記憶しておく。 (B4)シャッタ12を閉じ、測定試料を試料セル14
に導入する。所定時間後シャッタ12を開き、更に所定
時間後、検出器18による測定試料の透過光検出信号D
MをRAM33に記憶する(時点t3)。 (B5)検出信号DM及び係数K1より、測定試料の透
TMを次のように算出する。 TM=(DM−D0)×K1 …(28) (B6)校正時に求めた補正係数K3をRAM33から
読み出し、測定試料の濃度Mを次のように算出する(時
点t4)。 LM=log((TM−K3)/(1−K3)) …(29) M=(LM/LC1)×C1 …(30) (B7)このようにして算出した測定試料の濃度の値M
を、デジタル表示器22に表示する。
Next, the procedure for measuring the concentration of a sample whose concentration is unknown (measurement sample) will be described. (B1) The shutter 12 is closed, and a zero sample is introduced into the sample cell 14. After a predetermined time, the output of the detector 18 is changed to the transmitted light 0
% As the detection signal D0 (time t
1). (B2) The zero sample in the sample cell 14 is left as it is,
The shutter 12 is opened, and a detection signal D100 of 100% of the transmitted light by the detector 18 is stored in the RAM 33 after a predetermined time (time t2). (B3) for converting to the same manner as when the calibration time of the (A4), 0% transmittance and 100% correct transmission of the detection signal D0 and D100 respectively transmittance values 0 and 100, the correction coefficient, as follows Perform the calculation. K1 = 1 / (D100-D0) (21) The correction coefficient K1 is stored in the RAM 33. (B4) The shutter 12 is closed and the measurement sample is transferred to the sample cell 14
To be introduced. After a predetermined time, the shutter 12 is opened, and after a further predetermined time, the transmitted light detection signal D
M is stored in the RAM 33 (time t3). (B5) from the detection signal DM and the coefficient K1, to calculate the transmission TM of the measurement sample as follows. TM = (DM−D0) × K1 (28) (B6) The correction coefficient K3 obtained at the time of calibration is read from the RAM 33, and the concentration M of the measurement sample is calculated as follows (time t4). LM = log ((TM-K3) / (1-K3)) (29) M = (LM / LC1) × C1 (30) (B7) The value M of the concentration of the measurement sample calculated in this manner.
Is displayed on the digital display 22.

【0018】上記校正及び測定動作において、試料セル
14に順次ゼロ試料、標準試料又は測定試料を導入する
ことは制御部21が試料流体切換器15及び16を制御
することにより行なわれ、シャッタ12の開閉は制御部
21がシャッタ駆動モータ(M)13を制御することに
より行なわれる。従って、制御部21に予め測定動作の
繰り返しを指示しておくことにより、試料の自動連続測
定を行なうことができる。
In the above-mentioned calibration and measurement operation, the zero sample, the standard sample or the measurement sample is successively introduced into the sample cell 14 by the control unit 21 controlling the sample fluid switching units 15 and 16. The opening and closing are performed by the control unit 21 controlling the shutter drive motor (M) 13. Therefore, by instructing the control unit 21 to repeat the measurement operation in advance, the automatic continuous measurement of the sample can be performed.

【0019】自動連続測定ではなく、手動で測定を行な
う場合には、図4に示すような手順で行なう。まず、試
料セル14に試料を導入しない待機状態において、シャ
ッタ12が閉じた後、所定時間が経過して検出器18の
出力が安定した時点t11で検出器18の出力D0をRA
M33に記憶する。次に、操作者のキー操作等によりゼ
ロ流体を試料セル14に導入し、シャッタ12が開いた
後所定時間経過した時点t12でD100を測定する。次
に、試料セル14に測定試料(又は標準試料)を導入
し、所定時間経過した後の時点t13で検出器18の出力
DM(又はDC)をRAM33に記憶する。そして、RA
M33に記憶されたこれらの測定値D0,D100,DM,
DCより、上記の場合と同様に測定試料の濃度Mを算出
し(時点t14)、デジタル表示器22に濃度値を表示す
る。その後はD0とDMを交互に検出し、逐次濃度演算を
行なって表示器22にその値を表示する。なお、最終値
を読みとる直前にゼロ流体によるD100の検出を行な
い、補正を行なうことにより、測定精度を高めることが
できる。なお、このような精度を必要としない場合に
は、予備テストの段階でK3の値を算出し、キー入力に
より予め設定しておくこともできる。
When the measurement is performed manually instead of the automatic continuous measurement, the measurement is performed according to the procedure shown in FIG. First, in a standby state in which no sample is introduced into the sample cell 14, after the shutter 12 is closed, the output D0 of the detector 18 is changed to RA at a time t11 when a predetermined time has elapsed and the output of the detector 18 has stabilized.
It is stored in M33. Next, a zero fluid is introduced into the sample cell 14 by an operator's key operation or the like, and D100 is measured at a time point t12 when a predetermined time has elapsed after the shutter 12 was opened. Next, a measurement sample (or a standard sample) is introduced into the sample cell 14, and the output DM (or DC) of the detector 18 is stored in the RAM 33 at a time point t13 after a predetermined time has elapsed. And RA
These measured values D0, D100, DM, stored in M33
From DC, the concentration M of the measurement sample is calculated in the same manner as described above (time t14), and the concentration value is displayed on the digital display 22. After that, D0 and DM are detected alternately, the density calculation is performed successively, and the value is displayed on the display 22. It should be noted that the measurement accuracy can be improved by performing D100 detection with zero fluid immediately before reading the final value and performing correction. If such accuracy is not required, the value of K3 can be calculated at the stage of the preliminary test and set in advance by key input.

【0020】制御部21により算出される各試料の濃度
測定値の出力データは、上記のようにデジタル表示器2
2に出力するばかりでなく、D/A変換することにより
記録計等にアナログ信号を出力することもできる。この
場合、出力データの大きさに応じて制御部21から出力
する段階で予めレンジ切換を行なっておくことにより、
記録計等の方でハードウェア的に操作を行なうことな
く、常に高分解能のアナログ値を出力することができる
ようになる。
The output data of the measured concentration value of each sample calculated by the control unit 21 is transmitted to the digital display 2 as described above.
In addition to the output of the analog signal, the analog signal can be output to a recorder or the like by D / A conversion. In this case, by performing range switching in advance at the stage of outputting from the control unit 21 according to the size of output data,
A recorder or the like can always output a high-resolution analog value without performing an operation in hardware.

【0021】なお、図1に示すように、試料セル14の
出口に温度検出器25を設け、また、気圧計又は試料セ
ル内の圧力を測定する圧力計を設け、次のように温度及
び圧力を補償した高精度な濃度測定を行なうようにする
こともできる。すなわち、測定 試料の濃度Mを算出す
る式(30)を次のように変更する。 M={(LM/LC1)×C1} ×{(273+ThM)/(273+ThC1)} ×{(PC1/PM)× K4} …(30b ここで、ThC1:濃度C1の標準試料の測定時の温度 PC1:濃度C1の標準試料の測定時の気圧又は試料圧
ThM :測定試料の測定時の温度 PM:測定試料の測定時の気圧又は試料圧力 K4:気圧補償の場合は1とする。試料セル14内の圧
力を大幅に加圧又は減圧する場合は、それに応じた値と
する。
As shown in FIG. 1, a temperature detector 25 is provided at the outlet of the sample cell 14, and a barometer or a pressure gauge for measuring the pressure in the sample cell is provided. It is also possible to perform high-accuracy concentration measurement that compensates for. That is, the equation (30) for calculating the concentration M of the measurement sample is changed as follows. M = {(LM / LC1) × C1} × {(273 + ThM ) / (273 + ThC1 )} × {(PC1 / PM) × K4} (30b, where ThC1 is the value at the time of measurement of the standard sample of concentration C1) Temperature PC1: Atmospheric pressure or sample pressure ThM at the time of measuring the standard sample having the concentration C1 ThM : Temperature at the time of measuring the measuring sample PM: Atmospheric pressure or the sample pressure at the time of measuring the measuring sample K4: Set to 1 for atmospheric pressure compensation. When the pressure in 14 is greatly increased or decreased, the pressure is set to a value corresponding thereto.

【0022】[0022]

【発明の効果】本発明に係る濃度測定装置では、予め多
数の標準試料により検量線を作成しておく必要がなく、
しかも各種の変動要因を一括して補正することにより簡
易に、しかも正確な測定値を求めることができる。
In the concentration measuring apparatus according to the present invention, there is no need to prepare a calibration curve from a large number of standard samples in advance.
In addition, by collectively correcting various fluctuation factors, a simple and accurate measurement value can be obtained.

【0023】なお、本発明に係る濃度測定装置は、上記
実施例で例示したものに限らず、次のような各種形式の
ものにも応用することができる。 A.透過吸収波長の異なる複数のフィルタを備えた検出
器を用いたり、それ自身で波長特性を持つ検出器を複数
用いたりすることにより、複数の成分を同時に測定する
ことのできる多成分濃度計。 B.上記のように多成分計とし、測定試料の波長に対し
て干渉を及ぼす成分について補正演算処理を行なうこと
により、測定試料の測定値を正確に算出するようにした
濃度計。 C.得られた測定値を予め設定した警報臨界値と比較
し、臨界値を超える場合に濃度警報信号を発するように
した警報付濃度計。この警報臨界値は、上限、下限、範
囲等任意に設定することができ、また、成分毎に設定す
ることもできる。さらに、警報を発するばかりではな
く、濃度値に応じて合否判定を行なったり、多成分計の
場合には、各成分の合計値が所定値以下のときにリーク
警報を発信させることもできる。
It should be noted that the concentration measuring apparatus according to the present invention is not limited to the one exemplified in the above embodiment, but can be applied to the following various types. A. A multi-component densitometer that can simultaneously measure a plurality of components by using a detector having a plurality of filters having different transmission and absorption wavelengths, or by using a plurality of detectors each having its own wavelength characteristic. B. A densitometer wherein the multi-component meter is used as described above, and a correction operation is performed on a component which interferes with the wavelength of the measurement sample, thereby accurately calculating the measurement value of the measurement sample. C. A concentration meter with an alarm which compares the obtained measured value with a preset alarm critical value and issues a concentration alarm signal when the measured value exceeds the critical value. The alarm critical value can be set arbitrarily, such as an upper limit, a lower limit, and a range, and can be set for each component. In addition to issuing an alarm, it is also possible to make a pass / fail decision according to the concentration value, or in the case of a multi-component meter, to issue a leak alarm when the total value of each component is equal to or less than a predetermined value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である濃度測定装置の構成
を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a concentration measuring device according to one embodiment of the present invention.

【図2】 実施例の濃度測定装置の制御部の構成を示す
ブロック図。
FIG. 2 is a block diagram showing a configuration of a control unit of the concentration measuring device according to the embodiment.

【図3】 実施例の濃度測定装置で自動連続濃度測定を
行なう場合のタイミングチャート。
FIG. 3 is a timing chart in the case of performing automatic continuous density measurement by the density measuring device of the embodiment.

【図4】 実施例の濃度測定装置で手動で濃度測定を行
なう場合のタイミングチャート。
FIG. 4 is a timing chart in a case where the density measurement is manually performed by the density measurement device of the embodiment.

【図5】 Lambert-Beerの法則の説明図。FIG. 5 is an explanatory diagram of Lambert-Beer's law.

【図6】 Lambert-Beerの法則に従う場合の透過率の変
化のグラフ(a)と、実際の透過率の変化のグラフ
(b)。
FIGS. 6A and 6B are a graph of a change in transmittance when obeying Lambert-Beer's law and a graph of an actual change in transmittance, respectively.

【符号の説明】[Explanation of symbols]

11…光源 12…シャッタ 13…シャッタ駆動用モータ(M) 14…試料セル 15、16…試料流体切換器 17…光学フィ
ルタ(FIL) 18…透過光検出器 19…増幅器
(AMP) 20…A/D変換器 21…制御部 22…デジタル表示器(DISP) 23…キーボー
ド(KB) 25…温度圧力補償検出器
DESCRIPTION OF SYMBOLS 11 ... Light source 12 ... Shutter 13 ... Shutter drive motor (M) 14 ... Sample cell 15, 16 ... Sample fluid switching device 17 ... Optical filter (FIL) 18 ... Transmitted light detector 19 ... Amplifier (AMP) 20 ... A / D converter 21 ... Control unit 22 ... Digital display (DISP) 23 ... Keyboard (KB) 25 ... Temperature / pressure compensation detector

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料を通過する光の吸収率又は透過率を
測定することにより試料中に含まれる特定の成分の濃度
を測定する濃度測定方法において、次の手順を備えるこ
とを特徴とする濃度測定方法。 a)既知の濃度C1及びC2を有する2種の試料を通過す
る光の透過率TC1及びTC2をそれぞれ測定する。 b)下記の3つの式(1),(2),(3)より補正係
数K3を算出する。 LC1=log((TC1−K3)/(1−K3)) …(1) LC2=log((TC2−K3)/(1−K3)) …(2) LC1/LC2=C1/C2 …(3) c)未知の濃度CMを有する測定試料を通過する光の透
過率TMを測定する。 d)下記式(4)又は式(5)により未知濃度CMを算
出する。 CM=((log((TM−K3)/(1−K3)))/LC1)×C1 …(4) CM=((log((TM−K3)/(1−K3)))/LC2)×C2 …(5)
1. A concentration measuring method for measuring the concentration of a specific component contained in a sample by measuring the absorptance or transmittance of light passing through the sample, comprising the following steps: Measuring method. a) Measure the transmittance TC1 and TC2 of light passing through two samples having known concentrations C1 and C2, respectively. b) A correction coefficient K3 is calculated from the following three equations (1), (2) and (3). LC1 = log ((TC1-K3) / (1-K3)) (1) LC2 = log ((TC2-K3) / (1-K3)) (2) LC1 / LC2 = C1 / C2 (3) C) Measure the transmittance TM of light passing through the measurement sample having the unknown concentration CM. d) The unknown concentration CM is calculated by the following equation (4) or (5). CM = ((log ((TM−K3) / (1-K3))) / LC1) × C1 (4) CM = ((log ((TM−K3) / (1-K3))) / LC2) × C2… (5)
【請求項2】 各試料の光の透過率TA=TC1,TC
2,TMを、次のような手順で求める請求項1記載の濃
度測定方法。 e)測定光が入射しないときの検出器の出力D0、及
び、測定光が測定対象成分を含まないゼロ試料を通過し
て入射したときの検出器の出力D100を測定す。 f)D0及びD100より次の補正係数K1を算出す
る。 K1=1/(D100−D0) …(6 )測定光が測定対象成分を含む試料を通過して入射し
たときの検出器の出力DAより、その試料の光の透過率
TAを TA=(DA−D0)×K1 …(8) で算出する。
2. The light transmittance of each sample TA = TC1, TC
2. The method according to claim 1, wherein TM is determined by the following procedure. e) The output D0 of the detector when the measurement light is not incident and the output D100 of the detector when the measurement light is incident after passing through a zero sample containing no measurement target component are measured. f) The following correction coefficient K1 is calculated from D0 and D100. K1 = 1 / (D100-D0) (6 ) g ) From the output DA of the detector when the measurement light passes through the sample containing the component to be measured, the light transmittance TA of the sample is determined by TA = (DA−D0) × K1 (8)
JP4164100A 1992-05-28 1992-05-28 Concentration measurement method using light absorption Expired - Lifetime JP2621004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164100A JP2621004B2 (en) 1992-05-28 1992-05-28 Concentration measurement method using light absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164100A JP2621004B2 (en) 1992-05-28 1992-05-28 Concentration measurement method using light absorption

Publications (2)

Publication Number Publication Date
JPH05332921A JPH05332921A (en) 1993-12-17
JP2621004B2 true JP2621004B2 (en) 1997-06-18

Family

ID=15786766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164100A Expired - Lifetime JP2621004B2 (en) 1992-05-28 1992-05-28 Concentration measurement method using light absorption

Country Status (1)

Country Link
JP (1) JP2621004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310910A (en) * 2001-04-09 2002-10-23 Nippon Soken Inc Gas concentration measuring instrument
JP3744903B2 (en) 2003-01-20 2006-02-15 セイコーエプソン株式会社 Infrared absorption measurement method, infrared absorption measurement device, and semiconductor device manufacturing method
JP3705270B2 (en) 2003-01-20 2005-10-12 セイコーエプソン株式会社 Infrared absorption measurement method, infrared absorption measurement device, and semiconductor device manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612898A (en) * 1984-06-18 1986-01-08 株式会社日立製作所 Clothing drying method and machine
JPH01284758A (en) * 1988-05-11 1989-11-16 Toshiba Corp Automatic chemical analysis apparatus
JPH03110452A (en) * 1989-09-26 1991-05-10 Matsushita Electric Ind Co Ltd Measuring device for transmittance of fume

Also Published As

Publication number Publication date
JPH05332921A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
EP0107410B1 (en) Method of photometric measurement
US4151738A (en) Toxic gas monitor having automatic calibration
JPH0134337B2 (en)
US4482251A (en) Clinical analyzer
US2579825A (en) Analyzer
US3794425A (en) Scanning infrared spectroscopic analyzer using rotating variable filter
JPS6382354A (en) Gas testing method and device
CN109506706A (en) A kind of pharmacological experiment titration system and method based on multisensor
JP2621004B2 (en) Concentration measurement method using light absorption
MXPA04011756A (en) A method and a spectrometer for quantitative determination of a constituent in a sample.
US5402242A (en) Method of and an apparatus for measuring a concentration of a fluid
JP2533068B2 (en) Concentration measurement method using light absorption
US3292484A (en) Apparatus for monitoring spectral characteristics of substances
US2939953A (en) Analyzer
US3932040A (en) Self-equalizing industrial photometer
JP2002055049A (en) Continuous measuring apparatus
RU157015U1 (en) FLUID OPTICAL DENSITY METER
CN109977349B (en) Method and device for filtering water vapor absorption peak in terahertz signal
JPH01284758A (en) Automatic chemical analysis apparatus
KR950009227A (en) Measurement method of concentration using light absorption
US4417812A (en) Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood
Kidd An open path H2O/CO2 gas analyzer for eddy correlation systems: theory and design
JPS6336265Y2 (en)
RU2420728C2 (en) Method of correcting output signal of photometric sensor
KR960002281B1 (en) Leakage inspecting method of mass flow controller