JP2620720B2 - Wood fiber base plate for construction and method of manufacturing the same - Google Patents

Wood fiber base plate for construction and method of manufacturing the same

Info

Publication number
JP2620720B2
JP2620720B2 JP1292866A JP29286689A JP2620720B2 JP 2620720 B2 JP2620720 B2 JP 2620720B2 JP 1292866 A JP1292866 A JP 1292866A JP 29286689 A JP29286689 A JP 29286689A JP 2620720 B2 JP2620720 B2 JP 2620720B2
Authority
JP
Japan
Prior art keywords
wood fiber
weight
parts
resin
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1292866A
Other languages
Japanese (ja)
Other versions
JPH03153304A (en
Inventor
義幸 奈良
和博 佐藤
実 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1292866A priority Critical patent/JP2620720B2/en
Publication of JPH03153304A publication Critical patent/JPH03153304A/en
Application granted granted Critical
Publication of JP2620720B2 publication Critical patent/JP2620720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は断熱性及び吸放湿性に優れ、且つ2×4(ツ
ーバイフォー)工法建築物において壁倍率2以上の強度
を発揮するモルタル壁やサイディング材の下地に用いら
れる木質繊維製下地板とその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a mortar wall or siding having excellent heat insulation and moisture absorption / desorption properties, and exhibiting a wall magnification of 2 or more in a 2 × 4 (two-by-four) construction building. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wood fiber base plate used as a base material and a method for manufacturing the same.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来より、木質繊維板よりなる壁下地等の建築用下地
板としては、断熱と結露防止の目的で断熱性及び吸放湿
性に富んだシージング・インシュレーションボード(以
下、シージングボードという)が広く用いられている。
Conventionally, as an architectural base plate such as a wall base made of a wood fiber board, a sheathing and insulation board (hereinafter, referred to as a sheathing board), which is rich in heat insulation and moisture absorption and desorption, for the purpose of heat insulation and dew condensation prevention. Have been.

このシージングボードは、低密度でかつ繊維の絡み合
いが良好となる湿式抄造法によって形成されており、モ
ルタル壁やサイディン材の下地に用いて断熱効果の高い
壁下地板として汎用されている。
This sheathing board is formed by a wet papermaking method that has a low density and good entanglement of fibers, and is widely used as a wall base plate having a high heat insulating effect when used as a base of a mortar wall or a siding material.

このようなシージングボードにおいて、JIS A5905規
定の厚さ12mmのシージングボードは、建設省告示第1100
号等によって、2×4工法や在来軸組工法の建築物で
は、外壁下地の断熱材であると共に耐力壁として壁倍率
1の剪段強度が認定されており、これは木ずり(製材横
張りの壁倍率0.5)を張った壁体の2倍の耐力壁の強度
に相当するが、構造用合板に比べれば強度が低く、建築
物の設計上、強度面での満足度が充分ではなかった。
In such a sheathing board, a JIS A5905 stipulated 12 mm thick sheathing board is a notification from the Ministry of Construction No. 1100.
No., etc., in buildings of the 2 × 4 construction method or the conventional frame construction method, the shear strength of the wall magnification of 1 has been certified as a heat-insulating material under the outer wall and as a load-bearing wall. This is equivalent to twice the strength of the load-bearing wall of a wall with a tension of 0.5), but the strength is lower than that of structural plywood, and the strength of the building is not satisfactory in terms of design. Was.

一方、構造用合板は強度面で優れているため、2×4
工法では厚さ7.5mmの2級構造用合板で壁倍率が2.5、厚
さ9mmの1級構造用合板で壁倍率が3.5の耐力が認定され
ており、また、在来軸組工法でも厚さ5mm以上のもの
は、壁倍率2.5の耐力が認定されているが、断熱性や吸
放湿性の点で上記シージングボードに劣るために断熱性
能や結露防止には不利であり、住宅等の冷暖房効率から
考えると断熱性が充分ではなかった。
On the other hand, structural plywood is excellent in strength, so that 2 × 4
The construction method has been certified to have a strength of 2.5mm for Class 2 structural plywood with a thickness of 7.5mm, and a wall magnification of 3.5 for Class 1 structural plywood with a thickness of 9mm. Those with a thickness of 5 mm or more are certified to have a wall magnification of 2.5, but are inferior to the above-mentioned sizing board in terms of heat insulation and moisture absorption and desorption, and therefore are disadvantageous for heat insulation performance and prevention of dew condensation. In view of this, heat insulation was not sufficient.

尚、2×4工法等の建築物の壁体強度は、耐力壁の長
さと壁倍率の乗数で算出され、窓等の開口部を大きくと
る場合には壁倍率の高い壁板が必要となる。
The wall strength of a building such as the 2 × 4 construction method is calculated by a multiplier of the length of the load-bearing wall and the wall magnification. When a large opening such as a window is used, a wall plate having a high wall magnification is required. .

従って、シージングボードの断熱性及び吸放湿性を低
下させることなく強度を高めて壁倍率を大きくすること
は、建築物の耐久性、居住性を満足し、かつ前記開口部
を大きくとることができて設計プランの自由度が広がる
というメリットがある。
Therefore, increasing the wall magnification by increasing the strength without lowering the heat insulating property and the moisture absorption / desorption property of the sizing board, the durability of the building can be satisfied, the livability can be satisfied, and the opening can be increased. This has the advantage that the degree of freedom of the design plan is expanded.

シージングボードの壁倍率を2倍にするには、その厚
さを24mmにして従来の2倍の厚さ寸法にすれば達成可能
となるが、下地材の厚さをこのように厚くしてしまうと
施工性の低下及び価格の上昇をまねいてしまい、満足す
る下地材とはならない。
In order to double the wall magnification of the sheathing board, it can be achieved by making the thickness 24 mm and making it twice as thick as the conventional one, but the thickness of the base material is made thick like this This leads to a decrease in workability and an increase in price, and is not a satisfactory base material.

従って、厚さを大幅に増すことなく強度の向上を行う
必要があるが、湿式抄造法によって強度的に優れた木質
繊維板を形成する場合には、単に木質繊維に対する結合
剤の混入量を多くして抄造しても、結合剤が水中へ流出
したのでは強度の向上が得られず、又、木質繊維の表面
が結合剤で覆われてしまう程に混入してしまうと、木質
繊維の吸放湿性が低下してしまう問題がある。
Therefore, it is necessary to improve the strength without significantly increasing the thickness, but when forming a wood fiber board excellent in strength by a wet papermaking method, simply increase the amount of the binder mixed into the wood fiber. Even if papermaking is performed, the strength cannot be improved if the binder flows out into the water, and if the wood fiber is mixed in such a way that the surface of the wood fiber is covered with the binder, the absorption of the wood fiber can be prevented. There is a problem that the moisture release property is reduced.

一方、粉末フェノール樹脂が接合強度及び耐水性に優
れ且つ抄造時の流出が少ない結合剤として知られてお
り、この粉末フェノール樹脂を多く添加することによっ
て強度の大きい木質繊維板にすることが考えられる。
On the other hand, powdered phenolic resin is known as a binder that has excellent bonding strength and water resistance and has a low outflow during papermaking. By adding a large amount of this powdered phenolic resin, it is conceivable to make a wood fiber board having high strength. .

しかしながら、粒径の小さい粉末フェノール樹脂はウ
ェットマットの脱水時に、水の移動と共にマット中で移
動してしまうので、木質繊維の絡み合いの交点に均一に
定着させることが困難であり、時に混入量を多くする
と、不均一な分散になって反りや強度ムラを引き起こし
易くなる。又、フェノール樹脂は乾燥時の加熱溶融で流
動性を増すので、絡み合い交点から流動して繊維表面に
流れ易くなり、混合量相当の結合効果が発揮できなくな
って混合量を極度に多くしておかなければならず経済的
に不利であった。
However, since the powdered phenolic resin having a small particle diameter moves in the mat along with the movement of water when the wet mat is dehydrated, it is difficult to uniformly fix the phenolic resin at the intersection of the entanglement of the wood fibers. When the amount is increased, the dispersion becomes uneven and the warpage and the strength unevenness are easily caused. Also, the phenolic resin increases its fluidity by heating and melting during drying, so that it flows from the entanglement intersection and flows easily to the fiber surface, and the bonding effect equivalent to the mixing amount cannot be exhibited, so make sure that the mixing amount is extremely large. Had to be economically disadvantageous.

従って、高分子定着剤であるポリアクリルアマイド
(陰イオン)と硫酸バンド(陽イオン)との樹脂フロッ
ク形成を利用して、この樹脂フロックに粉末フェノール
樹脂を包み込むようにして木質繊維の交点に定着させて
定着歩止りの向上及び溶融時の流動防止をはかっていた
が、ポリアクリルアマイドの量が多くなるとフロックの
径が大きくなってスラリーの粘度が高くなり、抄造網に
繊維マットが付着して離れにくくなり、その上、木質繊
維の絡み合いを上記フロックが阻害して強度にバラツキ
が生じる虞れがある。
Therefore, utilizing the resin floc formation of polyacrylamide (anion) and a sulfate band (cation), which are polymer fixing agents, the resin floc is wrapped with the powdered phenolic resin and fixed at the intersection of wood fibers. In order to improve the fixing yield and prevent flow during melting, the amount of polyacrylamide increases, the diameter of the floc increases, the viscosity of the slurry increases, and the fiber mat adheres to the papermaking net. In addition, there is a possibility that the flocks may hinder the entanglement of the wood fibers, causing a variation in strength.

又、高分子定着剤による樹脂フロックは、上述したよ
うにスラリー中での分散が不均一になりやすいために、
多くの粉末フェノール樹脂を添加しても木質繊維に対し
て全体的に均一に付着されず、部分的な樹脂塊を形成し
てしまうという問題点がある。
In addition, the resin floc due to the polymer fixing agent, because the dispersion in the slurry is likely to be non-uniform as described above,
Even if a large amount of powdered phenol resin is added, there is a problem that the resin is not uniformly adhered to the wood fiber as a whole, and a partial resin mass is formed.

本発明はこのような問題点を解消したものであり、シ
ージングボードの厚さ寸法を大幅に増すことなく粉末フ
ェノール樹脂を木質繊維の絡み合い交点に効率良く溶融
固着させることにより、断熱性及び吸放湿性に優れ、且
つ壁倍率が2以上の強度を発揮し得る木質繊維製建築用
下地板及びその製造方法を提供を目的とするものであ
る。
The present invention has solved such a problem, and by efficiently melting and fixing the powdered phenolic resin to the entanglement intersections of the wood fibers without significantly increasing the thickness dimension of the sizing board, the heat insulating property and the absorption and release of heat are achieved. It is an object of the present invention to provide a wood fiber architectural base plate excellent in wettability and capable of exhibiting a strength with a wall magnification of 2 or more, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の木質繊維製建築
用下地板は、木質繊維100重量部に対して融点が70〜90
℃で粒径が200メッシュ通過の粉末フェノール樹脂10〜4
0重量部と、融点が100〜120℃で粒径が48メッシュ通過
で且つ200メッシュを通過しない粉末の石油樹脂5〜20
重量部とが混抄されて湿式抄造により得られた木質繊維
よりなる建築用下地板であって、木質繊維の交絡部が上
記フェノール樹脂と石油樹脂の溶融固着によって接着さ
れ、比重が0.35〜0.4、厚さが10〜15mm、強度が壁倍率
2以上に形成された構造を有するものである。
In order to achieve the above object, the wood fiber architectural base plate of the present invention has a melting point of 70 to 90 with respect to 100 parts by weight of the wood fiber.
Powdered phenolic resin with particle size 200 mesh passing at 10 ~ 4
0 parts by weight and a powdery petroleum resin 5-20 having a melting point of 100-120 ° C. and a particle size of 48 mesh and not passing through 200 mesh.
Part by weight and is a base plate for building made of wood fiber obtained by wet paper milling is mixed, the entangled portion of the wood fiber is adhered by melting and fixing of the phenolic resin and petroleum resin, the specific gravity is 0.35 to 0.4, It has a structure with a thickness of 10 to 15 mm and a strength of a wall magnification of 2 or more.

又、このような木質繊維製建築用下地板の製造方法と
しては、木質繊維100重量部と、融点が70〜90℃で粒径
が200メッシュ通過の粉末フェノール樹脂10〜40重量部
と、融点が100〜120℃で粒径が48メッシュ通過で且つ20
0メッシュを通過しない固形石油樹脂5〜20重量とを水
中で混合撹拌してなるスラリーを湿式抄造し、抄造後の
ウエットマットをマットの内部温度が100〜120℃の温度
になるまで徐々に温度上昇させたのち、上記粉末フェノ
ール樹脂の硬化点以上の温度で加熱乾燥することを特徴
とするものである。
Further, as a method of manufacturing such a wood fiber architectural base plate, wood fiber 100 parts by weight, powder phenol resin having a melting point of 70 to 90 ° C. and a particle size of 200 mesh 10 to 40 parts by weight, melting point Is 100-120 ° C and the particle size passes through 48 mesh and 20
0 5% by weight of solid petroleum resin that does not pass through the mesh is wet-processed with a slurry obtained by mixing and stirring in water, and the wet mat after paper-making is gradually heated until the internal temperature of the mat reaches a temperature of 100 to 120 ° C. After being raised, the powder is heated and dried at a temperature not lower than the curing point of the phenol resin.

上記下地板を構成する木質繊維としては繊維長の長い
針葉樹を採用することが好ましく、特に、吸水膨張が小
さくて強度が大きい松材の繊維を使用するとよい。この
ような木質繊維を使用することによって、繊維長が長い
ために絡み合いの交点、即ち交絡点が多くなって繊維板
の曲げ強度が向上すると共に該交絡点にフェノール樹脂
を効率よく定着させて繊維板の剪断力が増大し、壁倍率
の決定に影響の大きい釘側面抵抗が高い繊維板となる。
As the wood fibers constituting the base plate, softwood having a long fiber length is preferably used. In particular, pinewood fibers having a small water absorption expansion and a high strength are preferably used. By using such a wood fiber, since the fiber length is long, the number of entanglement intersections, that is, the number of entanglement points increases, the bending strength of the fiberboard is improved, and the phenol resin is efficiently fixed to the entanglement point, and the fiber is fixed. The shear force of the board is increased, resulting in a fiberboard with a high nail side resistance, which greatly affects the determination of the wall magnification.

又、粉末フェノール樹脂としては上記のように融点が
70〜90℃で粒径が200メッシュ通過のもの(200メッシュ
アンダー)が用いられ、その硬化点が140℃以上、好ま
しくは140〜160℃のものを使用する。融点並びに硬化点
が上記範囲内に限定した理由は、上記融点以上の融点温
度の樹脂では製造時における木質繊維マットの乾燥温度
で効率よく溶融と硬化を行わせることが困難なためであ
る。
The melting point of the powdered phenolic resin is as described above.
Those having a particle size of 70 to 90 ° C and a particle size of 200 mesh passing (200 mesh under) are used, and those having a curing point of 140 ° C or more, preferably 140 to 160 ° C are used. The reason for limiting the melting point and the curing point to within the above ranges is that it is difficult to efficiently melt and cure the wood fiber mat at the drying temperature of the wood fiber mat at the time of production with a resin having a melting point temperature equal to or higher than the above melting point.

なお、使用するフェノール樹脂はノボラック型、レゾ
ール型のいずれであってもよいが、ノボラック型の方が
遊離ホルマリンが無いために無公害であり、又、硬化後
の強度も大きくて好ましい。
The phenolic resin used may be either a novolak type or a resol type, but the novolak type is preferable because it has no free formalin and thus has no pollution, and has high strength after curing.

さらに、木質繊維に対する粉末フェノール樹脂の配合
割合は、10重量部未満では得られる繊維板の強度を壁倍
率2以上とすることができず、又、40重量部を越えると
壁下地材としての断熱性、吸放湿性が低下するので、上
記のように10〜40重量部の範囲内で添加する。
Further, if the mixing ratio of the powdered phenolic resin to the wood fiber is less than 10 parts by weight, the strength of the fiberboard obtained cannot be increased to a wall magnification of 2 or more, and if it exceeds 40 parts by weight, heat insulation as a wall base material is required. The content and the moisture absorption / desorption are reduced, so that it is added in the range of 10 to 40 parts by weight as described above.

一方、粉末の石油樹脂は、その粒径および融点がフェ
ノール樹脂よりも小さいとフェノール樹脂に対する流動
防止作用が発揮されないために200メッシュを通過しな
い粒径のものを用いこるとが要件であるが、48メッシュ
を通過しないような大きい粒径のものを使用すると、ス
ラリー中で木質繊維の絡み合いを阻害して強度を低下さ
せるので、上記範囲内の粒径のものを用いるものであ
る。
On the other hand, the petroleum resin of the powder, the particle size and melting point is smaller than that of the phenolic resin, the flow-prevention effect on the phenolic resin is not exhibited, it is a requirement to use a particle size that does not pass through 200 mesh, If a particle having a large particle size that does not pass through the 48 mesh is used, the entanglement of the wood fibers in the slurry is impaired and the strength is reduced. Therefore, a particle having a particle size within the above range is used.

又、この石油樹脂の分子量は、800未満では粘着性が
大きくて水中での分散性が悪くなる一方、2000以上では
溶融温度が高くて木質繊維の乾燥温度の範囲で溶融させ
ることが困難となり、繊維間の接合強度や繊維板の耐水
性の付与が不充分となるので、800〜2000の範囲内のも
のを用いる。
In addition, the molecular weight of this petroleum resin is less than 800, the adhesiveness is large, the dispersibility in water is poor, while if it is more than 2,000, the melting temperature is high and it becomes difficult to melt in the range of the drying temperature of the wood fiber, Since the bonding strength between fibers and the imparting of water resistance to the fiberboard become insufficient, those having a range of 800 to 2000 are used.

さらに、木質繊維マットの加熱乾燥時に、石油樹脂が
粉末フェノール樹脂よりも先に溶融すると、溶融した石
油樹脂が粉末フェノール樹脂と木質繊維の密着を阻害し
て繊維の交絡点に結合力の弱い石油樹脂が先に付着して
しまうと共に、粉末フェノール樹脂より先に溶融する
と、溶融したフェノール樹脂の流動を防止できず、絡み
合い部分から繊維表面に向かってフェノール樹脂が流動
し易くなるので、融点が上記のように粉末フェノール樹
脂よりも高い100〜120℃の範囲の石油樹脂を用い、粉末
フェノール樹脂が繊維の交絡点に先に溶融、付着したの
ち、該粉末石油樹脂を溶融させることを要件とするもの
である。
Furthermore, when the petroleum resin is melted before the phenolic resin powder during heating and drying of the wood fiber mat, the molten petroleum resin inhibits the close contact between the powdered phenolic resin and the wood fiber, and the petroleum having a weak bonding force at the entanglement point of the fiber. If the resin adheres first and melts before the powdered phenolic resin, the flow of the molten phenolic resin cannot be prevented, and the phenolic resin tends to flow from the entangled portion toward the fiber surface. Using a petroleum resin in the range of 100 to 120 ° C. higher than the powdered phenolic resin, the requirement is that the powdered phenolic resin is first melted at the intertwining point of the fibers, and then attached, and then the powdered petroleum resin is melted. Things.

又、この石油樹脂の配合割合は、木質繊維100重量部
に対して5重量部以下であると、溶融したフェノール樹
脂の流動防止が不充分となって粉末フェノール樹脂のみ
を多く添加しても結合強度が充分発揮されず、壁倍率2
の強度を得ることができなくなる一方、その添加量が20
重量部以上になると木質繊維の交絡点に石油樹脂が多量
に定着して粉末フェノール樹脂の定着量が減少し、壁倍
率2を満足する強度の繊維板を得ることができないため
に、上記したように5〜20重量部の範囲内で添加する必
要がある。
If the mixing ratio of the petroleum resin is 5 parts by weight or less with respect to 100 parts by weight of the wood fiber, the prevention of the flow of the molten phenolic resin becomes insufficient, so that even if only a large amount of the powdered phenolic resin is added, it is bonded. Not enough strength, wall magnification 2
While it is not possible to obtain the strength of
When the amount is more than the weight part, a large amount of petroleum resin is fixed at the entanglement point of the wood fiber, and the fixing amount of the powdered phenol resin is reduced. As a result, it is impossible to obtain a fiberboard having a strength satisfying the wall magnification of 2, Must be added within the range of 5 to 20 parts by weight.

なお、その他の添加物としては古紙パルプやアスファ
ルトを用いることができ、古紙パルプを木質繊維100重
量部に対して0〜30重量部を添加すると抄造繊維マット
の腰を強くして製造時の取扱性が良好となり、アスファ
ルトを0〜10重量部添加すると、石油樹脂と共に得られ
る繊維板に耐水性と弾力性を付与することができる。
Recycled paper pulp and asphalt can be used as other additives, and when 0 to 30 parts by weight of recycled paper pulp is added to 100 parts by weight of wood fiber, the stiffness of the papermaking fiber mat is strengthened and handling during production is performed. When the asphalt is added in an amount of 0 to 10 parts by weight, water resistance and elasticity can be imparted to the fiberboard obtained with the petroleum resin.

〔作用] 木質繊維板を製造するに際して、水中に木質繊維と粉
末フェノール樹脂及び固形石油樹脂とを投入し、このス
ラリーを抄造すると、粒径が大きい固形石油樹脂の表面
に該固形石油樹脂よりも小径の粉末フェノール樹脂が多
数、付着した状態でフェノール樹脂が木質繊維の交絡点
に効率よく定着する。こうして得られたウエットマット
を加熱乾燥すると、石油樹脂よりも融点が低い粉末フェ
ノール樹脂がマットの乾燥温度によって先に溶融し、木
質繊維の交絡点に優先的に付着すると共に粉末の石油樹
脂が溶融するまでは、その流動が小さく押えられている
ため、木質繊維の絡み合いの交点に充分密着することに
なり、該フェノール樹脂による木質繊維同士の結合効果
を遺憾なく発揮させると共にその後に石油樹脂が溶融し
て木質繊維同士の結合部を強化して耐水性を付与させ
る。
[Function] In producing a wood fiber board, wood fiber, powdered phenol resin and solid petroleum resin are put into water, and the slurry is formed into a sheet. A large number of small-diameter powdered phenolic resins adhere efficiently to the entangled points of the wood fibers with the phenolic resins attached. When the wet mat thus obtained is heated and dried, the powdered phenolic resin having a lower melting point than the petroleum resin melts first due to the drying temperature of the mat, and adheres preferentially to the entanglement point of the wood fiber, and the powdered petroleum resin melts. Until that time, the flow is kept small, so that the phenolic resin is sufficiently adhered to the intersection of the entanglement of the wood fibers, and the phenol resin exerts the binding effect between the wood fibers without regret, and the petroleum resin melts thereafter. This strengthens the joints between the wood fibers to impart water resistance.

このように、木質繊維の交絡点にフェノール樹脂粉末
を石油樹脂と共に効果的に付着させて得られる木質繊維
板の断熱性や吸放湿性を損なうことなく木質繊維間の結
合力を増大させ、比重が0.35〜0.4という軽量さと厚さ
が10〜15mmという従来のシージングボードと同等の取扱
性を維持して壁倍率が2以上を満足する高強度の木質繊
維製建築用下地板を得ることができる。
In this way, the binding strength between the wood fibers is increased without impairing the heat insulation and moisture absorption / release properties of the wood fiber board obtained by effectively adhering the phenol resin powder together with the petroleum resin to the intertwining points of the wood fibers, and increasing the specific gravity. However, it is possible to obtain a high-strength wood fiber architectural base plate that satisfies a wall magnification of 2 or more while maintaining the same ease of handling as a conventional sizing board with a light weight of 0.35 to 0.4 and a thickness of 10 to 15 mm. .

以下、実施例と比較例とを開示して本発明を更に具体
的に説明するが、本発明はこれらの実施例に限られるも
のではない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〔実施例 1〕 水中に松材よりなる木質繊維100重量部と、融点70
℃、硬化点150℃で粒径が200メッシュ通過の粉末フェノ
ール樹脂10重量部と、融点が100℃、分子量960で粒径が
平均メッシュ100(48メッシュアンダーで200メッシュを
通過しない)の固形石油樹脂5重量部とを添加して混合
撹拌することによりスラリーを調製し、これの湿式抄造
法によって抄造して木質繊維のウエットマットを得たの
ち、該マットを、その内部温度が80〜100℃になるよう
に温度調整したファースト乾燥ゾーンと、マットの内部
温度が100〜130℃になるように調整したセカンド乾燥ゾ
ーンと、マットの内部温度が150℃以上になるように調
整したサード乾燥ゾーンとに順次供給して含水率を12%
以下まで乾燥し、しかるのち、室温に冷却して切断する
ことにより大きさが909×1818mmで厚さが12.2mmの建築
用木質繊維製下地板を得た。
[Example 1] 100 parts by weight of a wood fiber made of pine wood in water and a melting point of 70
Solid petroleum with a melting point of 100 ° C, a molecular weight of 960 and an average particle size of 100 (48 mesh under and not passing through 200 mesh) with 10 parts by weight of a powdered phenolic resin having a particle size of 200 ° C and a curing point of 150 ° C. A slurry is prepared by adding 5 parts by weight of a resin and mixing and stirring, and the slurry is formed by wet-paper-making method to obtain a wet mat of wood fiber, and the mat is heated to an internal temperature of 80 to 100 ° C. A first drying zone whose temperature has been adjusted so as to have a second drying zone where the internal temperature of the mat has been adjusted to 100 to 130 ° C, and a third drying zone which has been adjusted so that the internal temperature of the mat has become 150 ° C or higher. To 12% moisture content
It was dried to the following, then cooled to room temperature and cut to obtain a wood fiber base plate for construction having a size of 909 × 1818 mm and a thickness of 12.2 mm.

〔実施例 2〕 木質繊維100重量部に対して上記実施例1における粉
末フェノール樹脂を12重量部、固形石油樹脂を9重量部
と、アスファルト粉体(粒径が48〜200メッシュ)を3
重量部添加し、水中で撹拌混合してスラリーを調製した
のち、実施例1と同一条件で同一形状の建築用木質繊維
製下地板を得た。
[Example 2] 12 parts by weight of the powdery phenol resin, 9 parts by weight of solid petroleum resin, and 3 parts of asphalt powder (particle size: 48 to 200 mesh) with respect to 100 parts by weight of the wood fiber.
After adding a part by weight and stirring and mixing in water to prepare a slurry, a base plate made of wood fiber for construction having the same shape under the same conditions as in Example 1 was obtained.

〔実施例 3〕 実施例2において、粉末フェノール樹脂を20重量部、
固形石油樹脂を15重量部、アスファルト粉体を4重量部
使用し、その他の条件を同一にして同一形状の建築用木
質繊維製下地板を得た。
[Example 3] In Example 2, 20 parts by weight of the powdered phenol resin was used.
15 parts by weight of solid petroleum resin and 4 parts by weight of asphalt powder were used, and the other conditions were the same to obtain a wood fiber base plate for building having the same shape.

〔実施例 4〕 実施例2において、粉末フェノール樹脂を25重量部、
固形石油樹脂を20重量部、アスファルト粉体を5重量部
使用し、その他の条件を同一にして同一形状の建築用木
質繊維製下地板を得た。
[Example 4] In Example 2, 25 parts by weight of the powder phenol resin was used.
20 parts by weight of solid petroleum resin and 5 parts by weight of asphalt powder were used, and the other conditions were the same to obtain a wood fiber base plate for building having the same shape.

〔比較例 1〕 木質繊維100重量部に対してアスファルト粉体を10重
量部添加し、水中で混合撹拌して調製したスラリーを抄
造してウエットマットを得たのち、実施例1と同一条件
で処理して同一形状のシージングインシュレーションボ
ードを得た。
[Comparative Example 1] 10 parts by weight of asphalt powder was added to 100 parts by weight of wood fiber, and a slurry was prepared by mixing and stirring in water to obtain a wet mat. Then, under the same conditions as in Example 1, By processing, a sheathing insulation board of the same shape was obtained.

〔比較例 2〕 木質繊維100重量部に対してアスファルト粉体を6重
量部と上記実施例と同じ固形石油樹脂粒を6重量部添加
し、水中で混合撹拌して調製したスラリーを抄造してウ
エットマットを得たのち、実施例1と同一条件で処理し
て同一形状のシージングインシュレーションボード(JI
S A 5905規格品)を得た。
[Comparative Example 2] 6 parts by weight of asphalt powder and 6 parts by weight of the same solid petroleum resin particles as in the above example were added to 100 parts by weight of wood fiber, and a slurry was prepared by mixing and stirring in water. After obtaining a wet mat, it was processed under the same conditions as in Example 1 and a sheathing insulation board (JI
SA 5905 standard product).

〔比較例 3〕 木質繊維100重量部に対してポリアクリルアミド0.03
重量部と、上記実施例と同じ粉末フェノール樹脂を15重
量部添加し、水中で混合撹拌して調製したスラリーを抄
造してウエットマットを得たのち、実施例1と同一条件
で処理して同一形状の木質繊維板を得た。
[Comparative Example 3] Polyacrylamide 0.03 to 100 parts by weight of wood fiber
15 parts by weight of the same phenol resin powder as in the above example, and mixing and stirring in water to form a slurry to obtain a wet mat, which was then treated under the same conditions as in Example 1 and the same. A wood fiberboard of the shape was obtained.

上記実施例1〜4及び比較例1〜3によって得られた
木質繊維板の物性を次に表示する。
The physical properties of the wood fiber boards obtained in Examples 1 to 4 and Comparative Examples 1 to 3 are shown below.

上記表中において、ラッキング試験はASTM E72の試験
規格に基づいて算出し、壁倍率の算出は日本住宅木材技
術センター認定の次式に基づいて行った。
In the above table, the racking test was calculated based on the test standard of ASTM E72, and the calculation of the wall magnification was performed based on the following equation approved by the Japan Residential Wood Technology Center.

壁倍率=(1/300ラジアン変形時の剪断耐力)×(1/13
0)×(1/1.82)×(低減係数=0.75) 上記表に示すように、本発明の実施例における木質繊
維板は比重0.4以下の密度でかつ、12mm程度の従来の下
地板と同厚の条件下で壁倍率2以上を性能を有すること
が確認された。
Wall magnification = (shear strength at 1/300 radian deformation) x (1/13
0) × (1 / 1.82) × (reduction coefficient = 0.75) As shown in the above table, the wood fiber board in the example of the present invention has a specific gravity of 0.4 or less and the same thickness as a conventional base board of about 12 mm. It was confirmed that it had a performance with a wall magnification of 2 or more under the conditions of

〔発明の効果〕〔The invention's effect〕

以上のように本発明の木質繊維製建築用下地板によれ
ば、断熱性及び吸放湿性を損なうことなく従来のシージ
ングボードでは得ることのできない壁倍率2以上の強度
を有するものであり、従って、建築物の窓等の開口部を
大きく取ることができて建物の設計プランの自由度を広
げることができるものである。
As described above, according to the wood fiber architectural base plate of the present invention, it has a wall magnification of 2 or more, which cannot be obtained with a conventional sizing board without impairing heat insulation and moisture absorption / desorption properties. In addition, a large opening such as a window of a building can be obtained, and the degree of freedom of a building design plan can be increased.

又、この下地板の製造方法においては、湿式抄造時
に、まず、木質繊維と粒径が200メッシュ通過の粉末フ
ェノール樹脂及び48メッシュ通過で200メッシュを通過
しない固形石油樹脂とを混合撹拌してスラリーを調製す
るものであるから、このスラリーを抄造してウエットマ
ットを得る際に、粒径が大きい固定石油樹脂の表面に該
固形石油樹脂よりも小径の粉末フェノール樹脂が多数、
付着した状態でフェノール樹脂を木質繊維の交絡点に効
率よく定着させることができ、さらに、このウエットマ
ットを加熱乾燥する時に、粉末石油樹脂よりも融点が低
い粉末フェノール樹脂がマットの乾燥温度によって先に
溶融し、木質繊維の交絡点に優先的に付着して該フェノ
ール樹脂による木質繊維同士の結合効果を遺憾なく発揮
させることができると共にその後に石油樹脂が溶融して
木質繊維同士の結合を定着させることができる。
In the method of producing the base plate, during wet papermaking, first, wood fiber and a powdered phenol resin having a particle size of 200 mesh and a solid petroleum resin that does not pass through 200 mesh with 48 mesh are mixed and stirred. Therefore, when the slurry is formed to obtain a wet mat, a large number of powdered phenolic resins having a smaller diameter than the solid petroleum resin on the surface of the fixed petroleum resin having a large particle size,
The phenolic resin can be efficiently fixed to the intertwining points of the wood fibers in the attached state, and when the wet mat is heated and dried, the powdered phenolic resin having a melting point lower than that of the powdered petroleum resin depends on the drying temperature of the mat. And the phenolic resin adheres preferentially to the intertwining points of the wood fibers, so that the binding effect of the wood fibers by the phenolic resin can be fully exhibited, and the petroleum resin subsequently melts and establishes the connection of the wood fibers. Can be done.

このように、木質繊維の交絡点にフェノール樹脂粉末
を石油樹脂を介して効果的に付着させて得られる木質繊
維板の断熱性や吸放湿性を損なうことなく木質繊維間の
結合力を増大させ、比重が0.35〜0.4、厚さが10〜15mm
の汎用性の高い比重と厚さ寸法でかつ、壁倍率が2以上
を満足する強度の木質繊維製建築用下地板を得ることが
できるものである。
In this way, the bonding strength between the wood fibers is increased without impairing the heat insulation and moisture absorption / release properties of the wood fiber board obtained by effectively attaching the phenol resin powder to the intertwining points of the wood fibers via the petroleum resin. , Specific gravity 0.35 ~ 0.4, thickness 10 ~ 15mm
It is possible to obtain a wood fiber architectural base plate having a high specific gravity and a thickness dimension and a wall magnification of 2 or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 実 大阪府大阪市北区中之島2―3―18 大 建工業株式会社内 (56)参考文献 特開 昭56−96996(JP,A) 特開 昭57−71498(JP,A) 特開 昭58−144198(JP,A) 特開 平1−225684(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Minoru Wada 2-3-6 Nakanoshima, Kita-ku, Osaka-shi, Osaka Daiken Kogyo Co., Ltd. (56) References JP-A-56-96996 (JP, A) JP-A JP-A-57-71498 (JP, A) JP-A-58-144198 (JP, A) JP-A-1-225684 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】木質繊維100重量部に対して融点が70〜90
℃で粒径が200メッシュ通過の粉末フェノール樹脂10〜4
0重量部と、融点が100〜120℃で粒径が48メッシュ通過
で且つ200メッシュを通過しない粉末の石油樹脂5〜20
重量部とが混抄されて湿式抄造により得られた木質繊維
よりなる建築用下地板であって、木質繊維の交絡部が上
記フェノール樹脂と石油樹脂の溶融固着によって接着さ
れ、比重が0.35〜0.4、厚さが10〜15mm、強度が壁倍率
2以上に形成されていることを特徴とする木質繊維製建
築用下地板。
A melting point of 70 to 90 with respect to 100 parts by weight of a wood fiber.
Powdered phenolic resin with particle size 200 mesh passing at 10 ~ 4
0 parts by weight and a powdery petroleum resin 5-20 having a melting point of 100-120 ° C. and a particle size of 48 mesh and not passing through 200 mesh.
Part by weight and is a base plate for building made of wood fiber obtained by wet paper milling is mixed, the entangled portion of the wood fiber is adhered by melting and fixing of the phenolic resin and petroleum resin, the specific gravity is 0.35 to 0.4, A wood fiber architectural base plate having a thickness of 10 to 15 mm and a strength of a wall magnification of 2 or more.
【請求項2】木質繊維100重量部と、融点が70〜90℃で
粒径が200メッシュ通過の粉末フェノール樹脂10〜40重
量部と、融点が100〜120℃で粒径が48メッシュ通過で且
つ200メッシュを通過しない固形石油樹脂5〜20重量部
とを水中で混合撹拌してなるスラリーを湿式抄造し、抄
造後のウエットマットをその内部温度が100〜120℃の温
度になるまで徐々に温度上昇させたのち、上記粉末フェ
ノール樹脂の硬化点以上の温度で加熱乾燥することを特
徴とする木質繊維製建築用下地板の製造方法。
2. 100 parts by weight of wood fiber, 10 to 40 parts by weight of a powdered phenol resin having a melting point of 70 to 90 ° C. and a particle size of 200 mesh, and a phenol resin having a melting point of 100 to 120 ° C. and a particle size of 48 mesh. And a slurry formed by mixing and stirring 5 to 20 parts by weight of solid petroleum resin that does not pass through 200 mesh in water is wet-processed, and the wet mat after forming is gradually heated until its internal temperature reaches a temperature of 100 to 120 ° C. A method for producing a wood fiber architectural base plate, comprising heating and drying at a temperature not lower than the curing point of the powdered phenol resin after raising the temperature.
JP1292866A 1989-11-11 1989-11-11 Wood fiber base plate for construction and method of manufacturing the same Expired - Lifetime JP2620720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292866A JP2620720B2 (en) 1989-11-11 1989-11-11 Wood fiber base plate for construction and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292866A JP2620720B2 (en) 1989-11-11 1989-11-11 Wood fiber base plate for construction and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03153304A JPH03153304A (en) 1991-07-01
JP2620720B2 true JP2620720B2 (en) 1997-06-18

Family

ID=17787390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292866A Expired - Lifetime JP2620720B2 (en) 1989-11-11 1989-11-11 Wood fiber base plate for construction and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2620720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102148085B1 (en) * 2018-12-13 2020-08-25 이원식 Manufacturing method of eco-friendly high-strength fiberboard using old synthetic fiber and perforated thin plates and old synthetic fiber and net shape

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696996A (en) * 1979-12-28 1981-08-05 Daiken Trade & Industry Production of fiber board with medium density
JPS5771498A (en) * 1980-10-23 1982-05-04 Dainippon Ink & Chemicals Production of fiberboard
JPS58144198A (en) * 1982-02-18 1983-08-27 大建工業株式会社 Production of fiberboard for cold press molding
JPH01225684A (en) * 1988-03-04 1989-09-08 Nippon Seirou Kk Composition for imparting water repellency to particle board

Also Published As

Publication number Publication date
JPH03153304A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
US4963603A (en) Composite fiberboard and process of manufacture
US5134179A (en) Composite fiberboard and process of manufacture
US5772846A (en) Nonwoven glass fiber mat for facing gypsum board and method of making
JP5549954B2 (en) Low density nonwoven material useful for acoustic effect ceiling tile products
EP3353132B1 (en) Acoustical ceiling tile
EP1300511A2 (en) Thermo formable acoustical panel
TWI763624B (en) Porous fiber reinforced composite material and method for preparing the same
JP2020533495A (en) Mineral fiber roof cover board
EP3302942B1 (en) Glass mat reinforcement
EP2203399B1 (en) Highly acoustical, wet-formed substrate
KR19980018980A (en) METHOD FOR MANUFACTURING A MINERAL FIBER PANEL
SK17142001A3 (en) Mineral fibre insulating board comprising a rigid surface layer, a process for the preparation thereof and a use of the insulating product for roofing and facade covering
JP2620720B2 (en) Wood fiber base plate for construction and method of manufacturing the same
EP0406354B2 (en) Process of manufacture of composite fiberboard
JP4939144B2 (en) Mineral fiberboard and manufacturing method thereof
JP2553948B2 (en) Mineral fiber molding
JPH1171837A (en) Sound absorbing board, and its manufacture
JPH10273625A (en) Inorganic adhesive composition
RU2756192C1 (en) Mineral wool plate with fillers
JP3351599B2 (en) Foam board
JPS58156100A (en) Production of high strength fire retardant heat insulating board
WO1990012169A1 (en) Method for manufacturing a mineral wool panel
JPS63235598A (en) Vegetable fiber buffer material and its production
JPH10114583A (en) Production of mineral fiber board
JPH0152355B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 13