JP2619437B2 - Inspection equipment using nuclear magnetic resonance - Google Patents
Inspection equipment using nuclear magnetic resonanceInfo
- Publication number
- JP2619437B2 JP2619437B2 JP62303122A JP30312287A JP2619437B2 JP 2619437 B2 JP2619437 B2 JP 2619437B2 JP 62303122 A JP62303122 A JP 62303122A JP 30312287 A JP30312287 A JP 30312287A JP 2619437 B2 JP2619437 B2 JP 2619437B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnet
- subject
- bore
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核磁気共鳴を用いた検査装置に係り、特に検
査対象が快適に検査を受けるのに好適な核磁気共鳴を用
いた検査装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus using nuclear magnetic resonance, and more particularly, to an inspection apparatus using nuclear magnetic resonance suitable for a subject to be inspected comfortably. .
〔従来の技術〕 従来の装置は特開昭58−1437号に記載のように磁石は
被検体の周囲を囲んでいる。[Prior Art] In a conventional apparatus, a magnet surrounds a subject as described in JP-A-58-1437.
また、圧電素子を用いたモータについては、日経エレ
クトロニクスNo.423(1987.6.15)第111頁から第117頁
において論じられているように圧電素子による定在波を
用いて回転運動を作り出すことができる。Also, for a motor using a piezoelectric element, as described in Nikkei Electronics No. 423 (June 15, 1987), pp. 111 to 117, it is possible to generate a rotational motion using a standing wave by a piezo element. it can.
上記従来技術は傾斜磁場発生コイル等により磁石のボ
ア内の温度が上昇すること、あるいはその中に熱がこも
り拡散しないために被検体が暑さを感じるということに
ついて配慮されていなかつた。In the above-mentioned prior art, no consideration has been given to the fact that the temperature inside the bore of the magnet is increased by the gradient magnetic field generating coil or the like, or that the subject feels hot because the heat does not accumulate and diffuse therein.
また、磁石ボア内では直流,交流モータは強力な磁場
の影響を受けるために動作しなくなるという問題点があ
つた。Further, there is a problem that the DC and AC motors do not operate in the magnet bore due to the influence of the strong magnetic field.
本発明の目的は磁石ボア内でも動作するモータ等によ
り送風し磁石ボア内の熱を逃がすことにより被検体が暑
さを感じることなく、不快感を軽減して快適に検査を受
けられるようにすることにある。An object of the present invention is to allow a subject to feel comfortable and to receive a test without feeling hot by blowing air by a motor or the like that operates even in a magnet bore and releasing heat in the magnet bore. It is in.
上記目的は圧電素子を用いたモータあるいはバイモル
フでプラスチツク等の非磁性体でできたフアンを動作さ
せることによつて磁石ボア内に送風し発生する熱を磁石
外に逃がし、磁石内に熱がこもることを防止することに
より達成される。The above object is achieved by operating a fan using a non-magnetic material such as plastic with a motor using a piezoelectric element or a bimorph, thereby releasing heat generated by blowing air into the magnet bore to the outside of the magnet, and trapping heat inside the magnet. This is achieved by preventing
非磁性材料で作られた圧電素子を用いたモータは磁石
ボア内という強力な磁場のもとでも動作可能である。こ
のモータを用いて非磁性体で作られたフアンを動作さ
せ、送風することができる。磁石ボア内で動作可能なフ
アンで磁石ボア内へ送風することによつて、磁石ボア内
で発生する熱を磁石外に逃がすことができる。A motor using a piezoelectric element made of a nonmagnetic material can operate under a strong magnetic field in a magnet bore. Using this motor, a fan made of a non-magnetic material can be operated to blow air. By blowing air into the magnet bore with a fan operable in the magnet bore, heat generated in the magnet bore can be released outside the magnet.
以下、本発明の一実施例を図を用いて説明する。第1
図は磁石の断面図である。静磁場,傾斜磁場を発生する
磁石1のボア内部に被検体2が置かれる。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First
The figure is a sectional view of the magnet. The subject 2 is placed inside the bore of the magnet 1 that generates a static magnetic field and a gradient magnetic field.
この時、磁石1の両側の口に圧電素子により駆動され
るフアン3を設置する。フアン3により外部の空気を磁
石1の内部に送風し、磁石1の内部の空気を外部へ排気
する。第2図は第1図におけるフアン3の一実施例を構
成を示し、羽根31,圧電モータ32より成る。圧電モータ3
2を用いることにより磁石1の磁場の影響なく動作可能
である。At this time, the fan 3 driven by the piezoelectric element is installed in both sides of the magnet 1. The outside air is blown into the magnet 1 by the fan 3, and the air inside the magnet 1 is exhausted to the outside. FIG. 2 shows an embodiment of the fan 3 shown in FIG. 1 and includes a blade 31 and a piezoelectric motor 32. Piezoelectric motor 3
By using 2, operation is possible without the influence of the magnetic field of the magnet 1.
本実施例によれば簡単安価な構成で被検体2が暑さを
感じることなく検査を受けられるという効果がある。According to the present embodiment, there is an effect that the subject 2 can be inspected with a simple and inexpensive configuration without feeling the heat.
また、第3図はバイモルフの場合でフアン3を羽根3
1,圧電素子33で構成し、圧電素子33の振動を羽根31の往
復運動にし送風する一実施例を示したものである。Fig. 3 shows a bimorph case in which fan 3 is connected to blade 3.
1, an embodiment is shown in which a piezoelectric element 33 is used, and the vibration of the piezoelectric element 33 is made to reciprocate the blades 31 to blow air.
以上で用いる材質は非磁性体とする。 The material used above is a non-magnetic material.
本実施例ではフアン3を磁石1の近傍に設置した例を
示したが、安価ではないが以下に示す実施例も可能であ
る。すなわち、直流,交流モータが動作する磁場強度の
場所に設置されたフアンによりダクトを介して磁石内に
送風することも可能である。この際、送風する空気を冷
却してもよい。In this embodiment, an example in which the fan 3 is installed near the magnet 1 has been described. However, although not inexpensive, the following embodiment is also possible. That is, it is also possible to blow air into the magnet through the duct by a fan installed in a place where the DC and AC motors operate at a magnetic field strength. At this time, the air to be blown may be cooled.
また、第4図では別な一実施例として磁石1が作る静
磁場を直流モータの外側の磁石のかわりに用い電機子4
だけでモータを構成することもできる。In FIG. 4, as another embodiment, an armature 4 is used in which the static magnetic field generated by the magnet 1 is used instead of the magnet outside the DC motor.
A motor can also be constituted only by this.
電機子4の回転を所望の方向に変換し、羽根31を回転
させることにより送風を行うことができる。The air can be blown by converting the rotation of the armature 4 to a desired direction and rotating the blade 31.
上述した実施例では、送風により核磁気共鳴検査装置
の磁石ボア内に入る被検者の不快感を軽減するものであ
るが、磁石ボア内は磁場を均一にする等の目的により狭
い空間となり外部の光や音が届きにくく、被検者に不安
をいだかせることが多い。そこで、これらの点について
改善について以下に述べる。In the above-described embodiment, the discomfort of the subject entering the magnet bore of the nuclear magnetic resonance inspection apparatus by blowing air is reduced, but the inside of the magnet bore becomes a narrow space for the purpose of making the magnetic field uniform and the like. Light and sound are difficult to reach, often causing anxiety to the subject. Therefore, improvement in these points will be described below.
光を磁石ボア内に送受する手段として光フアイバによ
る光伝送を行えば磁場の影響を受けずに実施できる。従
つて磁石ボア内を明るくでき、被検者の様子もモニタで
き、被検者の不安を低減することができる。As a means for transmitting and receiving light to and from the magnet bore, light transmission by an optical fiber can be performed without being affected by a magnetic field. Therefore, the inside of the magnet bore can be brightened, the state of the subject can be monitored, and the anxiety of the subject can be reduced.
音を磁石ボア内に送る手段としてスピーカの代わりに
圧電現象を利用したスピーカを使用することにより磁場
の影響を受けなくて済む。また、磁石ボア内の被検者が
発する音は音圧によるデイテクタの位置変化を光で計測
する、又は、通常のマイクロフオンの外部磁場の代わり
に磁石による静磁場を利用しコイル部に生じる誘導起電
力に変換することによつて磁場の影響を受けずに外部に
取り出すことができる。By using a speaker utilizing the piezoelectric phenomenon instead of the speaker as a means for transmitting sound into the magnet bore, the influence of the magnetic field can be eliminated. In addition, the sound emitted by the subject in the magnet bore measures the position change of the detector due to the sound pressure with light, or uses a static magnetic field generated by a magnet instead of the external magnetic field of a normal microphone to induce the induction in the coil section. By converting it into an electromotive force, it can be extracted outside without being affected by a magnetic field.
以下、本発明の一実施例を図により説明する。第5図
は磁石ボア内に光を送る一実施例の概略構成図である。
磁石1のボア内に設置される被検体2に光フアイバ13で
外部から光を送り、被検体2を照明し磁石ボア内を明る
くし検査時の不安を低減するものである。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic configuration diagram of one embodiment for transmitting light into the magnet bore.
The optical fiber 13 sends light from the outside to the subject 2 installed in the bore of the magnet 1 to illuminate the subject 2 and brighten the inside of the magnet bore to reduce anxiety during the inspection.
第6図は光フアイバ13による光伝送の一実施例を模式
的に示したもので磁場の影響が少ない場所に置かれた光
源14(磁場による光源14の寿命劣化が少ない。)による
光を光フアイバ3で伝送する方式である。FIG. 6 schematically shows an embodiment of the optical transmission by the optical fiber 13, in which the light from the light source 14 (the life of the light source 14 is less deteriorated by the magnetic field) placed in a place where the influence of the magnetic field is small is emitted. This is a transmission method using the fiber 3.
第7図は被検体の様子を離れた場所でモニタするため
の一実施例の概略構成図である。本実施例では被検体2
の反射光をレンズ15で集光し光フアイバ13に入射し、光
フアイバ13で離れた場所にあるカメラ16まで導く。カメ
ラ16では光フアイバ13を通つてきた光をレンズ61で光電
面62に結像させる。光電面62の信号を用いてモニタに表
示する。このように磁場の影響を受けずに被検者のモニ
タが可能になる。本実施例では光フアイバ13を用いてカ
メラ16まで導いたがカメラ16が固体撮像素子を用いたも
のである場合には非磁性材でできた匡体に収納すること
で磁石ボア近傍に設置可能である。また、光フアイバを
光の送受に共用する方式も可能である。FIG. 7 is a schematic configuration diagram of one embodiment for monitoring the state of a subject at a remote place. In the present embodiment, the subject 2
Is reflected by the lens 15 and is incident on the optical fiber 13, and is guided by the optical fiber 13 to a camera 16 at a remote place. In the camera 16, the light passing through the optical fiber 13 is imaged on a photoelectric surface 62 by a lens 61. The image is displayed on the monitor using the signal of the photocathode 62. Thus, the subject can be monitored without being affected by the magnetic field. In this embodiment, the optical fiber 13 is used to guide to the camera 16, but when the camera 16 uses a solid-state imaging device, it can be installed near the magnet bore by being housed in a housing made of a non-magnetic material. It is. Further, a system in which an optical fiber is shared for transmitting and receiving light is also possible.
第8図は磁場の影響を受けずに音を磁石ボア内に送る
一実施例を示す。本実施例では薄膜状の圧電スピーカ17
を磁石ボア内面に貼りつけることによつて音を外部から
被検者2に送り被検者2の不安を低減するものである。FIG. 8 shows one embodiment of transmitting sound into a magnet bore without being affected by a magnetic field. In this embodiment, the thin film piezoelectric speaker 17 is used.
Is attached to the inner surface of the magnet bore to transmit a sound from the outside to the subject 2 to reduce the anxiety of the subject 2.
第9図,第10図は磁場の影響を受けずに被検者2の発
する音を磁石外に取り出す実施例を示したものである。
第9図に示す一実施例では被検者2が発する音により反
射板18が振動する。9 and 10 show an embodiment in which the sound emitted from the subject 2 is taken out of the magnet without being affected by the magnetic field.
In one embodiment shown in FIG. 9, the sound emitted by the subject 2 causes the reflector 18 to vibrate.
外部にある光源14を用い、光フアイバ13を介して磁石
ボア内に導き、反射板8にあてる。反射板18にあたつた
光は反射し、再び光フアイバ13を通つてデイテクタ19に
入射する。反射板18が微少振動する場合微少振動するこ
とによりデイテクタ19からみると反射率が変化しデイテ
クタ19の信号は光強度の増減につれて増減する。これを
演算回路20で計測し、この演算回路20の出力でスピーカ
21を駆動して被検者2が出す音を外部に取り出すことが
できる。光源4としてレーザ光等のようにコヒーレント
光を用い反射板8への入射光と反射光の干渉を利用する
方法によつても達成できる。Using an external light source 14, the light source 14 is guided into the magnet bore via the optical fiber 13, and is applied to the reflector 8. The light striking the reflecting plate 18 is reflected and again enters the detector 19 through the optical fiber 13. When the reflection plate 18 vibrates minutely, the reflectivity changes from the viewpoint of the detector 19 due to the minute vibration, and the signal of the detector 19 increases and decreases as the light intensity increases and decreases. This is measured by the arithmetic circuit 20 and the output of the arithmetic circuit 20 is used as a speaker.
The sound emitted by the subject 2 can be taken out by driving the device 21. It can also be achieved by a method using coherent light such as laser light as the light source 4 and utilizing interference between light incident on the reflector 8 and reflected light.
また、第10図では磁石1が作る磁場をマイクロフオン
23の外部磁場とし、被検者2の発する音を検出する一実
施例である。被検者2が発する音でマイクロフオン23の
振動板131が振動する。この振動板131とつながつたコイ
ル132は振動板131と一緒に振動する。コイル132が振動
することによつてコイル132に誘導起電力が生じる。こ
の信号を増幅器12で増幅し、スピーカ21を駆動すること
で被検者2が出す音を外部でモニタできる。In Fig. 10, the magnetic field created by magnet 1 is
This is an example in which a sound emitted from the subject 2 is detected using 23 external magnetic fields. The diaphragm 131 of the microphone 23 vibrates with the sound emitted from the subject 2. The coil 132 connected to the diaphragm 131 vibrates together with the diaphragm 131. When the coil 132 vibrates, an induced electromotive force is generated in the coil 132. By amplifying this signal by the amplifier 12 and driving the speaker 21, the sound emitted from the subject 2 can be monitored externally.
上述の実施例を組み合わせることで被検者と外部とを
光,音で同時に接続でき、被検者の不安を低減できる。By combining the above embodiments, the subject and the outside can be simultaneously connected by light and sound, and the anxiety of the subject can be reduced.
〔発明の効果〕 以上のように本発明によれば被検体が快適に検査を受
けられるようにできるという効果がある。[Effects of the Invention] As described above, according to the present invention, there is an effect that a subject can be comfortably subjected to an examination.
第1図は本発明の一実施例の全体構成図、第2図,第3
図及び第4図はそれぞれ送風手段の実施例の見とり図、
第5図は本発明の光送受の一実施例のブロツク図、第6
図は第5図の光送信手段の例を示す図、第7図は第5図
の光受信手段の例を示す図、第8図は音を送る手段の構
成図、第9図,第10図は音を受ける手段の構成図であ
る。 1……磁石、2……被検体、3……フアン、31……羽
根、32……圧電モータ、33……圧電素子、4……電機
子。FIG. 1 is an overall configuration diagram of one embodiment of the present invention, and FIGS.
FIG. 4 and FIG. 4 are sketches of an embodiment of the blowing means, respectively.
FIG. 5 is a block diagram of one embodiment of the optical transmission / reception of the present invention, and FIG.
FIG. 5 is a diagram showing an example of the light transmitting means in FIG. 5, FIG. 7 is a diagram showing an example of the light receiving means in FIG. 5, FIG. The figure is a block diagram of the means for receiving sound. 1 ... magnet, 2 ... subject, 3 ... fan, 31 ... blade, 32 ... piezoelectric motor, 33 ... piezoelectric element, 4 ... armature.
フロントページの続き (72)発明者 村上 芳樹 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 河野 秀樹 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭60−232139(JP,A) 特開 昭63−203148(JP,A) 特開 昭63−262146(JP,A) 実開 昭59−184808(JP,U) 実開 昭62−74810(JP,U) 実開 昭63−88309(JP,U)Continuing on the front page (72) Inventor Yoshiki Murakami 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Hideki Kono 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (56) References JP-A-60-232139 (JP, A) JP-A-63-203148 (JP, A) JP-A-63-262146 (JP, A) JP-A-59-184808 (JP, U) Opened Sho 62-74810 (JP, U) Opened Sho 63-88309 (JP, U)
Claims (1)
場発生手段と、検査対象からの核磁気共鳴信号を検出す
る信号検出手段とを具備する核磁気共鳴を用いた検査装
置において、前記静磁場、傾斜磁場を発生するボアの開
口の近傍に、圧電素子により駆動されるファンを有し、
前記ボアの内部に送風し、前記ボアの内部に置かれた前
記検査対象が感じる不快感を軽減することを特徴とする
核磁気共鳴を用いた検査装置。An inspection apparatus using nuclear magnetic resonance, comprising: magnetic field generating means for generating a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field; and signal detecting means for detecting a nuclear magnetic resonance signal from an object to be inspected. In the vicinity of the opening of the bore for generating the static magnetic field and the gradient magnetic field, a fan driven by a piezoelectric element is provided,
An inspection apparatus using nuclear magnetic resonance, which blows air into the bore and reduces discomfort felt by the inspection target placed inside the bore.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62303122A JP2619437B2 (en) | 1987-12-02 | 1987-12-02 | Inspection equipment using nuclear magnetic resonance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62303122A JP2619437B2 (en) | 1987-12-02 | 1987-12-02 | Inspection equipment using nuclear magnetic resonance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01145050A JPH01145050A (en) | 1989-06-07 |
JP2619437B2 true JP2619437B2 (en) | 1997-06-11 |
Family
ID=17917143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62303122A Expired - Lifetime JP2619437B2 (en) | 1987-12-02 | 1987-12-02 | Inspection equipment using nuclear magnetic resonance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2619437B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5591614B2 (en) * | 2010-07-27 | 2014-09-17 | 浜松ホトニクス株式会社 | measuring device |
JP6232385B2 (en) * | 2012-12-05 | 2017-11-15 | 株式会社日立製作所 | Magnetic resonance imaging apparatus and method of operating cooling fan motor of magnetic resonance imaging apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184808U (en) * | 1983-05-26 | 1984-12-08 | 旭化成株式会社 | Image forming device using nuclear magnetic resonance |
JPS60232139A (en) * | 1984-05-04 | 1985-11-18 | 株式会社日立製作所 | Nmr imaging apparatus |
JPH0136489Y2 (en) * | 1985-10-31 | 1989-11-07 | ||
JPS6388309U (en) * | 1986-11-28 | 1988-06-08 | ||
JPS63203148A (en) * | 1987-02-18 | 1988-08-23 | 株式会社東芝 | Examinee conversation system for mri |
JPS63262146A (en) * | 1987-04-20 | 1988-10-28 | 株式会社東芝 | Magnetic resonace imaging apparatus |
-
1987
- 1987-12-02 JP JP62303122A patent/JP2619437B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01145050A (en) | 1989-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100207015A1 (en) | Fiber-optic scanner | |
JP2619437B2 (en) | Inspection equipment using nuclear magnetic resonance | |
US6714007B2 (en) | Optically powered resonant integrated microstructure magnetic field gradient sensor | |
US3772464A (en) | Rotating polygon mirror assembly with an interior motor | |
JP2940587B2 (en) | Speaker vibration detection device | |
JPS6484133A (en) | Opto-acoustic special device | |
US4063448A (en) | Density meter coil assembly | |
JPH10225446A (en) | Magnetic resonance inspecting device | |
JP3886622B2 (en) | Magnetic resonance imaging system | |
JPH06205757A (en) | Nuclear magnetic resonance inspecting system device | |
JP2002202204A (en) | Spherical semiconductor device for measuring temperature | |
JPH0440326A (en) | Vibration measuring instrument | |
JP2002540417A (en) | Integrated diagnostic device for photoelastic modulator | |
JP3223622B2 (en) | Infrared detector | |
JP2897014B1 (en) | Displacement projection measuring method and measuring device using the measuring method | |
JP6193279B2 (en) | Optical microphone and hearing aid | |
JP2003344258A (en) | Device for impressing vertical magnetic field for magnetic force microscope | |
JPS63203148A (en) | Examinee conversation system for mri | |
US20230243796A1 (en) | Apparatus with gas detection function | |
JP2001318044A (en) | Classified particle measuring device, classified particle measuring method, micro mass measuring device and micro mass measuring method | |
JPH09243445A (en) | Sound wave detector | |
GB2260875A (en) | Feedback controlled noise source for acoustic testing | |
JPH0461484B2 (en) | ||
SU934362A1 (en) | Pieozoelectric separate-combined finder | |
US3422416A (en) | Radiant energy detection system using reciprocating means surrounding the detector |