JP2618727B2 - Method for quantifying test components in whole blood - Google Patents

Method for quantifying test components in whole blood

Info

Publication number
JP2618727B2
JP2618727B2 JP2010426A JP1042690A JP2618727B2 JP 2618727 B2 JP2618727 B2 JP 2618727B2 JP 2010426 A JP2010426 A JP 2010426A JP 1042690 A JP1042690 A JP 1042690A JP 2618727 B2 JP2618727 B2 JP 2618727B2
Authority
JP
Japan
Prior art keywords
layer
blood cell
whole blood
optical density
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010426A
Other languages
Japanese (ja)
Other versions
JPH03215746A (en
Inventor
快彦 牧野
雅司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2010426A priority Critical patent/JP2618727B2/en
Priority to US07/643,831 priority patent/US5130258A/en
Publication of JPH03215746A publication Critical patent/JPH03215746A/en
Application granted granted Critical
Publication of JP2618727B2 publication Critical patent/JP2618727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/805Test papers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • Y10S436/808Automated or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/824Immunological separation techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生物体液、例えば血漿又は血清中の被検成
分の定量用の乾式分析要素を用いて、全血中の被検成分
の活性値を定量分析する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to the activity of a test component in whole blood using a dry analytical element for the quantification of a test component in a biological fluid such as plasma or serum. It relates to a method for quantitatively analyzing a value.

[従来の技術] 体液中、特に血液中の被検成分(アナライト)の濃度
又は活性値を測定することは臨床医学上重要で、例え
ば、疾患の診断や治療経過の追跡を行うのに利用されて
いる。最近は、その使用上の簡易性、迅速性、経済性か
ら乾式化学分析要素の使用が増大してきている。乾式化
学分析は、従来の溶液状の分析試薬を用いる湿式法によ
る化学分析と異なり、分析試薬を乾燥状態で導入した試
験片や多層分析要素を用いる化学分析である。乾式分析
要素は例えば、特公昭53−21677、特開昭55−164356、
特開昭60−222769等で知られている。一例として、乾式
多層分析要素は、透明支持体、試薬層、展開層を有する
構成である。透明支持体は、例えば光透過性水不浸透性
の薄い有機ポリマーシートである。透明支持体の上に塗
布された試薬層には、体液試料中の被検成分と反応し、
その被検成分の量に応じた信号の変化、例えば色素の発
色による光学濃度の変化、を示す分析試薬が含まれる。
展開層は、点着された体液試料の量にほぼ比例する面積
になるように体液試料を一様に広げる。
[Prior Art] Measuring the concentration or activity of a test component (analyte) in a body fluid, particularly in blood, is important in clinical medicine, and is used, for example, for diagnosing a disease and tracking the course of treatment. Have been. Recently, the use of dry chemical analysis elements has been increasing because of their simplicity, speed and economical use. The dry chemical analysis is a chemical analysis using a test piece or a multi-layer analysis element in which the analysis reagent is introduced in a dry state, unlike the conventional chemical analysis by a wet method using a solution-type analysis reagent. Dry analysis elements are, for example, JP-B-53-21677, JP-A-55-164356,
It is known from JP-A-60-222769. As an example, the dry multi-layer analysis element has a configuration having a transparent support, a reagent layer, and a developing layer. The transparent support is, for example, a light-permeable, water-impermeable, thin organic polymer sheet. The reagent layer applied on the transparent support reacts with the test component in the body fluid sample,
An analysis reagent that shows a change in signal according to the amount of the test component, for example, a change in optical density due to coloring of a dye is included.
The spreading layer uniformly spreads the body fluid sample so as to have an area approximately proportional to the amount of the spotted body fluid sample.

乾式多層分析要素を用いて定量分析を行うには、体液
試料の適量を展開層の表示に点着(滴下又は付着)す
る。展開層で一様に展開された体液試料は試薬層に達
し、そこで分析試薬と体液試料中の被検成分が反応して
信号の変化を与える。反応進行中、分析要素は一定の温
度に保たれる(インクベーション)。適当な時間、反応
を充分に進行させた後で生じた信号の変化を読み取る。
これは、信号が色素による発色の場合には、透明支持体
側から照射光を試薬層に照射し、特定波長で反射光量を
測定して発色の光学濃度を読み取る。読み取った信号の
変化は、予め求めておいた、信号の変化量と体液試料中
の被検成分の量との関係を示す検量線に基づいて被検成
分の量(濃度値又は活性値)に換算される(比色測定
法)。読み取る信号の変化は、液体試料を点着した一定
時間後の信号の絶対値でも、一定の時間における単位時
間あたりの変化量でもよい。
In order to perform quantitative analysis using a dry multi-layer analysis element, an appropriate amount of a body fluid sample is spotted (dropped or adhered) on a display of a development layer. The body fluid sample uniformly developed in the developing layer reaches the reagent layer, where the analysis reagent reacts with the test component in the body fluid sample to change the signal. During the course of the reaction, the analytical element is kept at a constant temperature (incubation). The change in signal that occurs after the reaction has proceeded sufficiently for an appropriate amount of time is read.
That is, when the signal is coloring by a dye, the reagent layer is irradiated with irradiation light from the transparent support side, the amount of reflected light is measured at a specific wavelength, and the optical density of the coloring is read. The change in the read signal is calculated in advance based on a calibration curve indicating the relationship between the amount of change in the signal and the amount of the test component in the body fluid sample. Converted (colorimetric method). The change in the signal to be read may be the absolute value of the signal after a certain time after the liquid sample is spotted, or the amount of change per unit time in the certain time.

体液試料が血液である場合、従来提案された、あるい
は従来実用されている多くの乾式分析要素では、全血の
をそのまま試料とすることができず、分析前に血液から
赤血球を分離除去し血清又は血漿を得る操作(一般に
は、遠心分離操作)を必要とした。乾式分析要素を使っ
た分析の特徴が簡易性、迅速性、経済性にあるにもかか
わらず、分析操作前に、多くの労力と時間と装置のコス
トを伴う赤血球の分離除去操作を必要とすることは、乾
式分析要素の有用性を半減させている。
When the body fluid sample is blood, many dry analysis elements that have been proposed or are conventionally used cannot directly use whole blood as a sample, and separate and remove red blood cells from blood before analysis to remove serum. Alternatively, an operation for obtaining plasma (generally, a centrifugation operation) was required. Despite the simplicity, speed, and economy of analysis using dry analytical elements, it requires a large amount of labor, time, and equipment cost to separate and remove red blood cells before performing the analysis operation. This has reduced the usefulness of dry analytical elements by half.

乾式分析要素を用い、全血を試料として定量分析を行
うには、分析要素中で血液試料から赤血球に代表される
血液成分を何等かの手段又は反応で分離除去して血清又
は血漿を得ることと同時に、分離された赤血球の赤色の
色素が光学濃度の測定を妨害しないようにすることが要
求される。特公昭53−21677には、血液中の血球成分を
分離除去するために分析要素中に濾過層を設けることを
開示している。しかし、分析要素中に設けられた濾過層
で全血から血球成分を分離除去して血清又は血漿を得る
には非常に時間がかかる。また、目的とする被検成分の
一部が濾過中に失われたり、濾過中に赤血球の溶血が起
り、分析が不正確になる恐れがある。
In order to perform quantitative analysis using whole blood as a sample using a dry analytical element, it is necessary to separate and remove blood components typified by red blood cells from the blood sample by any means or reaction in the analytical element to obtain serum or plasma. At the same time, it is required that the red dye of the separated red blood cells does not interfere with the measurement of the optical density. Japanese Patent Publication No. 53-21677 discloses that a filtration layer is provided in an analysis element in order to separate and remove blood cell components in blood. However, it takes a very long time to obtain serum or plasma by separating and removing blood cell components from whole blood using a filtration layer provided in the analysis element. Further, a part of the target test component may be lost during the filtration, or red blood cells may be lysed during the filtration, resulting in inaccurate analysis.

血液中の赤血球の分離除去と、それによって得られた
血漿中の被検成分の試薬層への拡散が速やかに行われ
る、全血試料中の被検成分の定量分析に有用な乾式分析
要素が、特開昭62−138756で提案された。しかしなが
ら、この分析要素では、血液試料のヘマトクリット値の
大小によって、血漿中の目的とする被検成分の濃度が同
じ血液試料でも分析結果に差が出て、やはり正確な分析
が行えないことが判明した。一方、特開昭64−54354で
は、測定のための照射光を遮断して赤血球の赤色の色素
の影響を回避するために、白色の色料(pigment)を含
有させることが提案されている。分析要素中に赤血球の
色素の影響を回避する遮光層を設けるのは、正確な分析
を行うためには有効であると考えられる。しかしなが
ら、色料によって遮光を調整するには、製造の際に色料
の粒径や分散状態のコントロールが必要となり、その分
製造工程が複雑になり経費もかかる。また遮光層を設け
ることで血球成分の分離が充分に行えない場合や、それ
とは反対に分離した血漿成分が充分に試薬層に供給され
ない場合があることが判明した。
A dry analytical element useful for quantitative analysis of test components in whole blood samples, which rapidly separates and removes red blood cells in blood and rapidly diffuses test components in plasma obtained to the reagent layer. And JP-A-62-138756. However, with this analysis element, it turned out that even if the blood sample had the same concentration of the target test component in plasma, the analysis results differed depending on the hematocrit value of the blood sample, and accurate analysis could not be performed. did. On the other hand, Japanese Patent Application Laid-Open No. 64-54354 proposes that a white colorant be contained in order to block the irradiation light for the measurement and avoid the influence of the red pigment of the red blood cells. It is considered that providing a light-shielding layer for avoiding the effect of the red blood cell dye in the analysis element is effective for performing accurate analysis. However, in order to adjust the shading with the colorant, it is necessary to control the particle size and the dispersion state of the colorant at the time of production, which complicates the production process and increases costs. It has also been found that the blood cell component cannot be sufficiently separated by providing the light-shielding layer, or, on the contrary, the separated plasma component cannot be sufficiently supplied to the reagent layer.

[発明が解決しようとする問題点] 本発明の技術的課題は、乾式の多層分析要素を用い
て、全血試料中の血球成分の分離除去が速やかに行わ
れ、しかも分離した血球成分の有色色素によって分析が
妨害されないような全血試料に含まれる被検成分の定量
分析方法を提供することであり、それによって全血試料
中の被検成分の定量分析を、ヘマトクリット値に依存せ
ずに迅速かつ正確に行えるようにすることである。
[Problems to be Solved by the Invention] A technical problem of the present invention is that a blood cell component in a whole blood sample is rapidly separated and removed by using a dry-type multi-layered analysis element, and the separated blood cell component is colored. It is to provide a method for quantitative analysis of a test component contained in a whole blood sample in which the analysis is not hindered by a dye, whereby the quantitative analysis of the test component in the whole blood sample can be performed without depending on the hematocrit value. To be able to do it quickly and accurately.

[問題点を解決するための手段] 本発明の技術的課題は、水不透過性光透過性支持体の
上に、少なくとも全血中の被検成分との反応の結果とし
て検出可能な光学濃度変化を与える呈色試薬層と全血か
ら血球成分を分離除去して前記試薬層に血漿を供給する
ための血球分離層とが、この順に積層されている多層分
析要素を用いて比色測定法により被検成分を定量する方
法において、 血球分離層の最上層に全血試料を点着し、 前記血球分離層により点着された全血から分離された
血球成分の有色色素の、前記支持体側から検出される反
射光学濃度値が実質的に一定になった後に、 前記試薬層における単位時間当りの反射光学濃度の変
化量を、前記血球成分の有色色素が示す反射光と重複す
る範囲の波長で支持体側から測定し、 得られた単位時間当りの反射光学濃度の変化量から全
血中の被検成分の濃度値又は活性値を比色測定法により
求めることにより解決された。
[Means for Solving the Problems] The technical problem of the present invention is to provide an optical density which can be detected on a water-impermeable light-permeable support at least as a result of a reaction with a test component in whole blood. A colorimetric measurement method using a multi-layer analysis element in which a coloring reagent layer giving a change and a blood cell separation layer for separating and removing blood cell components from whole blood and supplying plasma to the reagent layer are stacked in this order. In the method of quantifying a test component, a whole blood sample is spotted on the uppermost layer of a blood cell separation layer, and the colored dye of the blood cell component separated from the whole blood spotted by the blood cell separation layer, on the support side After the reflected optical density value detected from becomes substantially constant, the amount of change in the reflected optical density per unit time in the reagent layer is a wavelength in a range overlapping with the reflected light indicated by the colored dye of the blood cell component. Measured from the support side with The density value or activity value of the test component of whole blood from the variation of the reflection optical density per has been solved by obtaining a colorimetric assay.

[問題点を解決するための手段の詳細な説明] 本発明の定量分析方法に用いられる多層分析要素とし
ては、全血からの血球成分の分離除去が、全血中の被検
成分との反応の結果としての試薬層での光学濃度変化が
検出され始める前に完了し、分離された血球成分の有色
色素の透明支持体側から検出される反射光学濃度が一定
になり、分離された血液成分の有色色素が光学的に透明
支持体側から充分に検出され得るものが好ましい。また
多層分析要素において試薬層と血球分離層は、液体の一
様通過が妨げられない程度に、部分的に配置された接着
剤により接着され一体化されている構成のものが好まし
い。
[Detailed Description of Means for Solving the Problems] As a multi-layer analysis element used in the quantitative analysis method of the present invention, separation and removal of blood cell components from whole blood is performed by reacting with test components in whole blood. The optical density change in the reagent layer as a result of the completion is completed before the detection is started, the reflected optical density detected from the transparent support side of the colored dye of the separated blood cell component becomes constant, and the separated blood component It is preferable that the colored dye can be sufficiently detected optically from the transparent support side. Further, in the multi-layer analysis element, it is preferable that the reagent layer and the blood cell separation layer are bonded and integrated by a partially disposed adhesive so as not to prevent uniform passage of the liquid.

本発明の方法に用いられる乾式の多層分析要素は、基
本的には、全血試料中の被検成分との反応により被検成
分の量に応じた信号の変化を示す部分(分析要素の下
地)と全血試料から血球成分を分離除去して血漿を分析
要素の下地に供給する部分(血球分離層)とから構成さ
れている。
The dry-type multi-layer analysis element used in the method of the present invention is basically a portion showing a signal change according to the amount of the test component due to the reaction with the test component in the whole blood sample (the base of the analysis component). ) And a part (blood cell separation layer) that separates and removes blood cell components from a whole blood sample and supplies plasma to the base of the analysis element.

このうち分析要素の下地は、これまで知られている血
清・血漿試料用の乾式の一体型多層分析要素を用いるこ
とができる。すなわち、透明支持体の上に、呈色試薬
層、展開層がこの順に積層一体化されているものであ
る。支持体と呈色試薬層との間には検出層又は吸水層を
設けてもよい。多層分析要素の支持体以外の層で分析要
素としての形状と機能を保持できる場合には、支持体は
必須ではない、あるいは要素の内部の呈色の光学濃度を
測定する際に支持体が呈色試薬層(又は検出層又は吸水
層)から剥離できるように構成されていてもよい。
Among them, as the base of the analysis element, a dry integrated multi-layer analysis element for serum / plasma samples which has been known can be used. That is, the color reagent layer and the developing layer are laminated and integrated in this order on the transparent support. A detection layer or a water absorbing layer may be provided between the support and the color reagent layer. If the shape and function of the analytical element can be retained in layers other than the support of the multilayer analytical element, the support is not essential, or the support is present when measuring the optical density of color inside the element. It may be configured so that it can be separated from the color reagent layer (or the detection layer or the water absorbing layer).

透明支持体は水不透過性であることが好ましい。その
材料として好ましいものはポリエチレンテレフタレー
ト、ビスフェノールAのポリカルボネート、セルロース
エステル類(例、セルローストリアセテート、セルロー
スアセテートブチレート)である。これらの支持体は表
面に親水性を持たせ、呈色試薬層、吸水層、検出層等の
親水性ポリマーバインダーを含む層との接着を強固にす
るために、物理化学的活性化処理(例、コロナ放電処
理)、下塗り層を設ける等の親水化処理が施されている
ことが好ましい。
Preferably, the transparent support is water impermeable. Preferred materials include polyethylene terephthalate, polycarbonate of bisphenol A, and cellulose esters (eg, cellulose triacetate, cellulose acetate butyrate). These supports are provided with hydrophilicity on the surface and are subjected to a physicochemical activation treatment (eg, a physicochemical activation treatment) in order to strengthen adhesion to a layer containing a hydrophilic polymer binder such as a coloring reagent layer, a water absorbing layer, and a detection layer. , Corona discharge treatment) and hydrophilic treatment such as providing an undercoat layer.

試薬組成物には、被検成分の存在下に光学的に検出し
得る物質、例えば色素(染料)を生成し得る組成物(呈
色試薬組成物)を含む、試薬組成物の例として、ロイコ
色素の酸化によって色素を生成する試薬組成物(例、米
国特許第4 089 747等に記載のトリアリールイミダゾー
ルロイコ色素、特開昭59−193352等に記載のジアリール
イミダゾールロイコ色素)、ジアゾニウム塩、酸化され
た時にカプラーとのカップリングにより色素を生成する
色原体化合物を含む組成物(例、4−アミノアンチピリ
ン類と、フェノール類又はナフトール類との組合せ)、
還元型補酵素と電子伝達剤の存在下で色素を生成するこ
とのできる化合物からなる組成物等を用いることができ
る。また、酵素活性を測定する分析要素の場合には、例
えば、p−ニトロフェノール、p−ニトロフェニルホス
フェートのような有色物質を遊離し得る自己顕色性基質
を含む組成物を用いることもできる。これらの試薬組成
物の内容は全血試料中の被検成分に対応させて選択され
る。
The reagent composition includes a substance (a color reagent composition) capable of producing a substance (eg, a coloring reagent composition) capable of forming a dye (dye) optically detectable in the presence of a test component. Reagent composition for producing a dye by oxidation of the dye (eg, triarylimidazole leuco dye described in U.S. Pat. No. 4,089,747, diarylimidazole leuco dye described in JP-A-59-193352, etc.), diazonium salt, oxidation A composition containing a chromogenic compound that forms a dye upon coupling with a coupler (eg, a combination of 4-aminoantipyrines and phenols or naphthols),
A composition comprising a compound capable of producing a dye in the presence of a reduced coenzyme and an electron transfer agent, or the like can be used. In the case of an analytical element for measuring an enzyme activity, for example, a composition containing a self-developing substrate capable of releasing a colored substance such as p-nitrophenol or p-nitrophenyl phosphate can also be used. The contents of these reagent compositions are selected according to the test components in the whole blood sample.

試薬組成物は全成分を一つの層に含ませてもよく、ま
た複数の層に分けて含ませてもよい。例えば、試薬組成
物の一部又は全部を含む親水性ポリマー溶液を支持体の
親水処理が施された面上に塗布・乾燥し、試薬組成物の
一部又は全部を含む、親水性ポリマーを結合剤とする、
実質的に一様な層とする方法がある。親水性ポリマーと
しては、例えばゼラチンおよびこれらの誘導体(例、フ
タル化ゼラチン)、セルロース誘導体(例、ヒドロキシ
プロピルセルロース)、アガロース、アクリルアミド重
合体、メタクリルアミド重合体、アクリルアミド又はメ
タアクリルアミドと各種ビニル性モノマーとの共重合体
等を用いることができる。親水性ポリマーを結合剤とす
る試薬組成物の一部又は全部を含む一様な層の上に、試
薬組成物を含まない多孔性層を特開昭55−164356に記載
のような方法で接着させた後、試薬組成物の一部又は全
部を含む溶液又は分散液を多孔性に塗布して試薬組成物
を含ませる方法も採ることができる。
The reagent composition may contain all the components in one layer, or may contain the components in a plurality of layers. For example, a hydrophilic polymer solution containing a part or the whole of the reagent composition is applied and dried on the surface of the support subjected to the hydrophilic treatment, and the hydrophilic polymer containing a part or the whole of the reagent composition is bound. Agent
There is a method of forming a substantially uniform layer. Examples of the hydrophilic polymer include gelatin and derivatives thereof (eg, phthalated gelatin), cellulose derivatives (eg, hydroxypropylcellulose), agarose, acrylamide polymers, methacrylamide polymers, acrylamide or methacrylamide, and various vinyl monomers. And the like. A porous layer not containing a reagent composition is adhered on a uniform layer containing a part or all of a reagent composition using a hydrophilic polymer as a binder by a method as described in JP-A-55-164356. After that, a solution or dispersion containing a part or all of the reagent composition may be applied in a porous manner to contain the reagent composition.

多孔性層の接着・積層は、接着層を介して行ってもよ
い。接着層は水で膨潤したときに多孔性層を接着するこ
とができるような親水性ポリマー、例えばゼラチン、ゼ
ラチン誘導体、ポリアクリルアミド等からなることが好
ましい。また、この接着層に試薬組成物の一部を含ませ
ることも可能である。
The bonding and lamination of the porous layer may be performed via the bonding layer. The adhesive layer is preferably made of a hydrophilic polymer capable of adhering the porous layer when swollen with water, for example, gelatin, gelatin derivatives, polyacrylamide and the like. Further, a part of the reagent composition can be included in the adhesive layer.

多孔性層は、分析要素の下地において、展開層として
も作用するので、液体計量作用を有する層であることが
好ましい。液体計量作用とは、展開層の表面に点状に点
着され供給された液体試料を、その中に含有している成
分を実質的に遍在させることなく、面の方向に単位面積
当りほぼ一定の割合で一様に広げる作用である。本発明
の方法に用いられる多層分析要素においては、血球分離
層を通過してきた血漿成分を面の方向に単位面積あたり
ほぼ一定の割合で広げる作用を意味する。
Since the porous layer also functions as a developing layer under the analytical element, it is preferably a layer having a liquid measuring action. The liquid metering action means that the supplied liquid sample is applied to the surface of the spreading layer in a dot-like manner, and the components contained therein are not substantially ubiquitous, and the surface is almost uniformly occupied per unit area in the direction of the surface. This is the action of spreading the film uniformly at a constant rate. In the multilayer analytical element used in the method of the present invention, it means an action of spreading the plasma component passing through the blood cell separation layer at a substantially constant rate per unit area in the surface direction.

多孔性層としては、非繊維多孔性層、繊維質多孔性層
のいずれかを適用することができる。非繊維多孔性層と
しては、特公昭53−21677、米国特許3 992 158、米国特
許1 421 341等に記載のセルロースエステル類(例、セ
ルロースアセテート、セルロースアセテート/ブチレー
ト、硝酸セルロース)からなるブラッシュポリマーの層
が好ましい。また、6−ナイロン、6,6−ナイロン等の
ポリアミド、ポリエチレン、ポリプロピレン等の微多孔
性膜、特開昭62−27006に記載のポリスルホンからなる
微多孔性膜も用いることができる。
Either a non-fibrous porous layer or a fibrous porous layer can be applied as the porous layer. As the non-fiber porous layer, a brush polymer composed of cellulose esters (eg, cellulose acetate, cellulose acetate / butyrate, cellulose nitrate) described in JP-B-53-21677, US Pat. No. 3,992,158, US Pat. No. 1,421,341, etc. Are preferred. Also, microporous membranes such as polyamides such as 6-nylon and 6,6-nylon, polyethylene, polypropylene and the like, and microporous membranes composed of polysulfone described in JP-A-62-27006 can be used.

繊維質多孔性層を構成する材料としては、濾紙、不織
布、織物布地(例、平織布地)、編物布地(例、トリコ
ット編物布地)、ガラス繊維濾紙等を用いることができ
る。これらのうち、織物布地、編物布地が好ましい。織
物布地等は特開昭57−66359に記載の物理化学的処理
(例、グロー放電処理)をしてもよい。
As a material constituting the fibrous porous layer, filter paper, nonwoven fabric, woven fabric (eg, plain woven fabric), knitted fabric (eg, tricot knitted fabric), glass fiber filter paper, and the like can be used. Of these, woven and knitted fabrics are preferred. The woven fabric or the like may be subjected to a physicochemical treatment (eg, glow discharge treatment) described in JP-A-57-66359.

多孔性層には、展開面積、展開速度等を調整するた
め、特開昭60−222770、特開昭63−219397、特開昭63−
112999、特開昭62−182562に記載のような親水性高分子
あるいは界面活性剤を含有させてもよい。
In the porous layer, in order to adjust the development area, the development speed, etc., JP-A-60-222770, JP-A-63-219397, JP-A-63-19397
It may contain a hydrophilic polymer or a surfactant as described in JP 112999 and JP-A-62-182562.

従来の多層分析要素では、多孔性層に分散された二酸
化チタン、硫酸バリウム等の光反射性・光遮断性微粒子
を含有させるかあるいは光反射性・光遮断性微粒子を分
散含有するゼラチン等の親水性ポリマーバインダー層を
配置することが行われるが、本発明の分析要素の下地に
は必要がない。多層分析要素の下地は、血清・血漿用分
析要素としても使用できるものでもある。含有させる試
薬組成物を選択することにより、例えばAST(アスパル
テートアミノトランスフェラーゼ)、ALT(アラニンア
ミノトランスフェラーゼ)、LDH(乳酸脱水素酵素)、
クレアチンキナーゼ、アミラーゼ用の分析要素の下地を
得ることができる。
Conventional multi-layer analysis elements include light-reflecting / light-blocking fine particles such as titanium dioxide and barium sulfate dispersed in a porous layer, or hydrophilic such as gelatin containing dispersed light-reflecting / light-blocking fine particles. Placing a conductive polymer binder layer is performed, but is not necessary as a base for the analytical element of the present invention. The underlayer of the multi-layer analysis element can be used as an analysis element for serum / plasma. By selecting a reagent composition to be contained, for example, AST (aspartate aminotransferase), ALT (alanine aminotransferase), LDH (lactate dehydrogenase),
It can provide a base for analytical elements for creatine kinase and amylase.

血球分離層としては、繊維質多孔性層と非繊維質多孔
性層を網点印刷法(例、グラビア印刷法、スクリーン印
刷法)を利用した部分接着法により接着一体化したもの
が有効である。グラビア印刷法を利用した部分接着法の
代表的な例は、高温に加熱し溶融状態のホットメルト型
接着剤を、繊維質多孔性層か非繊維質多孔性層のどちら
か一方の表面に、グラビアローラーからの転写によりド
ット状に付着させた直後に両者を重ねてラミネートロー
ラーの間を通すことで接着一体化する方法である。この
方法としては、特開昭62−138756に記載の方法が有効で
ある。こうして得られる血球分離層は、繊維質多孔性層
と非繊維質多孔性層が液体の通過が妨げられない程度に
部分的に配置された接着剤により接着一体化されてい
る。血球分離層は、繊維質多孔性層が上側(全血試料を
点着供給される側)になるように配置する。
As the blood cell separation layer, a fibrous porous layer and a non-fibrous porous layer that are bonded and integrated by a partial bonding method using a halftone printing method (eg, a gravure printing method, a screen printing method) are effective. . A typical example of the partial bonding method using a gravure printing method is to apply a hot-melt adhesive in a molten state by heating to a high temperature on one surface of a fibrous porous layer or a non-fibrous porous layer. Immediately after they are attached in a dot form by transfer from a gravure roller, they are overlapped and passed through a laminating roller to bond and integrate. As this method, the method described in JP-A-62-138756 is effective. In the blood cell separation layer thus obtained, the fibrous porous layer and the non-fibrous porous layer are bonded and integrated by an adhesive partially disposed so as not to hinder the passage of liquid. The blood cell separation layer is arranged so that the fibrous porous layer is on the upper side (the side on which the whole blood sample is supplied by spotting).

血球分離層の繊維質多孔性層は、その面上に全血試料
が点着されたときに、展開層としても作用するので、液
体計量作用を有する層であることが好ましい。
Since the fibrous porous layer of the blood cell separation layer also functions as a developing layer when a whole blood sample is spotted on the surface thereof, it is preferably a layer having a liquid measuring action.

繊維質多孔性層を構成する材料としては、濾紙、不織
布、織物布地(例、平織布地)、編物布地(例、トリコ
ット編物布地)、ガラス繊維濾紙等を用いることができ
る。これらのうち、織物布地、編物布地が好ましい。織
物布地等は特開昭57−66359に記載の物理化学的処理
(例、グロー放電処理)をしてもよい。
As a material constituting the fibrous porous layer, filter paper, nonwoven fabric, woven fabric (eg, plain woven fabric), knitted fabric (eg, tricot knitted fabric), glass fiber filter paper, and the like can be used. Of these, woven and knitted fabrics are preferred. The woven fabric or the like may be subjected to a physicochemical treatment (eg, glow discharge treatment) described in JP-A-57-66359.

繊維質多孔性層には展開面積、展開速度を調整するた
めに、親水性ポリマーや界面活性剤等を含ませてもよ
い。ただしこの場合、使用する親水性ポリマー界面活性
剤は、層中で赤血球の溶血を起こさせないものから選択
される。また、繊維質多孔性層には、血球分離を促進す
るような親水性ポリマーや無機塩等を含ませてもよい。
The fibrous porous layer may contain a hydrophilic polymer, a surfactant or the like in order to adjust the development area and the development speed. However, in this case, the hydrophilic polymer surfactant used is selected from those which do not cause erythrocyte hemolysis in the layer. In addition, the fibrous porous layer may contain a hydrophilic polymer or an inorganic salt that promotes blood cell separation.

非繊維多孔性層としては、特公昭53−21677、米国特
許3 992 158、米国特許1 421 341等に記載のセルロース
エステル類(例、セルロースアセテート、セルロースア
セテート/ブチレート、硝酸セルロース)からなるブラ
ッシュポリマーの層が好ましい。また、6−ナイロン、
6,6−ナイロン等のポリアミド、ポリエチレン、ポリプ
ロピレン等の微多孔性膜、特開昭62−27006に記載のポ
リスルホンからなる微多孔性膜も用いることができる。
As the non-fiber porous layer, a brush polymer composed of cellulose esters (eg, cellulose acetate, cellulose acetate / butyrate, cellulose nitrate) described in JP-B-53-21677, US Pat. No. 3,992,158, US Pat. No. 1,421,341, etc. Are preferred. Also, 6-nylon,
Microporous membranes such as polyamides such as 6,6-nylon, polyethylene and polypropylene, and microporous membranes composed of polysulfone described in JP-A-62-27006 can also be used.

非繊維質多孔性層が、相分離法により作られたいわゆ
るブラッシュポリマーからなるメンブランフィルターで
ある場合、厚さ方向の液体通過経路は、膜の製造の際の
自由表面側(光沢面)で最も狭くなっているのが普通
で、液体通過経路の断面を円に近似したときの孔径は、
自由表面の近くで最も小さくなっている。血球分離層に
使用される非繊維質多孔性層にはこの種のブラッシュポ
リマーが好ましい。血球分離層にブラッシュポリマーの
膜を使用する場合、膜の光沢面が血球分離層の繊維質多
孔性層から遠い側に向くように接着一体化される。この
構成にり、非繊維質多孔性層の厚さ方向の液体通過経路
は、血球分離層の繊維質多孔性層から遠くなるにつれて
狭くなる。
When the non-fibrous porous layer is a membrane filter made of a so-called brush polymer made by a phase separation method, the liquid passage in the thickness direction is most likely to be on the free surface side (glossy surface) in the production of the membrane. Normally, it is narrow, and the hole diameter when the cross section of the liquid passage path is approximated to a circle is
It is smallest near the free surface. This type of brush polymer is preferred for non-fibrous porous layers used in blood cell separation layers. When a brush polymer membrane is used for the blood cell separation layer, the membrane is adhered and integrated such that the glossy surface of the membrane faces away from the fibrous porous layer of the blood cell separation layer. With this configuration, the liquid passage in the thickness direction of the non-fibrous porous layer becomes narrower as the distance from the fibrous porous layer of the blood cell separation layer increases.

血球分離層に使用される非繊維質多孔性層の有効孔径
は約0.80μmから約30μmの範囲が好ましい。本明細書
で言う有効孔径は、ASTM F−316−70に準拠した限界
泡圧法(バルブポイント法)により測定した孔径で示
す、血球分離層の非繊維質多孔性層の有効孔径は、大き
すぎると全血試料からの血球成分の分離除去が完全に行
われず、血球成分の一部が多層分析要素の下地に達して
しまい、全血試料中の被検成分と、多層分析要素の下地
に含まれている試薬組成物との反応が妨害されて正確な
定量分析が行えない。一方、有効孔径が小さすぎると、
非繊維質多孔性層中を移動中に赤血球に大きなシェア
(剪断歪)が掛かることで溶血が起こり、赤血球中の成
分が放出され、全血試料中の被検成分の濃度や活性値が
変化し、やはり正確な定量分析が行えない。
The effective pore size of the non-fibrous porous layer used in the blood cell separation layer is preferably in the range of about 0.80 μm to about 30 μm. The effective pore size referred to in the present specification is indicated by the pore size measured by the limiting bubble pressure method (valve point method) according to ASTM F-316-70. The effective pore size of the non-fibrous porous layer of the blood cell separation layer is too large. The separation and removal of blood cell components from the whole blood sample were not performed completely, and some of the blood cell components reached the base of the multi-layer analysis element, and were not included in the test components in the whole blood sample and the base of the multi-layer analysis element. The reaction with the used reagent composition is hindered and accurate quantitative analysis cannot be performed. On the other hand, if the effective pore size is too small,
When a large share (shear strain) is applied to red blood cells while moving through the non-fibrous porous layer, hemolysis occurs, the components in the red blood cells are released, and the concentration and activity value of the test component in the whole blood sample changes However, accurate quantitative analysis cannot be performed.

血球分離層に使用される非繊維質多孔性層において
は、その中を全血試料が移動する間に、赤血球に代表さ
れる血球成分と血漿成分との間に移動速度の差が生じる
ように、かつ赤血球の溶血が起こらない程度に、血球成
分に抵抗が掛かるように有効孔径を選ぶ必要がある。
In the non-fibrous porous layer used for the blood cell separation layer, a difference in the moving speed between a blood cell component represented by red blood cells and a plasma component occurs while a whole blood sample moves therein. In addition, it is necessary to select an effective pore diameter such that resistance is applied to blood cell components to such an extent that hemolysis of red blood cells does not occur.

上記の分析要素の下地と血球分離層を積層一体化する
には、前述の、網点印刷法(例、グラビア印刷法、スク
リーン印刷法)を利用した部分接着法による接着一体化
法が好ましい。ホットメルト型接着剤をグラビア印刷法
で用いる場合には、高温に加熱し溶融状態のホットメル
ト型接着材を多層分析要素の下地と血球分離層のどちら
に転写してもよい。部分接着は多層分析要素の下地の多
孔性層と血球分離層の非繊維質多孔性層の間で行われる
ようにする。
In order to laminate and integrate the base of the above-described analysis element and the blood cell separation layer, the above-described bonding and integration method by a partial bonding method using halftone printing (eg, gravure printing, screen printing) is preferable. When the hot-melt adhesive is used for the gravure printing method, the hot-melt adhesive in a molten state by heating to a high temperature may be transferred to either the base of the multilayer analysis element or the blood cell separation layer. The partial adhesion is performed between the underlying porous layer of the multilayer analysis element and the non-fibrous porous layer of the blood cell separation layer.

本発明の分析方法に用いられる多層分析要素は、不透
過性光透過性支持体(透明支持体)の上に全血試料中の
被検成分との反応の結果として検出可能な光学濃度変化
を与える呈色試薬層を備えた分析要素の下地の上に、全
血から血球成分を分離除去して呈色試薬層に血漿を供給
する機能を備えた血球分離層が積層・一体化されたもの
である。ただしこの分析要素においては、分離除去され
る血球成分の有色色素が、透明支持体側から実質的に検
出されないようにするための、いわゆる光遮光層又は光
反射層のような機能は備えていないことが特徴である。
The multilayer analytical element used in the analysis method of the present invention has an optical density change detectable as a result of a reaction with a test component in a whole blood sample on an impermeable light-transmitting support (transparent support). A blood cell separation layer with the function of separating and removing blood cell components from whole blood and supplying plasma to the color reagent layer on the base of the analytical element provided with the color reagent layer to be applied is laminated and integrated. It is. However, this analytical element does not have a function such as a so-called light-shielding layer or light-reflecting layer for preventing the colored dye of the blood cell component to be separated and removed from being substantially detected from the transparent support side. Is the feature.

前記のような構成の多層分析要素を用いて全血試料中
の被検成分の定量分析は、次のようして行われる。
Quantitative analysis of a test component in a whole blood sample using the multilayer analysis element having the above-described configuration is performed as follows.

ヒトより採血した全血試料の一定量(例、20μL)を
分析要素の透明支持体から最も遠い面である血球分離層
の最上層である繊維質多孔性層の表面に点着する。点着
された全血試料は、繊維質多孔性層において、面方向に
ほぼ一様に広げられる。それと同時に、全血試料は下方
向へ移動して行くが、そこで血球分離層の繊維質多孔性
層と被繊維質多孔性層とが共同して働き、全血試料は血
球成分と血漿とに分離され、血球成分は血球分離層の非
繊維質多孔性層の下面までで完全に保持されてとどま
り、実質的に血漿のみが、下方に位置する分析要素の下
地の多孔性層へと移動していく。分析要素の下地の多孔
性層では、分離してきた血漿が供給されると、その量に
応じて血漿を両方向にほぼ一定になるように広げる。
A certain amount (eg, 20 μL) of a whole blood sample collected from a human is spotted on the surface of the fibrous porous layer which is the uppermost layer of the blood cell separation layer which is the surface farthest from the transparent support of the analysis element. The spotted whole blood sample is spread almost uniformly in the surface direction in the fibrous porous layer. At the same time, the whole blood sample moves downward, where the fibrous porous layer of the blood cell separation layer and the fibrous porous layer work together to convert the whole blood sample into blood cell components and plasma. Separated, the blood cell components remain completely retained up to the lower surface of the non-fibrous porous layer of the blood cell separation layer, and substantially only the plasma migrates to the underlying porous layer of the underlying analytical element. To go. When the separated plasma is supplied to the porous layer underlying the analysis element, the plasma is spread so as to be substantially constant in both directions according to the amount thereof.

前記の多層分析要素において、全血試料中の血球成分
が血球分離層の非繊維質多孔性層の下面までで実質的に
完全に分離され、分析要素の下地の多孔性層には実質的
に全く到達しないことは、まことに不思議であって、未
だその理由は明らかになっていない。ただそのメカニズ
ムが、血球成分をその大きさで分離する、いわゆる物理
濾過でないことは確かである。全血から血球成分を物理
濾過しようとすると、通常赤血球に大きなシェアがかか
って溶血が起こってしまう。しかし前記の多層分析要素
では、後の実施例でも示すが、赤血球の溶血は観察され
ない。血球分離層での血球成分の分離除去は、全血試料
を血球分離層の繊維質多孔性層上に点着後速やかに完了
する。血球成分の分離除去は、遅くとも全血試料点着後
30秒以内には完了している。前記の多層分析要素には、
分離した血球成分の有色色素が透明支持体側から検出さ
れないようにするための、遮光の機能を備えていないの
で、全血試料点着後瞬時のうちに、血球成分の有色色素
(赤血球の赤色色素)が透明支持体側から光学的に検出
され始める。しかし、透明支持体から検出される血球成
分の有色色素の反射光学濃度は、血球成分の分離が完了
されると同時に、全血試料のヘマトクリット値やその他
の個体差によって決定される絶対値で一定になって、そ
の後変化しないことが見い出された。このことは、まこ
とに意外な現象である。
In the above-described multilayer analytical element, the blood cell component in the whole blood sample is substantially completely separated up to the lower surface of the non-fibrous porous layer of the blood cell separation layer, and the porous layer underlying the analytical element is substantially separated. It is strange that it never reaches, and the reason has not been clarified yet. It is clear, however, that the mechanism is not so-called physical filtration, which separates blood cell components by their size. Attempts to physically filter blood cell components from whole blood usually involve a large share of red blood cells, causing hemolysis. However, in the above-mentioned multilayer analytical element, hemolysis of erythrocytes is not observed, as will be shown in the later examples. The separation and removal of the blood cell component in the blood cell separation layer is completed immediately after the whole blood sample is spotted on the fibrous porous layer of the blood cell separation layer. Separation and removal of blood cell components at the latest after application of whole blood sample
Completed within 30 seconds. The multi-layer analysis element includes:
Since it does not have a light-shielding function to prevent the colored dye of the separated blood cell component from being detected from the transparent support side, the colored dye of the blood cell component (red dye of red blood cells) ) Starts to be optically detected from the transparent support side. However, the reflection optical density of the colored dye of the blood cell component detected from the transparent support is constant at an absolute value determined by the hematocrit value of the whole blood sample and other individual differences at the same time as the separation of the blood cell component is completed. And found that it did not change thereafter. This is a surprising phenomenon.

血球成分の分離除去後、分析要素の下地の多孔性層内
でほぼ一様に広げられた血漿中の被検成分は、分析要素
の下地に含まれている呈色試薬組成物と反応して、分離
された血球成分の有色色素の光学濃度とは独立に、光学
的に検出可能な信号の変化を示す。
After separation and removal of the blood cell component, the test component in the plasma, which has been spread almost uniformly in the porous layer underlying the analysis element, reacts with the color reagent composition contained in the analysis element base. Shows a change in the optically detectable signal, independent of the optical density of the colored dye of the separated blood cell component.

前記の多層分析要素を用いて全血試料中の被検成分の
定量分析を行うには、透明支持体側から検出される分離
した血球成分の有色色素の反射光学濃度が一定になった
後で、全血試料中の被検成分と試薬組成物との反応の結
果として生成した色の反射光学濃度を測定する。測定さ
れた光学濃度は、それをパラメータとして、予め同様の
方法で測定しておいた被検成分の量とそのパラメータと
の関係(通常は検量線)にもとづいて、点着した全血試
料中の被検成分の量を検出する。比色測定法のためのパ
ラメータとして使われる。
To perform a quantitative analysis of the test component in the whole blood sample using the multilayer analysis element, after the reflection optical density of the colored dye of the separated blood cell component detected from the transparent support side becomes constant, The reflection optical density of the color produced as a result of the reaction between the test component and the reagent composition in the whole blood sample is measured. Using the measured optical density as a parameter, the spotted whole blood sample is determined based on the relationship between the amount of the test component and the parameter (normally, a calibration curve) which has been measured in the same manner in advance. The amount of the test component is detected. Used as a parameter for colorimetry.

その際、用いられるパラメータは、点着後一定時間に
おける単位時間当りの反射光学濃度の変化値であり、測
定される値には何等補正を加える必要はない。
At this time, the parameter used is a change value of the reflection optical density per unit time during a certain time after spotting, and it is not necessary to add any correction to the measured value.

多層分析要素に透明支持体がないもの、あるいは支持
体を剥離除去するものである場合には、透明支持体を通
しての要素内の色の反射測光のかわりに、呈色試薬層、
吸水層、検出層等の全血試料が点着される血球分離層と
反対側の層から反射測光すればよい。
If the multilayer analytical element does not have a transparent support, or if the support is to be peeled off, instead of reflection measurement of the color in the element through the transparent support, a color reagent layer,
Reflection photometry may be performed from a layer opposite to the blood cell separation layer on which the whole blood sample is spotted, such as a water absorption layer and a detection layer.

本発明の分析方法に所要の全血試料の量は、例えば、
約5μLから約30μL、好ましくは約8μLから約15μ
Lの範囲である。本発明の分析方法では、点着された全
血から血球分離層により分離された血球成分の有色色素
の、前記支持体側から検出される反射光学濃度値が実質
的に一定になった(長くとも約30秒、通常は約20秒以
内)後に、約20℃から約40℃の範囲内の、好ましくは37
℃近傍の、実質的に一定の温度でインクベーションしな
がら、約1分から約10分の時間範囲で、試薬層における
単位時間当りの反射光学濃度の変化量を支持体側から測
定し、比色法の原理で被検成分の濃度値又は活性値を求
める。本発明の分析方法は、特開昭60−125543、特開昭
60−220862、特開昭61−294367、特開昭58−161867等に
記載の化学分析装置により容易な操作で高精度の定量分
析を実施できる。
The amount of the whole blood sample required for the analysis method of the present invention is, for example,
About 5 μL to about 30 μL, preferably about 8 μL to about 15 μL
L. In the analysis method of the present invention, the reflection optical density value of the colored dye of the blood cell component separated from the spotted whole blood by the blood cell separation layer, which is detected from the support side, is substantially constant (at most at most). After about 30 seconds, usually within about 20 seconds), within a range of about 20 ° C. to about 40 ° C., preferably 37 ° C.
While incubating at a substantially constant temperature in the vicinity of ° C., the amount of change in the reflection optical density per unit time in the reagent layer is measured from the support side for a time range of about 1 minute to about 10 minutes. The concentration value or activity value of the test component is determined according to the principle described above. The analysis method of the present invention is described in JP-A-60-125543,
A high-precision quantitative analysis can be performed by a simple operation using the chemical analyzer described in JP-A-60-220862, JP-A-61-294367, JP-A-58-161867, and the like.

[発明の効果] 本発明の定量分析方法により、光遮蔽層又は光反射層
を備えていない多層分析要素を用いて、全血試料中の被
検成分の定量分析をヘマトクリット値に依存せず、数分
(約2分〜約10分)という短時間で正確に行うことがで
きる。さらに本発明の定量分析方法に用いる多層分析要
素の下地に含有させる試薬組成物を被検成分に対応する
試薬成分に変えるだけで、全血試料中の種々の被検成分
の定量分析に適用することができる。
[Effects of the Invention] According to the quantitative analysis method of the present invention, the quantitative analysis of the test component in the whole blood sample does not depend on the hematocrit value, using a multilayer analysis element having no light shielding layer or light reflection layer, It can be performed accurately in a short time of several minutes (about 2 minutes to about 10 minutes). Further, the present invention is applied to the quantitative analysis of various test components in a whole blood sample simply by changing the reagent composition contained in the base of the multilayer analysis element used in the quantitative analysis method of the present invention to a reagent component corresponding to the test component. be able to.

本発明の好ましい実施態様は次のとおりである。 A preferred embodiment of the present invention is as follows.

(1)水不透過性光透過性支持体の上に、少なくとも全
血中の被検成分との反応の結果として検出可能な光学濃
度変化を与える呈色試薬層と全血から血球成分を分離除
去して前記試薬層に血漿を供給するための血球分離層と
が、この順に積層されている多層分析要素を用いて比色
測定法により被検成分を定量する方法において、 血球分離層の最上層に全血試料を点着し、 前記血球分離層により点着された全血から分離された
血球成分の有色色素の、前記支持体側から検出される反
射光学濃度値が実質的に一定になった後に、 前記試薬層における単位時間当りの反射光学濃度の変
化量を、前記血球成分の有色色素が示す反射光と重複す
る範囲の波長で支持体側から測定し、 得られた単位時間当りの反射光学濃度の変化量から全
血中の被検成分の活性値を比色測定法により求めること
による全血中の被検成分を定量する方法。
(1) Separating blood cell components from whole blood on a water-impermeable, light-permeable support and at least a color reagent layer that gives a detectable optical density change as a result of a reaction with a test component in whole blood A method for quantifying a test component by a colorimetric method using a multi-layer analysis element laminated in this order, wherein the blood cell separation layer for removing and supplying plasma to the reagent layer is provided. The whole blood sample is spotted on the upper layer, and the reflection optical density value of the colored dye of the blood cell component separated from the whole blood spotted by the blood cell separation layer, which is detected from the support side, is substantially constant. After that, the amount of change in the reflection optical density per unit time in the reagent layer is measured from the support side at a wavelength in a range overlapping with the reflected light indicated by the colored dye of the blood cell component, and the obtained reflection per unit time is obtained. Test component in whole blood from change in optical density A method for quantifying a test component in whole blood by determining the activity value of the compound by colorimetry.

(2)前記分析要素が、全血からの血球成分の分離除去
が、全血中の被検成分との反応の結果として試薬層での
光学濃度変化が検出され始める前に完了している分析要
素である(1)に記載の方法。
(2) An analysis in which the analysis element completes separation and removal of blood cell components from whole blood before a change in optical density in a reagent layer is started to be detected as a result of a reaction with a test component in whole blood. The method according to (1), which is an element.

(3)前記分析要素が、分離された血球成分の有色色素
が光学的に支持体側から充分に検出され得る分析要素で
ある(1)に記載の方法。
(3) The method according to (1), wherein the analysis element is an analysis element capable of optically detecting a colored dye of a separated blood cell component from the support side.

(4)前記分析要素が、全血からの血球成分の分離除去
が完了後、分離された血球成分の有色色素の支持体側か
ら検出される光学濃度が実質的に一定になる分析要素で
ある(1)に記載の方法。
(4) The analysis element is an analysis element in which after the separation and removal of the blood cell component from the whole blood is completed, the optical density detected from the support side of the colored dye of the separated blood cell component becomes substantially constant ( The method according to 1).

(5)前記分析要素の試薬層と血球分離層が、液体の一
様な通過が妨げられない程度に部分的に配置された接着
剤により接着され一体化されている分析要素である
(1)に記載の測定法。
(5) The analysis element in which the reagent layer and the blood cell separation layer of the analysis element are adhered and integrated by an adhesive partially disposed so as not to prevent uniform passage of the liquid (1). Measurement method described in 1.

[実施例1]AST活性値定量用多層分析要素 1−1分析要素の下地の作製 ゼラチン下塗りされている厚さ180μmのポリエチレ
ンテレフタレート(PET)無色透明平滑シートの上に下
記の成分被覆量の発色試薬層を乾燥後の厚さが15μmに
なるように塗布し、乾燥させて発色試薬層を形成した。
[Example 1] Multilayer analytical element for quantifying AST activity value 1-1 Preparation of base for analytical element Color development of the following components on a 180 μm thick polyethylene terephthalate (PET) colorless transparent smooth sheet subbed with gelatin The reagent layer was applied to a thickness of 15 μm after drying, and dried to form a coloring reagent layer.

発色試薬層の被覆量(1m2当り) 脱イオンゼラチン 20g p−ノニルフェノキシポリグリシドール(平均10グリシ
ドール単位含有) 1.5g ペルオキシダーゼ 15000IU FAD(フラビン・アデニン・ジヌクレオチド) 22mg
TPP(チアミン・ピロホスフェート)(コカルボキシラ
ーゼ) 93mg ピルビン酸オキシダーゼ 13000IU 2−(3,5−ジメトキシ−4−ヒドキシフェニル)−4
−フェネチル−5−[4−(ジメチルアミノ)フェニ
ル]イミダゾール(ロイコ色素) 280mg (稀NaOH水溶液でpH7.5に調整した水溶液を塗布) 次に発色試薬層の上に下記の成分被覆量の接着層を乾
燥後の厚さが3μmになるように水溶液から塗布し、乾
燥させて接着層を形成した。
Coating amount of the coloring reagent layer (per 1 m 2 ) Deionized gelatin 20 g p-nonylphenoxypolyglycidol (containing an average of 10 glycidol units) 1.5 g Peroxidase 15000 IU FAD (flavin adenine dinucleotide) 22 mg
TPP (thiamine pyrophosphate) (cocarboxylase) 93 mg pyruvate oxidase 13000 IU 2- (3,5-dimethoxy-4-hydroxyphenyl) -4
-Phenethyl-5- [4- (dimethylamino) phenyl] imidazole (leuco dye) 280 mg (Apply an aqueous solution adjusted to pH 7.5 with a dilute NaOH aqueous solution) Then, adhere the following component coating amount on the color reagent layer The layer was applied from an aqueous solution so that the thickness after drying became 3 μm, and dried to form an adhesive layer.

接着層の被覆量(1m2当り) 脱イオンゼラチン 4.0g p−ノニルフェノキシポリグリシドール(平均10グリシ
ドール単位含有) 430mg L−アスパラギン酸ナトリウム 250mg 次に接着層の上に約30g/m2の割合で水を供給して全面
をほぼ一様に湿潤させ、PET製ブロード織物布地(厚さ
約150μm、空隙体積9.8μL/m2)を軽く圧力をかけてラ
ミネートして接着させ、乾燥させた。
At a rate of about 30 g / m 2 on the adhesive layer coverage (2 per 1m) Deionized gelatin 4.0 g p-nonylphenoxy polyglycidol (average 10 glycidol unit content) 430 mg L-sodium aspartate 250mg then the adhesive layer of the Water was supplied to wet the entire surface almost uniformly, and a broad woven fabric made of PET (thickness: about 150 μm, void volume: 9.8 μL / m 2 ) was lightly laminated, adhered, and dried.

次にこの布に下記の組成のAST検出試薬組成物の水溶
液を100mL/m2の割合でほぼ一様に塗布し、乾燥させて含
浸させてAST活性定量用多層分析要素の下地を完成し
た。
Next, an aqueous solution of the AST detection reagent composition having the following composition was applied almost uniformly to the cloth at a rate of 100 mL / m 2 , dried and impregnated to complete the base of the multilayer analytical element for AST activity determination.

AST検出試薬組成物の水溶液の組成 トリスヒドロキシメチルアミノメタン 3.7g 燐酸1カリウム 4.4g α−ケトグルタル酸 4.0g ヒドロキシプロピルメチルセルロース(メトキシ基28〜
30%、ヒドロキシプロポキシ基7〜12%含有;2%水溶液
の20℃での粘度50cps) 8.7g オクチルフェノキシポリエトキシエタノール(平均10オ
キシエチレン単位含有) 27g 塩化マグネシウム 2.3g オキザロ酢酸デカルボキシラーゼ 20万IU アスコルビン酸オキシダーゼ 18万IU 水 880g (稀NaOH水溶液でpH7.5に調整した) 1−2血球成分分離層の調製 50デニール相当のPET紡績糸を36ゲージ編みしたトリ
コット編物布地(厚さ約250μm)に、下記組成の水溶
液を含浸し、乾燥させた。
Composition of aqueous solution of AST detection reagent composition Trishydroxymethylaminomethane 3.7 g Potassium phosphate 4.4 g α-Ketoglutaric acid 4.0 g Hydroxypropylmethylcellulose (methoxy group 28 to
30%, containing 7 to 12% of hydroxypropoxy group; viscosity of 2% aqueous solution at 20 ° C. 50 cps) 8.7 g octylphenoxypolyethoxyethanol (containing an average of 10 oxyethylene units) 27 g magnesium chloride 2.3 g oxaloacetate decarboxylase 200,000 IU Ascorbate oxidase 180,000 IU 880 g of water (adjusted to pH 7.5 with diluted NaOH aqueous solution) 1-2 Preparation of blood cell component separation layer Tricot knitted fabric (thickness about 250 μm) in which PET spun yarn equivalent to 50 denier is 36 gauge knitted Was impregnated with an aqueous solution having the following composition and dried.

ポリエチレングリコール(平均分子量5万) 2.0g 四硼酸ナトリウム 2.0g 水 96g 次に上記含浸済みトリコット編物布地を温度80℃に加
熱し、その表面に温度130℃に加熱し溶融したホットメ
ルト型接着剤を、グラビア印刷法によりグラビアローラ
ーからの転写によりドット状に付着させた。グラビアロ
ーラーのドットパターンは、ドット直径0.3mmの円、ド
ットの中心間距離0.6mm、ドット面積率約20%である。
付着した接着剤の量は約2g/m2であった。ついで、接着
剤が転写された直後の高温の布地の表面に、有効孔径3.
0μm、厚さ140μm、空隙率約80%のセルロースアセテ
ートメンブランフィルタの非光沢面を向かい合わせてラ
ミネートローラーの間を通し、両者をラミネートして接
着一体化(部分接着)し血球分離層を作製した。
Polyethylene glycol (average molecular weight: 50,000) 2.0 g Sodium tetraborate 2.0 g Water 96 g Next, the impregnated tricot knitted fabric is heated to a temperature of 80 ° C., and a hot-melt adhesive melted by heating to a temperature of 130 ° C. is applied to the surface. Then, the particles were attached in the form of dots by transfer from a gravure roller by a gravure printing method. The dot pattern of the gravure roller is a circle having a dot diameter of 0.3 mm, a center-to-center distance of dots of 0.6 mm, and a dot area ratio of about 20%.
The amount of adhesive adhered was about 2 g / m 2 . Then, on the surface of the hot fabric immediately after the adhesive is transferred, the effective pore size 3.
A non-glossy surface of a cellulose acetate membrane filter having a thickness of 0 μm, a thickness of 140 μm, and a porosity of about 80% was passed through a lamination roller with the non-glossy surfaces facing each other. .

1−3多層分析要素の完成 この血球分離層を1−2の工程と同様のグラビア印刷
法による部分接着法により、1−1の工程で作製した分
析要素の下地の上に接着し、一体化させた。
1-3 Completion of Multi-Layer Analysis Element This blood cell separation layer is adhered on the base of the analysis element prepared in the step 1-1 by the partial adhesion method by the gravure printing method similar to the step 1-2, and integrated. I let it.

1−2の工程と同様にして、血球分離層のメンブラン
フィルタの表面に加熱し溶融したホットメルト型接着剤
をグラビア印刷法によりドット状に付着させた後、直ち
に1−1の工程で作製した分析要素の下地のブロード織
物布地面側と向かい合わせ、両者をラミネートローラー
の間を通し、ラミネートして接着一体化した。
In the same manner as in the step 1-2, the hot-melt type adhesive that was heated and melted was attached to the surface of the membrane filter of the blood cell separation layer in the form of dots by the gravure printing method, and then immediately prepared in the step 1-1. The analysis element was opposed to the ground side of the broad woven cloth, and both were passed through a laminating roller to be laminated and bonded and integrated.

完成した多層分析要素を1辺15mmの正方形チップに裁
断し、特開昭57−63452に記載の有機ポリマー製スライ
ド枠に収めてAST活性値定量分析用多層分析スライドを
完成した。
The completed multilayer analysis element was cut into a square chip having a side of 15 mm and placed in an organic polymer slide frame described in JP-A-57-63452 to complete a multilayer analysis slide for quantitative analysis of AST activity.

[実施例2]ALT活性値定量用多層分析要素 2−1分析要素の下地の作製 ゼラチン下塗りされている厚さ180μmのPET無色透明
平滑シートの上に下記の成分被覆量の発色試薬層を乾燥
後の厚さが15μmになるように塗布し、乾燥させて発色
試薬層を形成した。
Example 2 Multilayer Analytical Element for Quantifying ALT Activity Value 2-1 Preparation of Base for Analytical Element A color forming reagent layer having the following component coverage was dried on a 180 μm thick PET colorless transparent smooth sheet undercoated with gelatin. It was applied to a thickness of 15 μm and dried to form a color reagent layer.

発色試薬層の被覆量(1m2当り) 脱イオンゼラチン 20g p−ノニルフェノキシポリグリシドール(平均10グリシ
ドール単位含有) 1.5g ペルオキシザーゼ 15000IU FAD(フラビン・アデニン・ジヌクレオチド) 22mg
TPP(チアミン・ピロホスフェート)(コカルボキシラ
ーゼ) 93mg ビルビン酸オキシダーゼ 13000IU 2−(3,5−ジメトキシ−4−ヒドキシフェニル)−4
−フェネチル−5−[4−(ジメチルアミノ)フェニ
ル]イミダゾール(ロイコ色素) 280mg (稀NaOH水溶液でpH6.5に調整した水溶液を塗布) 次に発色試薬層の上に下記の成分被覆量の接着層を乾
燥後の厚さが3μmになるように水溶液から塗布し、乾
燥させて接着層を形成した。
Coating amount of coloring reagent layer (per 1 m 2 ) Deionized gelatin 20 g p-nonylphenoxypolyglycidol (containing an average of 10 glycidol units) 1.5 g Peroxidase 15000 IU FAD (flavin adenine dinucleotide) 22 mg
TPP (thiamine pyrophosphate) (cocarboxylase) 93 mg birubic acid oxidase 13000 IU 2- (3,5-dimethoxy-4-hydroxyphenyl) -4
-Phenethyl-5- [4- (dimethylamino) phenyl] imidazole (leuco dye) 280 mg (Apply an aqueous solution adjusted to pH 6.5 with a dilute NaOH aqueous solution) Then, adhere the following component coating amount on the color reagent layer The layer was applied from an aqueous solution so that the thickness after drying became 3 μm, and dried to form an adhesive layer.

接着層の被覆量(1m2当り) 脱イオンゼラチン 4.0g p−ノニルフェノキシポリグリシドール(平均10グリシ
ドール単位含有) 160mg (稀NaOH水溶液でpH7.0にした水溶液を塗布した) 次に接着層の上に約30g/m2の割合で水を供給して全面
をほぼ一様に湿潤させ、PET製ブロード織物布地(厚さ
約150μm、空隙体積9.8μL/m2)を軽く圧力をかけてラ
ミネートして接着させ、乾燥させた。
Amount of adhesive layer (per 1 m 2 ) Deionized gelatin 4.0 g p-nonylphenoxypolyglycidol (containing an average of 10 glycidol units) 160 mg (an aqueous solution adjusted to pH 7.0 with dilute NaOH aqueous solution) at a rate of about 30 g / m 2 by supplying the water substantially uniformly wet the entire surface, by applying a light pressure the PET broad woven fabric (thickness: about 150 [mu] m, void volume 9.8μL / m 2) was laminated to the And allowed to dry.

次にこの布に下記の組成のALT検出試薬組成物の水溶
液を100mL/m2の割合でほぼ一様に塗布し、乾燥させて含
浸させてALT活性定量用多層分析要素の下地を完成し
た。
Next, an aqueous solution of an ALT detection reagent composition having the following composition was applied almost uniformly to the cloth at a rate of 100 mL / m 2 , dried and impregnated to complete a base for a multilayer analytical element for ALT activity determination.

ALT検出試薬組成物の水溶液の組成 トリスヒドロキシメチルアミノメタン 2.2g 燐酸1カリウム 4.5g α−ケトグルタル酸 4.0g L−アラニン 27.5g ヒドロキシプロピルメチルセルロース(メトキシ基28〜
30%、ヒドロキシプロポキシ基7〜12%含有;2%水溶液
の20℃での粘度50cps) 8.7g オクチルフェノキシポリエトキシエタノール(平均10オ
キシエチレン単位含量) 27 g 塩化マグネシウム 2.4g 水 880g (稀NaOH水溶液でpH7.5に調整した) 1−3多層分析要素の完成 実施例1の1−2の工程と同様にして血球分離層を作
製し、この血球分離層と2−1の工程で作製したALT活
性測定用分析要素の下地とを実施例1の1−3の工程と
同様にして部分接着法で積層一体化して多層分析要素を
完成し、分析要素裁断してスライド枠に収めてALT活性
値定量用多層分析スライドを完成した。
Composition of Aqueous Solution of ALT Detection Reagent Composition Trishydroxymethylaminomethane 2.2 g Potassium phosphate 4.5 g α-Ketoglutaric acid 4.0 g L-alanine 27.5 g Hydroxypropyl methylcellulose (methoxy group 28-
30%, containing 7 to 12% of hydroxypropoxy group; viscosity of 2% aqueous solution at 20 ° C. 50 cps) 8.7 g octylphenoxypolyethoxyethanol (average content of 10 oxyethylene units) 27 g magnesium chloride 2.4 g water 880 g (dilute NaOH aqueous solution) 1-3 The multi-layer analysis element was completed. A blood cell separation layer was prepared in the same manner as in step 1-2 of Example 1, and this blood cell separation layer and ALT prepared in step 2-1 were prepared. The base of the analysis element for activity measurement was laminated and integrated by the partial bonding method in the same manner as in the step 1-3 of Example 1 to complete a multi-layer analysis element. A multi-layer analytical slide for quantification was completed.

得られたAST活性測定用分析要素(実施例1)及びALT
活性測定用分析要素(実施例2)は、透明支持体、発色
試薬層、ブロード織物布地層がこの順に積層一体化され
た下地の上に、メンブランフィルタ層、トリコット編物
布地層がこの順に積層一体化された構成の血球分離層が
この順に一体に積層された構成である。
The obtained analytical element for measuring AST activity (Example 1) and ALT
The analysis element for activity measurement (Example 2) is composed of a transparent support, a coloring reagent layer and a broad woven fabric layer which are laminated and integrated in this order, a membrane filter layer and a tricot knitted fabric layer which are laminated and integrated in this order. This is a configuration in which a blood cell separation layer having a structured configuration is integrally laminated in this order.

部分接着法により積層一体化されたメンブランフィル
タ層とトリコット編物布地層とは協同して、検体として
トリコット編物布地の上の点着供給される全血試料から
血球成分を分離除去する。このときトリコット編物布地
層は展開層としても作用し、供給された全血試料を面の
方向に単位面積当りほぼ一定量の割合で広げる。ブロー
ド織物布地層は血球分離層を通過してきた血漿中の(実
施例1では)ASTの、(実施例2では)ALTそれぞれの存
在量に応じてピルビン酸を生成するALT又はAST検出試薬
組成物を含有する反応層として作用する。このときブロ
ード織物布地層は展開層としても作用し、血球分離層を
通過してきた血漿を面の方向に単位面積当りほぼ一定量
の割合で広げる。発色試薬層は、血球分離層を通過して
きた血漿成分中の(実施例1)ではASTの、(実施例
2)ではALTの存在量に応じてブロード織物布地層で生
成したピルビン酸を加算化水素を経て色素に変換し蓄積
する層として作用する。色素は透明支持体を通して光学
的に検出される。
The membrane filter layer and the tricot knitted fabric layer, which are laminated and integrated by the partial adhesion method, cooperate with each other to separate and remove blood cell components from the whole blood sample spot-supplied on the tricot knitted fabric as a specimen. At this time, the tricot knitted fabric layer also acts as a developing layer, and spreads the supplied whole blood sample in the direction of the surface at a substantially constant rate per unit area. The broad woven fabric layer is a reagent composition for detecting ALT or AST that generates pyruvate depending on the amount of ALT (in Example 2) of AST (in Example 1) in plasma that has passed through the blood cell separation layer. Acts as a reaction layer. At this time, the broad woven fabric layer also acts as a spreading layer, and spreads the plasma that has passed through the blood cell separation layer in the direction of the surface at a substantially constant rate per unit area. The coloring reagent layer adds pyruvate generated in the broad woven fabric layer in accordance with the amount of AST in (Example 1) and the amount of ALT in (Example 2) in the plasma component passed through the blood cell separation layer. It acts as a layer that converts and accumulates into a dye via hydrogen. The dye is detected optically through the transparent support.

実施例1と実施例2の多層分析要素のトリコット編物
布地層の表面に全血試料を点着したとき、全血中の赤血
球に代表される血球成分はメンブランフィルタ層までで
実質的に完全に分離除去され、ブロード織物布地層には
到達しないことが観察された。しかしながら前記の多層
分析要素は分離した血球成分の赤色色素が側光する透明
支持体側から検出されないようにするための光遮蔽層を
備えていないので、透明支持体側から上層で分離された
血球成分の赤色色素の赤色が見えた。
When a whole blood sample was spotted on the surface of the tricot knitted fabric layer of the multilayer analytical element of Example 1 and Example 2, the blood cell component typified by red blood cells in the whole blood was substantially completely up to the membrane filter layer. It was observed that it was separated off and did not reach the broad woven fabric layer. However, since the multi-layered analytical element does not have a light shielding layer for preventing the red dye of the separated blood cell component from being detected from the transparent support side where the light is emitted, the blood cell component separated in the upper layer from the transparent support side is not provided. The red color of the red pigment was visible.

しかしながら以下に示すように、分離した血球成分の
赤色色素が透明支持体側から見えることは全血試料のAS
T及びALTの活性値を定量するにあたってなんら不都合で
はないことが明らかである。
However, as shown below, the red dye of the separated blood cell component was visible from the transparent support side,
It is clear that there is no disadvantage in quantifying the activity values of T and ALT.

[性能評価試験1] 透明支持体側から検出される分離した血球成分の赤色
色素の光学濃度の変化と試料液中の被検成分による発色
の光学濃度の変化を測定した。
[Performance Evaluation Test 1] The change in the optical density of the red dye of the separated blood cell component detected from the transparent support side and the change in the optical density of color development due to the test component in the sample solution were measured.

第1表に記載の試料液(…コントロール血清、
…全血)を調製/用意した。
The sample solutions described in Table 1 (... control serum,
... whole blood) was prepared / prepared.

試料液各20μLを実施例1の多層分析要素のトリコッ
ト編物布地層の上にそれぞれ点着し、各分析要素を密閉
されたインクベータの中で37℃に保持した際の光学濃度
の変化を波長640nmの可視光で測定した。測定された光
学濃度値の変化を示したのが第1図である。またその
際、点着後3.5分から5分までの光学濃度値変化を求
め、その結果を第2表に示す。
20 μL of each sample solution was spotted on the tricot knitted fabric layer of the multilayer analytical element of Example 1, and the change in optical density when each analytical element was kept at 37 ° C. in a closed ink beta was measured. It was measured with 640 nm visible light. FIG. 1 shows a change in the measured optical density value. At this time, a change in optical density value from 3.5 minutes to 5 minutes after spotting was obtained, and the results are shown in Table 2.

第1図から明らかなように、分離された血球成分の赤
色色素の透明支持体側から検出される光学濃度は点着後
瞬時(約10秒以内)に変化し終り、その後は透明支持体
側から検出される分離した血球成分の赤色色素の光学濃
度は変化しない(試料)。試料液中のASTによる発
色は、透明支持体側から検出される血球成分の赤色色素
の光学濃度が変化し終り一定になった後に始まる(試料
)。それ故第2表に示されているように血球成分の
有無にかかわらず、試料液中のASTの活性層が等しけれ
ば一定時間での光学濃度値変化は等しくなる。
As is clear from FIG. 1, the optical density of the red dye of the separated blood cell component detected from the transparent support side is instantaneously changed (within about 10 seconds) after spotting, and thereafter detected from the transparent support side. The optical density of the separated red blood cell component does not change (sample). The color development by AST in the sample liquid starts after the optical density of the red dye of the blood cell component detected from the transparent support side changes and ends and becomes constant (sample). Therefore, as shown in Table 2, regardless of the presence or absence of blood cell components, if the active layers of AST in the sample solution are equal, the change in optical density value over a certain period of time becomes equal.

実施例2のALT活性値定量用多層分析要素を用いた同
様な性能評価試験でも同様な結果が得られた。
Similar results were obtained in a similar performance evaluation test using the multilayer analysis element for quantifying ALT activity in Example 2.

[性能評価試験2] 実施例1と実施例2の多層分析要素を用いて全血試量
中のそれぞれASTとALTの活性値の定量精度を評価するた
めの測定を行なった。
[Performance Evaluation Test 2] Using the multilayer analysis elements of Example 1 and Example 2, measurements were performed to evaluate the quantification accuracy of AST and ALT activity values in a whole blood test sample, respectively.

7%HSA水溶液に異なる量のAST及びALTを加えてAST、
ALT活性値の異なる7%HSA溶液を調製した。別にヒト全
血を遠心分離し、得られた血漿の一定量を前記7%HSA
中AST、ALT溶液と置き換え、ついでこれを再び血球成分
と混合して、ヘマトクリット値40%でAST、ALT活性値が
異なる全血試料を調製した。
AST by adding different amounts of AST and ALT to a 7% HSA aqueous solution,
7% HSA solutions having different ALT activity values were prepared. Separately, human whole blood was centrifuged, and a certain amount of the obtained plasma was subjected to 7% HSA.
The solution was replaced with a medium AST and ALT solution, and then mixed again with a blood cell component to prepare a whole blood sample having a hematocrit value of 40% and different AST and ALT activity values.

こうして調製された全血試料各20μLを実施例1と実
施例2の多層分析要素のトリコット編物布地層の上にそ
れぞれ点着し、各分析要素を密閉インクベータ中で37℃
に保持した際の点着後3.5分から5分までの光学濃度変
化を求めた。結果を第2図、第3図及び第3表に示す。
Each of the thus prepared whole blood samples (20 μL) was spotted on the tricot knitted fabric layers of the multilayer analytical elements of Examples 1 and 2, respectively, and each analytical element was placed at 37 ° C. in a closed ink beta.
The change in optical density from 3.5 minutes to 5 minutes after spotting when the sample was held at the temperature was determined. The results are shown in FIG. 2, FIG. 3, and Table 3.

第3表におけるAST、ALT活性値は使用した全血試料を
遠心分離後得られた血漿成分について溶液法によってそ
れぞれ求めた値である。
The AST and ALT activity values in Table 3 are values obtained by the solution method for the plasma components obtained after centrifuging the used whole blood sample.

第3表のデータ及び第2図、第3図のグラフから、全
血試料点着後、分離した血球成分の赤色色素の透明支持
体(測光面)側から検出される反射光学濃度値が一定に
なった後に透明支持体側から測定される発色の反射光学
濃度の単位時間当りの変化量は、実施例1のAST活性定
量用多層分析要素では全血試料中のASTの活性値に、実
施例2のALT活性定量用多層分析要素では全血試料中のA
LTの活性値に良好な相関を持つことが明らかになった。
From the data in Table 3 and the graphs in FIGS. 2 and 3, after the whole blood sample was spotted, the reflected optical density value detected from the transparent support (photometric surface) side of the red dye of the separated blood cell component was constant. The amount of change per unit time of the reflection optical density of color development measured from the transparent support side after the formation of the AST activity in the multi-layer analytical element for quantifying AST activity in Example 1 was calculated as the AST activity value in a whole blood sample. In the multi-layer analysis element for quantifying ALT activity of 2, A in whole blood sample
It was found that it had a good correlation with the activity value of LT.

[性能評価試験3] 実施例1と実施例2の多層分析要素を使って性能評価
試験1と同様の測定をすることで全血試量中のそれぞれ
ASTとALTの活性量を求める場合に全血試料のヘマトクリ
ット値が定量分析にどの程度の影響を与えるかを評価す
る試験を下記の測定を行った。
[Performance Evaluation Test 3] The same measurement as in Performance Evaluation Test 1 was performed using the multi-layer analysis elements of Example 1 and Example 2 to measure the respective components in the whole blood test sample.
The following measurements were performed to evaluate the effect of the hematocrit value of a whole blood sample on quantitative analysis when determining the amounts of AST and ALT activities.

7%HSA水溶液に異なる量のAST及びALTを加えてAST、
ALT活性値の異なる7%HSA溶液を3種類調製した。別に
ヒト全血を遠心分離し、得られた血漿の一定量を前記7
%HSA中AST、ALT溶液と置き換え、ついでこれを再び血
球成分と混合することにより、AST、ALT活性値が異なる
全血試料を調製した。次にこの全血試料を遠心分離した
後、得られた血漿の適当量を添加し又は取り去ることに
より、AST及びALT活性がそれぞれ異なりヘマトクリット
値が25%、40%、55%である全血試料を調製した。
AST by adding different amounts of AST and ALT to a 7% HSA aqueous solution,
Three types of 7% HSA solutions having different ALT activity values were prepared. Separately, human whole blood was centrifuged, and a certain amount of the obtained plasma was subjected to the above-mentioned method.
The whole blood samples having different AST and ALT activity values were prepared by replacing the AST and ALT solutions in% HSA with the hemocyte components again. Next, after centrifuging the whole blood sample, an appropriate amount of the obtained plasma is added or removed, whereby a whole blood sample having different AST and ALT activities and having hematocrit values of 25%, 40%, and 55% is obtained. Was prepared.

こうして調製された全血試料各20μLを実施例1と実
施例2の多層分析要素のトリコット編物布地層の上にそ
れぞれ点着し、各分析要素を密閉インクベータ中で37℃
に保持した際の点着後3.5分から5分までの光学濃度変
化を求めた。結果を第2図、第3図及び第3表に示す。
得られた光学濃度変化は、第2図及び第3図の光学濃度
値とAST又はALTの活性値との関係から、AST及びALTの活
性値に換算した。結果を第4表に示す。なお第4表でヘ
マトクリット値0%とは、血球成分を含まない血漿試料
についての結果である。
Each of the thus prepared whole blood samples (20 μL) was spotted on the tricot knitted fabric layers of the multilayer analytical elements of Examples 1 and 2, respectively, and each analytical element was placed at 37 ° C. in a closed ink beta.
The change in optical density from 3.5 minutes to 5 minutes after spotting when the sample was held at the temperature was determined. The results are shown in FIG. 2, FIG. 3, and Table 3.
The obtained optical density change was converted into AST and ALT activity values based on the relationship between the optical density values in FIGS. 2 and 3 and the AST or ALT activity values. The results are shown in Table 4. In Table 4, a hematocrit value of 0% is a result of a plasma sample containing no blood cell component.

第4表のデータからから実施例1と実施例2の多層分
析要素では、全血試料点着後、分離した血球成分の赤色
色素の透明支持体(測光面)側から検出される反射光学
濃度値が一定になった後に透明支持体側から測定される
発色の反射光学濃度値は、その値をもとに同様の測定法
で求めておいた光学濃度変化と活性値との関係(性能評
価試験3の第2図、第3図)から算出したAST及びALTの
活性値は、AST及びALTの各活性値において、ヘマトクリ
ット値にかかわらずほぼ一定の値を示すことが明らかに
なった。
From the data in Table 4, in the multilayer analytical elements of Examples 1 and 2, after the whole blood sample was spotted, the reflection optical density of the red dye of the separated blood cell component detected from the transparent support (photometric surface) side. The reflection optical density value of the color development measured from the transparent support after the value becomes constant is the relationship between the optical density change and the activity value obtained by the same measurement method based on the value (performance evaluation test). 3 (FIGS. 2 and 3), it became clear that the AST and ALT activity values showed almost constant values regardless of the hematocrit value in each of the AST and ALT activity values.

血球成分の中心である赤血球中の活性値が、血漿成分
中の活性値に対して、ASTで約80倍、ALTで約15倍である
ことを考えれば、第4表のデータは、実施例1及び実施
例2の多層分析要素中で赤血球の溶血が実質的に起こっ
ていないことも示している。
Considering that the activity value in erythrocytes, which is the center of the blood cell component, is about 80 times that of the AST and about 15 times that of the ALT with respect to the activity value in the plasma component, the data in Table 4 is based on the Example. It also shows that substantially no erythrocyte hemolysis has occurred in the multilayer analytical elements of Example 1 and Example 2.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、第1表の試料液各20μLを実施例1の多層分
析要素にそれぞれ点着し、各分析要素を密閉しインクベ
ータ中で37℃に保持し、測光面(透明支持体)側から測
定される反射光学濃度値を波長640nmの可視光で測定し
た際の反射光学濃度の変化を示すグラフ(検量線)であ
る。は試料液の番号を示す。 第2図は、全血試料中のAST活性値と実施例1の多層分
析要素の発色の反射光学濃度の1分当りの変化量との関
係を示すグラフ(検量線)である。 第3図は、全血試料中のALT活性値と実施例2の多層分
析要素の発色の反射光学濃度の1分当りの変化量との関
係を示すグラフ(検量線)である。
FIG. 1 shows that 20 μL of each of the sample solutions shown in Table 1 was spotted on the multilayer analytical element of Example 1, each analytical element was sealed, and kept at 37 ° C. in an ink beta, and a photometric surface (transparent support) was used. 5 is a graph (calibration curve) showing a change in the reflection optical density when a reflection optical density value measured from the side is measured with visible light having a wavelength of 640 nm. Indicates the number of the sample solution. FIG. 2 is a graph (calibration curve) showing the relationship between the AST activity value in a whole blood sample and the change per minute in the reflection optical density of color development of the multilayer analytical element of Example 1. FIG. 3 is a graph (calibration curve) showing the relationship between the ALT activity value in a whole blood sample and the change per minute in the reflection optical density of color development of the multilayer analytical element of Example 2.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水不透過性光透過性支持体の上に、少なく
とも全血中の被検成分との反応の結果として検出可能な
光学濃度変化を与える呈色試薬層と全血から血球成分を
分離除去して前記試薬層に血漿を供給するための血球分
離層とが、この順に積層されている多層分析要素を用い
て比色測定法により被検成分を定量する方法において、 血球分離層の最上層に全血試料を点着し、 前記血球分離層により点着された全血から分離された
血球成分の有色色素の、前記支持体側から検出される反
射光学濃度値が実質的に一定になった後に、 前記試薬層における単位時間当りの反射光学濃度の変
化量を、前記血球成分の有色色素が示す反射光と重複す
る範囲の波長で前記支持体側から測定し、 得られた単位時間当りの反射光学濃度の変化量から全
血中の被検成分の活性値を比色測定法により求めること
を特徴とする全血中の被検成分を定量する方法。
1. A color-forming reagent layer, on a water-impermeable, light-permeable support, which provides at least a detectable optical density change as a result of a reaction with a test component in whole blood, and a blood cell component from whole blood. And a blood cell separation layer for supplying plasma to the reagent layer by separating and removing the reagent layer, a method for quantifying a test component by colorimetry using a multilayer analysis element stacked in this order, wherein the blood cell separation layer A whole blood sample is spotted on the uppermost layer of the blood cell, and the reflected optical density value of the colored dye of the blood cell component separated from the whole blood spotted by the blood cell separation layer, which is detected from the support side, is substantially constant. After that, the amount of change in the reflection optical density per unit time in the reagent layer was measured from the support side at a wavelength in a range overlapping with the reflected light indicated by the colored dye of the blood cell component, and the obtained unit time In whole blood from the amount of change in reflected optical density A method for quantifying a test component in whole blood, wherein the activity value of the test component is determined by colorimetry.
JP2010426A 1990-01-19 1990-01-19 Method for quantifying test components in whole blood Expired - Lifetime JP2618727B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010426A JP2618727B2 (en) 1990-01-19 1990-01-19 Method for quantifying test components in whole blood
US07/643,831 US5130258A (en) 1990-01-19 1991-01-18 Method of quantitatively analyzing analyte contained in whole blood sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010426A JP2618727B2 (en) 1990-01-19 1990-01-19 Method for quantifying test components in whole blood

Publications (2)

Publication Number Publication Date
JPH03215746A JPH03215746A (en) 1991-09-20
JP2618727B2 true JP2618727B2 (en) 1997-06-11

Family

ID=11749830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010426A Expired - Lifetime JP2618727B2 (en) 1990-01-19 1990-01-19 Method for quantifying test components in whole blood

Country Status (2)

Country Link
US (1) US5130258A (en)
JP (1) JP2618727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035875A1 (en) * 2004-09-30 2006-04-06 Fujifilm Corporation Process for producing multilayered analytical element

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5547874A (en) * 1986-10-31 1996-08-20 Fuji Photo Film Co., Ltd. Method for control or calibration in a chemical analytical determination
US5308767A (en) * 1986-10-31 1994-05-03 Fuji Photo Film Co., Ltd. Method for control or calibration in a chemical analytical determination
US5423989A (en) * 1988-05-19 1995-06-13 Chemtrack, Inc. Plasma forming device
DE69029556T2 (en) * 1989-10-18 1997-05-15 Fuji Photo Film Co Ltd Dry analytical element for the quantitative analysis of analytes contained in whole blood
DE4132743A1 (en) * 1991-10-02 1993-04-08 Boehringer Mannheim Gmbh TEST CARRIER FOR THE ANALYSIS OF LIQUIDS
US5462858A (en) * 1993-12-29 1995-10-31 Eastman Kodak Company Dry multilayer analytical elements for assaying transaminases
DE69636389T2 (en) 1995-05-09 2006-11-23 Beckman Coulter, Inc., Fullerton DEVICES AND METHOD FOR SEPARATING CELLULAR BLOOD COMPONENTS OF LIQUID BLOODS
US5851488A (en) * 1996-02-29 1998-12-22 Biocircuits Corporation Apparatus for automatic electro-optical chemical assay determination
US5879951A (en) 1997-01-29 1999-03-09 Smithkline Diagnostics, Inc. Opposable-element assay device employing unidirectional flow
US5939252A (en) 1997-05-09 1999-08-17 Lennon; Donald J. Detachable-element assay device
US6036659A (en) * 1998-10-09 2000-03-14 Flexsite Diagnostics, Inc. Collection device for biological samples and methods of use
US6511814B1 (en) 1999-03-26 2003-01-28 Idexx Laboratories, Inc. Method and device for detecting analytes in fluids
US6551842B1 (en) 1999-03-26 2003-04-22 Idexx Laboratories, Inc. Method and device for detecting analytes in fluids
US6602719B1 (en) 1999-03-26 2003-08-05 Idexx Laboratories, Inc. Method and device for detecting analytes in fluids
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US20080279725A1 (en) * 2004-09-30 2008-11-13 Fuji Photo Film Co., Ltd. Multilayer Analytical Element
EP1801568A1 (en) * 2005-12-21 2007-06-27 Micronas Holding GmbH Test strip and method for measuring analyte concentration in a biological fluid sample
JP4910180B2 (en) * 2008-07-31 2012-04-04 コクヨ株式会社 booklet
KR101728597B1 (en) 2012-04-19 2017-04-19 에프. 호프만-라 로슈 아게 Method and device for determining an analyte concentration in blood
KR20160081022A (en) * 2014-12-30 2016-07-08 삼성전자주식회사 Microfluidic device and method of detecting sample supplied to the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164356A (en) * 1979-06-08 1980-12-22 Fuji Photo Film Co Ltd Multi-layer analysis sheet for liquid sample analysis
US4424191A (en) * 1982-03-04 1984-01-03 Eastman Kodak Company Analyzer featuring loading and unloading means for a storage chamber, and common drive means
JPS62138756A (en) * 1985-12-12 1987-06-22 Fuji Photo Film Co Ltd Integral type multi-layered analyzing element
US4889797A (en) * 1986-05-28 1989-12-26 Fuji Photo Film Co., Ltd. Dry analytical element having a spread control area for assaying enzyme activity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035875A1 (en) * 2004-09-30 2006-04-06 Fujifilm Corporation Process for producing multilayered analytical element
JPWO2006035875A1 (en) * 2004-09-30 2008-05-15 富士フイルム株式会社 Multi-layer analytical element manufacturing method
JP4842828B2 (en) * 2004-09-30 2011-12-21 富士フイルム株式会社 Multi-layer analytical element manufacturing method

Also Published As

Publication number Publication date
US5130258A (en) 1992-07-14
JPH03215746A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
JP2618727B2 (en) Method for quantifying test components in whole blood
JP2864035B2 (en) Whole blood analysis element
US4042335A (en) Integral element for analysis of liquids
US5023052A (en) Element for analyzing body fluids
GB1582153A (en) Multilayer analytical element
US4990457A (en) Whole blood dry analysis element
EP1037048A2 (en) Quantitative analysis of glucose or cholesterol in whole blood
JPS5818628B2 (en) Ittsutai Kei Eki Taibun Sekiyouso
JPS61245057A (en) Integral type multi-layered analyzing element
JP2611890B2 (en) Measurement method using dry analytical element and dry analytical element
US5118472A (en) Analytical element for analysis of whole blood
JPH02208565A (en) Method and device for separating plasma from blood and analyzing element used for said method
JP3167508B2 (en) Inorganic phosphorus determination reagent and dry analytical element
JP2002369698A (en) Reagent for determining pyrophosphate
USH600H (en) Whole blood analytical element and method of analyzing whole blood using the same
JP2614124B2 (en) Integrated multilayer analytical element
JPH02218957A (en) Multilayer analytical element for analyzing whole blood sample
JP2565788B2 (en) Method for quantifying high-density lipoprotein cholesterol
JP2579222B2 (en) Dry analysis element for whole blood sample analysis
JPH01262470A (en) Dry process whole blood analysing element
JPH0526876A (en) Dry process analysis element for analyzing whole blood sample
JP3147565B2 (en) Whole blood analysis element and measurement method using the same
JP3147560B2 (en) Multi-item analysis method
JPS63247657A (en) Dry type analyzing element
JPH07191020A (en) Method for analyzing whole-blood sample using whole-blood analyzing element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term