JP2617820B2 - Illuminance calculation method - Google Patents

Illuminance calculation method

Info

Publication number
JP2617820B2
JP2617820B2 JP6944691A JP6944691A JP2617820B2 JP 2617820 B2 JP2617820 B2 JP 2617820B2 JP 6944691 A JP6944691 A JP 6944691A JP 6944691 A JP6944691 A JP 6944691A JP 2617820 B2 JP2617820 B2 JP 2617820B2
Authority
JP
Japan
Prior art keywords
light source
illuminance
polygonal
equation
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6944691A
Other languages
Japanese (ja)
Other versions
JPH04281580A (en
Inventor
敏光 田中
時市郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6944691A priority Critical patent/JP2617820B2/en
Publication of JPH04281580A publication Critical patent/JPH04281580A/en
Application granted granted Critical
Publication of JP2617820B2 publication Critical patent/JP2617820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、拡散反射特性と鏡面反
射特性を合わせ持つ物体が面光源で照明される条件の下
での電子計算機を用いた画像生成のための照度計算方式
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminance calculation method for generating an image using an electronic computer under the condition that an object having both diffuse reflection characteristics and specular reflection characteristics is illuminated by a surface light source. is there.

【0002】[0002]

【従来の技術】一般の物体の反射特性は拡散反射成分と
鏡面反射成分に分けて記述できる。拡散反射成分につい
ては、完全拡散光源で照らされた場合の反射強度を解析
的に計算する方法が公知であり、例えば中前栄八郎著、
(電子情報通信学会編)、ニューメディア技術シリー
ズ、コンピュータグラフィックス、第1版,昭和62年
1月30日発行、オーム社、第144頁〜第145頁に
記載の如く、完全拡散光源よりの光線を所定の数式を用
いて計算している。鏡面反射成分は、鏡のような完全鏡
面反射特性を有する物体の照度は、例えば公知のサンプ
リングにより面光源を点光源の集合で近似して照度計算
を行なっている。
2. Description of the Related Art The reflection characteristics of a general object can be described separately as a diffuse reflection component and a specular reflection component. For the diffuse reflection component, a method of analytically calculating the reflection intensity when illuminated by a perfect diffuse light source is known, for example, by Echiro Nakamae,
(Institute of Electronics, Information and Communication Engineers), New Media Technology Series, Computer Graphics, 1st Edition, published on January 30, 1987, Ohmsha, pages 144 to 145, as described on pages 144-145. Light rays are calculated using a predetermined mathematical formula. As for the specular reflection component, the illuminance of an object having perfect specular reflection characteristics such as a mirror is calculated by approximating a surface light source with a set of point light sources by, for example, known sampling.

【0003】[0003]

【本発明が解決しようとする課題】しかし、鏡面反射成
分は、完全鏡面反射特性を有する物体をのぞき、解析的
に求めることができないため、公知のサンプリングによ
り面光源を点光源の集合で近似して照度計算を行う手法
であるが、該手法ではサンプリングに起因するモアレパ
ターン即ちサンプリング周期と物体本来の模様との相乗
作用により発生する疑似的な模様発生の問題が生じ、ま
た正確な近似には多数のサンプリング点を必要とするた
め、計算時間が増大するという欠点がある。
However, since the specular reflection component cannot be determined analytically except for an object having perfect specular reflection characteristics, the surface light source is approximated by a set of point light sources by known sampling. In this method, there is a problem of a moire pattern due to sampling, that is, a problem of pseudo pattern generation caused by a synergistic effect of a sampling period and an original pattern of an object. Since a large number of sampling points are required, there is a disadvantage that the calculation time increases.

【0004】本発明は前記従来の技術の欠点を解消し、
面光源をサンプリングして点光源の集合として近似する
ことなく、面光源による照度の鏡面反射成分を解析的に
求める照度計算方式を提供することを目的とする。
[0004] The present invention overcomes the disadvantages of the prior art,
It is an object of the present invention to provide an illuminance calculation method for analytically calculating a specular reflection component of illuminance by a surface light source without sampling the surface light source and approximating it as a set of point light sources.

【0005】[0005]

【課題を解決するための手段】光源は多角形の完全拡散
面光源とし、鏡面反射率が視線の正反射方向と光源方向
とのなす角度で定まる反射モデルを用いる。注視点を原
点、視線の正反射方向をZ軸とする極座標変換を行な
う。単位球(原点を中心とする半径1の球)面上に光源
を投影し、これを積分領域とする。z=1の点を用い積
分領域を球面上の三角形に分割した後積分し、照度を計
算するものとし、請求項1において、照度計算方式を、
完全拡散面を有する多角形光源で照明された三次元物体
の表面上の照度を計算する照度計算方式であって、前記
多角形光源を前記三次元物体の表面に所定の距離をおい
て対向して配設すると共に電子計算機への入力手段を形
成し、(1)前記多角形光源の頂点座標と前記物体の表
面の明るさと視点の位置と視線方向の視線ベクトルEの
正反射方向の正反射方向ベクトルErと多角形光源方向
の光源ベクトルLpのなす角で定義される鏡面反射特性
とよりなるパラメータを前記電子計算機に入力し、
(2)注視点Pを原点とし、正反射方向をZ軸として極
座標変換を行い、(3)多角形光源を原点の注視点Pを
中心とする単位球面上に投影し、(4)該投影された領
域を球面上の三角形に分割し、(5)該分割された三角
形領域のなかにおいて、視線方向に反射される光線の強
度を積分して該物体の表面上の照度を求めるよう構成し
たのである。
The light source is a polygonal perfect diffusion surface light source, and a reflection model whose specular reflectance is determined by the angle between the regular reflection direction of the line of sight and the light source direction is used. Polar coordinate transformation is performed with the gazing point as the origin and the specular reflection direction of the line of sight as the Z axis. A light source is projected onto a unit sphere (a sphere having a radius of 1 with the origin at the center), and this is defined as an integration area. The illuminance is calculated by dividing an integration region into triangles on a spherical surface using a point of z = 1 and then integrating to divide the illuminance.
An illuminance calculation method for calculating the illuminance on the surface of a three-dimensional object illuminated by a polygonal light source having a perfect diffusion surface, wherein the polygonal light source faces the surface of the three-dimensional object at a predetermined distance. And (1) the regular reflection of the vertex coordinates of the polygonal light source, the brightness of the surface of the object, the position of the viewpoint, and the regular reflection direction of the line-of-sight vector E in the line-of-sight direction. A parameter consisting of a direction vector Er and a specular reflection characteristic defined by an angle formed by the light source vector Lp in the polygonal light source direction is input to the computer;
(2) Polar coordinate conversion is performed with the gazing point P as the origin and the specular reflection direction as the Z axis. (3) The polygonal light source is projected on a unit spherical surface centered on the gazing point P at the origin. The divided area is divided into triangles on a spherical surface. (5) In the divided triangle areas, the intensity of light rays reflected in the direction of the line of sight is integrated to obtain the illuminance on the surface of the object. It is.

【0006】[0006]

【作用】鏡面反射率が視線の正反射方向と光源方向との
なす角度で定まる関数を反射モデルとして用い、該関数
は回転対称であるので、対称軸をZ軸に選ぶと、極座標
系での被積分関数がZ軸からの角度のみの関数となり、
簡略化され、これにより、鏡面反射強度を解析的に求め
ることができるので、サンプリングにともなう問題が解
決されるのである。
A function in which the specular reflectance is determined by the angle between the specular reflection direction of the line of sight and the direction of the light source is used as a reflection model, and this function is rotationally symmetric. The integrand becomes a function only of the angle from the Z axis,
The simplification of the method enables the specular reflection intensity to be obtained analytically, thereby solving the problem associated with sampling.

【0007】[0007]

【実施例】本発明の一実施例を図面と共に説明する。An embodiment of the present invention will be described with reference to the drawings.

【0008】図1は鏡面反射の説明図である。図1にお
いて、10は多角形光源(完全拡散光源S)、11は光
源の面方線方向、12は多角形光源と注視点Pを結ぶ方
向、13は多角形光源と注視点Pとの距離、14は放射
される光線の単位面積あたりの強度を与える定数
(IO )、15は光源の面方線方向と多角形光源・注視
点Pを結ぶ方向とのなす角、16は光源の頂点、20は
三次元物の表面、21は正反射方向、22は多角形光源
方向、23は物体の表面の面方線方向、24は視線方
向、25は注視点P、26は視点、27は正反射方向と
多角形光源方向とのなす角(θ)である。
FIG. 1 is an explanatory diagram of specular reflection. In FIG. 1, reference numeral 10 denotes a polygonal light source (completely diffused light source S), 11 denotes the direction of the surface of the light source, 12 denotes a direction connecting the polygonal light source and the gazing point P, and 13 denotes the distance between the polygonal light source and the gazing point P. , 14 are constants (I O ) that give the intensity per unit area of the emitted light, 15 is the angle between the direction of the surface of the light source and the direction connecting the polygonal light source and the gazing point P, and 16 is the vertex of the light source , 20 is the surface of the three-dimensional object, 21 is the specular reflection direction, 22 is the polygonal light source direction, 23 is the surface direction of the surface of the object, 24 is the line of sight, 25 is the gazing point P, 26 is the viewpoint, 27 is the viewpoint The angle (θ) between the regular reflection direction and the polygonal light source direction.

【0009】図1を用いて本発明の原理を説明する。The principle of the present invention will be described with reference to FIG.

【0010】完全拡散光源Sの放射特性は式(1)で記
述される。ここでIo は反射される光線の単位面積あた
りの強度を与える定数、φは光源の面法線と光源と注視
点Pを結ぶベクトルのなす角度である。
The radiation characteristic of the perfect diffuse light source S is described by equation (1). Here, Io is a constant that gives the intensity of the reflected light beam per unit area, and φ is the angle between the surface normal of the light source and the vector connecting the light source and the gazing point P.

【0011】[0011]

【数1】 (Equation 1)

【0012】光源の頂点を表からみて時計回りにVi
(i=1,m)で定義する。鏡面反射率が視点方向Eの
正反射方向Erと光源方向Lpのなす角度θを用いてG
(θ)で表せる場合、Pで反射して視点に到達する光線
の強度Isは式(2)で与えられる。
When the vertices of the light source are viewed from the table, Vi is clockwise.
(I = 1, m). The specular reflectance is calculated using the angle θ between the regular reflection direction Er in the viewpoint direction E and the light source direction Lp.
When represented by (θ), the intensity Is of the light ray that is reflected by P and reaches the viewpoint is given by Equation (2).

【0013】[0013]

【数2】 (Equation 2)

【0014】このままでは積分が困難なため、Pが原
点、ErがZ軸となるように極座標変換を行う。つぎ
に、図2に示すように、ViをPを中心とする半径1の
球(これを単位球と呼ぶ)上に投影してWiを求める。
Wiで囲まれた領域をΩと名付ける。極座標変換により
dSは式(3)で記述されるので、式(2)は式(4)
で置き換えられる。
Since integration is difficult in this state, polar coordinate conversion is performed so that P is the origin and Er is the Z axis. Next, as shown in FIG. 2, Vi is projected on a sphere having a radius of 1 around P (this is called a unit sphere) to obtain Wi.
The area surrounded by Wi is named Ω. Since dS is described by equation (3) by the polar coordinate transformation, equation (2) is replaced by equation (4).
Is replaced by

【0015】[0015]

【数3】 (Equation 3)

【0016】[0016]

【数4】 (Equation 4)

【0017】積分を簡略化するため、Z軸と単位球との
交点(z=1の点)Wzを用いてΩを単位球面上の三角
形WzWiWi+1に分解する。WzWiWi+1をΔ
iとおく。関数Fiを点Pから見てWz,Wi,Wi+
1が時計回りの時1、反時計回りの時−1となる符号関
数と定義すると、Ωは式(5)で記述できる。
In order to simplify the integration, Ω is decomposed into a triangle WzWiWi + 1 on the unit sphere by using the intersection (point z = 1) Wz between the Z axis and the unit sphere. WzWiWi + 1 to Δ
i. Viewing the function Fi from the point P, Wz, Wi, Wi +
If 1 is defined as a sign function that is 1 when clockwise and -1 when counterclockwise, Ω can be described by equation (5).

【0018】[0018]

【数5】 (Equation 5)

【0019】したがって、Therefore,

【0020】[0020]

【数6】 (Equation 6)

【0021】ただし、However,

【0022】[0022]

【数7】 (Equation 7)

【0023】式(7)の被積分関数はθのみの関数であ
るので、式(7)は、初めにθで積分し、次にφで積分
することで求められる。φに関する直接積分ができない
ときはフーリエ近似,チェビシェフ近似などの公知の手
法を用いて多項式で近似する。
Since the integrand in equation (7) is a function of only θ, equation (7) can be obtained by first integrating with θ and then integrating with φ. When direct integration with respect to φ cannot be performed, approximation is performed by a polynomial using a known method such as Fourier approximation or Chebyshev approximation.

【0024】次に実施例について詳細に説明する。Next, embodiments will be described in detail.

【0025】正反射方向21のErとの角度の関数とな
る鏡面反射の一例として、正規化したPhongのモデ
ルを用いる。
As an example of specular reflection as a function of the angle of the regular reflection direction 21 with Er, a normalized Phong model is used.

【0026】式(7)のG(θ)は式(8)で与えられ
る。ここでRsは0から1までの定数である。
G (θ) in equation (7) is given by equation (8). Here, Rs is a constant from 0 to 1.

【0027】[0027]

【数8】 (Equation 8)

【0028】このばあい、式(7)は式(9)となる。In this case, equation (7) becomes equation (9).

【0029】[0029]

【数9】 (Equation 9)

【0030】式(9)をさらに簡略化するため、Z軸回
りに座標系を回転する。図3に示すように、WiとWi
+1を通る大円(原点を中心とする単位球上の円)をΓ
w、WiとWzを通る大円をΓA、Wi+1とWzを通
る大円をΓB、と記す。ΓΑとΓΒがxy面と交わる点
をTΑ、TΒとし、TΑとTΒを通る大円をΓxyと記
す。ΓWとΓxyの交点をUyと定義する。点Pを通
り、ベクトルPWzとPUyと直交する直線と単位球と
の交点をUxで定義する。P,Wz,Uxで定義される
平面ΣとΓWとの交点をRとおく。PWzとPRの角度
なすをα、PUxとPTΑ,PTΒのなす角度をそれぞ
れβΑ,βΒで定義する。式9はθで代数積分が可能で
あり、式(10)のように変形される。式(10)は多
項式近似で積分できる。
To further simplify equation (9), the coordinate system is rotated about the Z axis. As shown in FIG. 3, Wi and Wi
The great circle passing through +1 (the circle on the unit sphere centered on the origin) is Γ
A great circle passing through w, Wi and Wz is denoted by ΓA, and a great circle passing through Wi + 1 and Wz is denoted by ΓB. The points where ΓΑ and 交 intersect the xy plane are denoted by TΑ and TΒ, and the great circle passing through TΑ and TΒ is denoted by Γxy. The intersection of ΓW and Γxy is defined as Uy. An intersection of a unit sphere with a straight line passing through the point P and orthogonal to the vectors PWz and PUy is defined by Ux. Let R be the intersection of the planes Σ and ΓW defined by P, Wz, and Ux. The angle between PWz and PR is defined as α, and the angle between PUx and PTΑ, PTΒ is defined as βΑ, βΒ, respectively. Equation 9 allows algebraic integration with θ and is modified as in equation (10). Equation (10) can be integrated by polynomial approximation.

【0031】[0031]

【数10】 (Equation 10)

【0032】本発明の一実施例装置のブロック図を図4
に示す。極座標変換部1で視線方向の正反射方向をZ
軸,注視点を原点とする極座標変換を行う。球面投影部
2で多角形面光源を原点を中心とし半径1の単位円上に
投影する。積分領域分割部3で投影された光源の領域を
z=1の点を用いて球面上の三角形に分割する。積分実
行部4で各々の分割された領域の積分を行い合計を求め
る。パラメータ入力5は視点の位置,注視点の位置,光
源の頂点座標,注視点の反射特性の入力パラメータで、
鏡面反射の強度6から出力される。
FIG. 4 is a block diagram showing an apparatus according to an embodiment of the present invention.
Shown in The specular reflection direction in the line-of-sight direction is Z
Performs polar coordinate transformation with axes and gazing points as origins. The spherical projection unit 2 projects the polygonal surface light source onto a unit circle having a radius of 1 around the origin. The area of the light source projected by the integration area dividing unit 3 is divided into triangles on a spherical surface using points of z = 1. The integration unit 4 integrates each divided area to obtain a total. Parameter input 5 is the input parameters of the position of the viewpoint, the position of the gazing point, the vertex coordinates of the light source, and the reflection characteristics of the gazing point.
Output from intensity 6 of specular reflection.

【0033】本実施例の動作を図5のフローで示す。以
下の説明で用いられる記号は図1,2,3で与えられ
る。
The operation of this embodiment is shown in the flow chart of FIG. The symbols used in the following description are given in FIGS.

【0034】(開始) (極座標変換)1−1 注視点Pから視点に向かう単位
ベクトルEを求める(図1) 1−2 Eの鏡面反射Erを求める 1−3 Pを原点,ErをZ軸として光源Sを極座標変
換する (球面投影)2−1 面光源の頂点を表からみて時計回
りにV1,V2,...Vmと定義する。mは頂点の数
を表す 2−2 各Viについて、単位円(Pを中心とする半径
1の円)とPからViに向かう半直線との交点を求め、
Wiと定義する (積分域の分割)3−1 単位円とZ軸との交点(Z軸
上でz=1の点)をWzと記す 3−2 Wm+1=Wiと定義する 3−3 1からmまでのiの値について、Wz,Wi,
Wi+1を頂点とする球面上の三角形Δiを求める 3−4 各Δiで、係数Fiを求める。Fiは Fi= 1:Wz,Wi,Wi+1がPから見て時計回
り −1:その他 で定義される。
(Start) (Polar coordinate transformation) 1-1 Obtain unit vector E from gazing point P toward the viewpoint (FIG. 1) 1-2 Calculate specular reflection Er of E 1-3. Origin is P, Er is Z axis (Spherical projection) 2-1 The vertices of the surface light source are viewed clockwise as V1, V2,. . . Vm. m represents the number of vertices. 2-2 For each Vi, find the intersection of a unit circle (a circle with a radius of 1 around P) and a half-line from P to Vi,
Define as Wi (division of integration region) 3-1 Define the intersection of the unit circle and the Z axis (the point at z = 1 on the Z axis) as Wz 3-2 Define as Wm + 1 = Wi 3-3 From 3-3 For values of i up to m, Wz, Wi,
Find a triangle Δi on a spherical surface having Wi + 1 as a vertex. 3-4 Find a coefficient Fi for each Δi. Fi is defined as: Fi = 1: Wz, Wi, Wi + 1 are clockwise as viewed from P −1: Other.

【0035】(積分の実行)4−1 Is=0;鏡面反
射強度の初期化,i=1;ループ変数の初期化 4−2 Δiごとに図3のα,βA,βBを求める 4−3式10を積分する。求められた値をIsiとする 4−4 Is=Is+Fi×Isi,i=i+1 4−5 iがm以下ならば4−2に戻る (結果の出力)5−1 鏡面反射強度Isを出力 (終了)
(Execution of integration) 4-1 Is = 0; initialization of specular reflection intensity, i = 1; initialization of loop variable 4-2 Finding α, βA, βB of FIG. 3 for each Δi 4-3 Equation 10 is integrated. Let the obtained value be Isi. 4-4 Is = Is + Fi × Isi, i = i + 1 4-5 Return to 4-2 if i is m or less (output of result) 5-1 Output specular reflection intensity Is (end) )

【0036】[0036]

【発明の効果】請求項1の本発明は、面光源で照射され
た一般的な鏡面反射特性を持つ物体の照度をサンプリン
グすることなく求めることができる。日常用いる光源は
多くの場合大きさを持つ面光源である。また、物体は一
般に拡散反射特性と鏡面反射特性を合わせ持つ。本発明
と従来の完全拡散反射物体の輝度計算手法(文献1)と
組み合わせることで、一般的な照明・物体条件での画像
生成が可能となった。本発明は写実的な画像を生成する
上で有力な手段であるという効果がある。
According to the first aspect of the present invention, the illuminance of an object having a general specular reflection characteristic irradiated by a surface light source can be obtained without sampling. The light source used daily is often a large surface light source. An object generally has both diffuse reflection characteristics and specular reflection characteristics. By combining the present invention with the conventional method of calculating the luminance of a perfect diffuse reflection object (Reference 1), it is possible to generate an image under general lighting and object conditions. The present invention has an effect that it is an effective means for generating a realistic image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鏡面反射の説明図FIG. 1 is an explanatory diagram of specular reflection.

【図2】単位球面への投影説明図FIG. 2 is an explanatory view of projection onto a unit spherical surface.

【図3】三角領域の積分説明図FIG. 3 is an explanatory diagram of integration in a triangular area.

【図4】本発明の一実施例装置のブロック図FIG. 4 is a block diagram of an apparatus according to an embodiment of the present invention.

【図5】本発明の一実施例の動作のフローチャートFIG. 5 is a flowchart of the operation of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 極座標変換部 2 球面投影部 3 積分領域分割部 4 積分実行部 5 パラメータ入力 6 鏡面反射の照度 10 多角形光源(完全拡散光源S) 11 光源の面方線方向 12 多角形光源と注視点Pを結ぶ方向 13 多角形光源10と注視点Pとの距離 14 放射される光線の単位面積あたりの強度を与え
る定数(I0) 15 光源の面方線方向11と多角形光源,注視点P
を結ぶ方向12とのなす角(φ) 16 光源の頂点(V1 〜V4 ) 20 三次元物体の表面 21 正反射方向 22 多角形光源方向 23 物体の表面の面方線方向 24 視線方向 25 注視点P 26 視点 27 正反射方向21と多角形光源方向22とのなす
角(θ)
DESCRIPTION OF SYMBOLS 1 Polar coordinate transformation part 2 Spherical projection part 3 Integration area division part 4 Integration execution part 5 Parameter input 6 Illuminance of specular reflection 10 Polygonal light source (completely diffused light source S) 11 Direction of the light source in the direction of the plane 12 Polygonal light source and gazing point P 13 The distance between the polygonal light source 10 and the gazing point P 14 A constant (I 0 ) that gives the intensity per unit area of the radiated light ray 15 The direction 11 to the surface normal to the light source, the polygonal light source, and the gazing point P
Angle (φ) with the direction 12 connecting the light source 16 vertices (V 1 to V 4 ) of the light source 20 the surface of the three-dimensional object 21 the regular reflection direction 22 the polygonal light source direction 23 the surface normal direction of the object surface 24 the line-of-sight direction 25 Gaze point P 26 View point 27 Angle (θ) between the regular reflection direction 21 and the polygonal light source direction 22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 完全拡散面を有する多角形光源(10)
で照明された三次元物体の表面(20)上の照度を計算
する照度計算方式であって、前記多角形光源(10)を
前記三次元物体の表面(20)に所定の距離(13)を
おいて対向して配設すると共に電子計算機への入力手段
を形成し、(1)前記多角形光源(10)の頂点座標と
前記物体の表面(20)の明るさと視点(26)の位置
と注視点P(25)の位置と視線方向(24)の視線ベ
クトルEの正反射方向(21)の正反射方向ベクトルE
rと多角形光源方向(22)の光源ベクトルLpのなす
角(27)で定義される鏡面反射特性とよりなるパラメ
ータを前記電子計算機に入力し、(2)注視点P(2
5)を原点とし、正反射方向(21)をZ軸として極座
標変換を行い、(3)多角形光源(10)を原点の注視
点P(25)を中心とする単位球面上に投影し、(4)
該投影された領域を球面上の三角形に分割し、(5)該
分割された三角形領域のなかにおいて、視線方向(2
4)に反射される光源の強度を積分して該物体の表面上
の照度を求めることを特徴とする照度計算方式
1. A polygonal light source having a perfect diffusion surface.
An illuminance calculation method for calculating the illuminance on the surface (20) of the three-dimensional object illuminated by (3), wherein the polygonal light source (10) is arranged at a predetermined distance (13) from the surface (20) of the three-dimensional object. (1) the vertex coordinates of the polygonal light source (10), the brightness of the surface (20) of the object, and the position of the viewpoint (26); The position of the fixation point P (25) and the regular reflection direction vector E in the regular reflection direction (21) of the line-of-sight vector E in the line-of-sight direction (24)
A parameter consisting of r and a specular reflection characteristic defined by an angle (27) formed by the light source vector Lp in the polygonal light source direction (22) is input to the computer, and (2) the gazing point P (2
5) With the origin as the origin, polar coordinate conversion is performed with the regular reflection direction (21) as the Z axis, and (3) the polygonal light source (10) is projected on a unit spherical surface centered on the point of interest P (25) at the origin. (4)
The projected area is divided into triangles on a spherical surface, and (5) the line of sight (2
An illuminance calculation method for calculating the illuminance on the surface of the object by integrating the intensity of the light source reflected in 4)
JP6944691A 1991-03-11 1991-03-11 Illuminance calculation method Expired - Fee Related JP2617820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6944691A JP2617820B2 (en) 1991-03-11 1991-03-11 Illuminance calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6944691A JP2617820B2 (en) 1991-03-11 1991-03-11 Illuminance calculation method

Publications (2)

Publication Number Publication Date
JPH04281580A JPH04281580A (en) 1992-10-07
JP2617820B2 true JP2617820B2 (en) 1997-06-04

Family

ID=13402873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6944691A Expired - Fee Related JP2617820B2 (en) 1991-03-11 1991-03-11 Illuminance calculation method

Country Status (1)

Country Link
JP (1) JP2617820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666865A4 (en) * 2003-08-18 2007-09-26 Nikon Corp Illuminant distribution evaluating method, optical member manufacturing method, illumination optical device, exposure apparatus, and exposure method

Also Published As

Publication number Publication date
JPH04281580A (en) 1992-10-07

Similar Documents

Publication Publication Date Title
US8174527B2 (en) Environment mapping
US7212207B2 (en) Method and apparatus for real-time global illumination incorporating stream processor based hybrid ray tracing
Amanatides Ray tracing with cones
US9251622B2 (en) System and method for calculating multi-resolution dynamic ambient occlusion
Blinn Models of light reflection for computer synthesized pictures
Voorhies et al. Reflection vector shading hardware
EP0447195B1 (en) Pixel interpolation in perspective space
CN107016719B (en) A kind of Subsurface Scattering effect real-time drawing method of screen space
US20070008310A1 (en) Method for generating a three-dimensional display
US6359618B1 (en) Using irradiance textures for photorealistic image generation
CN116758208A (en) Global illumination rendering method and device, storage medium and electronic equipment
JP3012828B2 (en) Drawing method, apparatus, and recording medium
JP2617820B2 (en) Illuminance calculation method
JP2952532B2 (en) Illuminance calculation method
Yuan X. Yuan
AU2017228700A1 (en) System and method of rendering a surface
Brickmann Shaded surfaces in molecular raster graphics
Gwilliam et al. Atoms with shadows—An area-based algorithm for cast shadows on space-filling molecular models
JP4219090B2 (en) Method, system, and computer program product for providing lighting in computer graphics shading and animation
Luksch et al. Real-time Approximation of Photometric Polygonal Lights.
Ward The RADIANCE 3.0 Synthetic Imaging System
Nishita et al. A shading model of parallel cylindrical light sources
JP2661921B2 (en) Object surface processing method and processing device for two-dimensional representation of three-dimensional object
Latham et al. Dictionary of Computer Graphics Technology and Applications
JPH0475180A (en) Method and device for calculating interreflected light

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees