JP2616934B2 - Manufacturing method of bearing race - Google Patents

Manufacturing method of bearing race

Info

Publication number
JP2616934B2
JP2616934B2 JP62242011A JP24201187A JP2616934B2 JP 2616934 B2 JP2616934 B2 JP 2616934B2 JP 62242011 A JP62242011 A JP 62242011A JP 24201187 A JP24201187 A JP 24201187A JP 2616934 B2 JP2616934 B2 JP 2616934B2
Authority
JP
Japan
Prior art keywords
hardness
tempering
steel
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62242011A
Other languages
Japanese (ja)
Other versions
JPS6483625A (en
Inventor
喜久男 前田
俊哉 三宅
全之 対馬
Original Assignee
エヌティエヌ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌティエヌ株式会社 filed Critical エヌティエヌ株式会社
Priority to JP62242011A priority Critical patent/JP2616934B2/en
Publication of JPS6483625A publication Critical patent/JPS6483625A/en
Application granted granted Critical
Publication of JP2616934B2 publication Critical patent/JP2616934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は軸受軌道輪の製造方法に関するものであ
る。
The present invention relates to a method for manufacturing a bearing race.

〔従来の技術〕 転がり軸受は大きい荷重を支えながら精度良く回転す
ることを要求される精密機械部品であり、きわめて高度
の寸法精度が必要である。機械の小型化、高性能化、高
能率化などに伴って、転がり軸受の使用条件も多様化
し、それぞれの方向にますます苛酷になっていくが、そ
の一つに使用条件の高温化がある。すなわち、高温下の
使用においても寸法変化を起こさず、しかも寿命も低下
せず、基本的に寿命の長い軸受が強く要望されるように
なって来た。
[Prior Art] Rolling bearings are precision machine parts that are required to rotate with high accuracy while supporting a large load, and require extremely high dimensional accuracy. With the downsizing, higher performance, and higher efficiency of machines, the use conditions of rolling bearings have also diversified, and the conditions have become increasingly severe in each direction, one of which is the high operating conditions. . That is, there has been a strong demand for a bearing that basically has a long life without causing a dimensional change even when used at a high temperature and without shortening the life.

通常、転がり軸受を高温で使用するためには、高温に
おける寸法変化を抑えることが大切であり、この寸法変
化は焼入れの過程でもたらされる不安定な残留オーステ
ナイトが分解して安定なマルテンサイトになるために起
こるものであるから、サブゼロ処理を施したり、高温
(使用温度より60〜100℃程度さらに高い温度)で焼戻
したりして残留オーステナイトを減少させる方法が採ら
れている。現在、軸受の使用条件に応じて表に示すよう
な焼戻し区分が設けられていて、たとえば200〜250℃の
使用に対しては350℃までの焼戻しが必要であって、軸
受の硬度はHRC53〜57に落ち、そのために転動疲労寿命
は1/10以下に低下する。
Normally, in order to use rolling bearings at high temperatures, it is important to suppress dimensional changes at high temperatures, and this dimensional change decomposes unstable residual austenite caused during the quenching process into stable martensite Therefore, a method of reducing the retained austenite by performing sub-zero treatment or tempering at a high temperature (approximately 60 to 100 ° C. higher than the use temperature) has been adopted. Currently, tempering sections as shown in the table are provided according to the operating conditions of the bearing.For example, tempering up to 350 ° C is required for use at 200 to 250 ° C, and the hardness of the bearing is H R It falls to C53-57, so the rolling fatigue life is reduced to less than 1/10.

一方、航空機ジェットエンジン用軸受などのように、
300℃程度までの高温に使用される軸受材としては、高
温焼戻しによる硬度低下のない材料が使用されるが、こ
のような耐熱軸受用材としては、現在、T1、M50、SKH9
などの高速度鋼があり、これら材料は第1図に示すよう
に、300〜400℃の焼戻しでは硬度はHRC60以下に低下す
るが、500〜550℃で再び硬化する二次硬化現象があり、
500〜550℃で焼戻しされるため400℃程度までは寿命低
下がなく、また、寸法変化もなく使用可能と考えられ
る。しかし、これらの材料はM0、V、Wなどの元素を多
量に含むため、高価(たとえば軸受鋼の約10倍)であ
り、鍛造加工性が悪く、また焼入れ温度も1100℃程度と
なるため、一般軸受材に比較すると一層高価なものとな
る。
On the other hand, like bearings for aircraft jet engines,
Materials that do not decrease in hardness due to high-temperature tempering are used as bearing materials used at high temperatures up to about 300 ° C. Currently, such materials for heat-resistant bearings are T1, M50, and SKH9.
There is high speed steel, such as, these materials, as shown in FIG. 1, although the hardness at tempering 300 to 400 ° C. falls below H R C60, the secondary hardening phenomena cured again at 500-550 ° C. Yes,
Since it is tempered at 500 to 550 ° C, it is considered that there is no reduction in life up to about 400 ° C and that it can be used without dimensional change. However, since these materials contain a large amount of elements such as M 0 , V, and W, they are expensive (for example, about 10 times as large as bearing steel), have poor forgeability, and have a quenching temperature of about 1100 ° C. However, it is more expensive than general bearing materials.

この発明の出願人は特願昭61−63518号において、Si
含有軸受鋼は、標準軸軸受鋼(たとえばSUJ2)の場合と
は異なり、約260℃以下の焼戻しまでは硬度が低下する
につれて寿命が上昇することから、室温から200℃まで
の使用温度で寿命低下を起こさない長寿命軸受を製造す
ることが出来ることを述べた。しかし、350℃以上の焼
戻しを施すと硬さはHRC60以下になり、硬度低下するに
つれて寿命も短くなるので、長い寿命を維持するには35
0℃以上の焼戻しによってもHRC60以上の高硬度を保持す
ることが必要である。従来硬度を高めるための表面処理
方法として窒化処理があるが、その処理方法は通常500
〜600℃の温度範囲で行なわれるので、Si含有軸受鋼に
対し焼入れ後にこのような窒化処理を試みたが、HRC60
以上の硬さを得ることは出来なかった。
The applicant of the present invention disclosed in Japanese Patent Application No.
Unlike standard shaft bearing steel (for example, SUJ2), the life of the bearing steel increases with decreasing hardness until tempering to about 260 ° C or less. It was stated that a long-life bearing which does not cause a problem can be manufactured. However, when tempering at 350 ° C or higher, the hardness becomes H R C60 or less, and the life decreases as the hardness decreases.
It is necessary to also hold the H R C60 or a high hardness by 0 ℃ more tempered. Conventionally, there is a nitriding treatment as a surface treatment method to increase hardness, but the treatment method is usually 500
Since carried out in a temperature range of to 600 ° C., tried such a nitriding treatment after quenching to Si-containing bearing steel, H R C60
The above hardness could not be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように、従来の技術においては、200〜300℃程度
の高い使用温度下で長寿命であり、しかも安価である軸
受軌道輪が得られないという問題点があった。
As described above, the conventional technique has a problem that it is not possible to obtain an inexpensive bearing raceway that has a long life at a high operating temperature of about 200 to 300 ° C.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の問題点を解決するために、この発明は重量比に
して炭素0.95〜1.10%、けい素もしくはアルミニウム1
〜2%、マンガン1.15%以下、クロム0.90〜1.60%、残
り鉄および不純物からなり、酸素含有量を13ppm以下と
した鋼を素材とし、その素材によって形成された製品の
焼入れ加熱時の雰囲気にアンモニアガスを添加して素材
表層に窒素を侵入させ、焼入れ後350〜400℃の高温で焼
戻しして、残留オーステナイト5%以下、硬度HRC60以
上の軸受軌道輪とする手段を採用したものである。以下
その詳細を述べる。
In order to solve the above-mentioned problems, the present invention relates to a method wherein 0.95 to 1.10% by weight of carbon and 1% by weight of silicon or aluminum are used.
~ 2%, manganese 1.15% or less, chromium 0.90 ~ 1.60%, remaining iron and impurities, steel with oxygen content of 13ppm or less, the product made of the material is quenched and heated to the atmosphere gas nitrogen is entering the material surface by the addition of, and tempering at a high temperature of quenching after 350 to 400 ° C., the residual austenite less than 5% is obtained by employing a means to the hardness H R C60 or more bearing ring . The details are described below.

まず、この発明における素材の組成は、製品がが厚肉
の場合に、焼入れ性を向上させるためにモリブデン0.25
重量%、好ましくは0.10〜0.25重量%を添加したもので
あってもよい。
First, the composition of the material in the present invention, when the product is thick, molybdenum 0.25 to improve hardenability
%, Preferably 0.10 to 0.25% by weight.

また、酸素含有量を13ppm以下としたのは、つぎの理
由による。
Further, the oxygen content was set to 13 ppm or less for the following reason.

一般に、鋼に含まれる非金属介在物の測定法には、JI
S法もしくはASTM法が使用されるが、これら既存の測定
方法は、清浄度の高い最近の鋼に対して意味ある測定法
ということはできない。なぜなら、これらの測定法は、
鋼中の一断面を測定するものであり、鋼中の最大介在物
を測定する確率がきわめて少ないという不都合がある。
Generally, the method of measuring nonmetallic inclusions in steel includes JI
The S method or the ASTM method is used, but these existing measurement methods cannot be meaningful measurement methods for recent clean steel. Because these measurements are
It measures one cross section in steel and has the disadvantage that the probability of measuring the largest inclusion in steel is extremely low.

そこで、第2図に示す測定機を用いて非金属介在物の
試験を行なうことにした。この測定機は、60φ×40φ×
15から成るリンク状試片1を一対の回転体2、3で挾ん
で試片1の中心方向に圧力を加え、一対の回転体2、3
のうち、一方の回転体2を回転して試片1の回転割れ疲
労試験を行なうのであり、試片1の外径を予め高周波加
熱により高温で焼戻して外径部に引張り残留応力を生成
しておく。この測定機においては、試片1は外径から疲
労破断し、測定機が停止するまでの短時間に破面がこす
れ合うことがないため、試片1の全断面のうちで最大の
介在物を測定することができる。
Therefore, a test for non-metallic inclusions was conducted using the measuring device shown in FIG. This measuring machine is 60φ × 40φ ×
15 is sandwiched between a pair of rotating bodies 2 and 3, and pressure is applied in the direction of the center of the specimen 1 to apply a pair of rotating bodies 2 and 3.
Of these, one of the rotating bodies 2 is rotated to perform a rotational crack fatigue test of the specimen 1, and the outer diameter of the specimen 1 is tempered in advance by high frequency heating at a high temperature to generate a tensile residual stress in the outer diameter portion. Keep it. In this measuring device, the specimen 1 is fatigue-ruptured from the outer diameter, and the fracture surface does not rub in a short time until the measuring device stops. Can be measured.

上記の測定機を用い上記JISで規格されたSUJ2の軸受
鋼でリング試片を形成し、酸素含有量を変えた場合の疲
労試験を行なった。その結果を第3図に示す。
Using the above-mentioned measuring machine, a ring specimen was formed from SUJ2 bearing steel specified by the above JIS, and a fatigue test was performed when the oxygen content was changed. FIG. 3 shows the results.

この第3図から明らかなように、酸素含有量と破面上
に現われる介在物の大きさは相関の関係にあり、酸素含
有量が13ppm以下になれば、破面上には大きな非金属介
在物が殆んど観察されなくなる。すなわち、酸素含有量
が13ppm以下になれば、残留オーストナイトの転動寿命
に及ぼす効果も消滅することが考えられる。
As is clear from FIG. 3, there is a correlation between the oxygen content and the size of the inclusions appearing on the fracture surface, and when the oxygen content falls below 13 ppm, large non-metallic inclusions appear on the fracture surface. Almost no objects are observed. That is, when the oxygen content becomes 13 ppm or less, the effect of the retained austenite on the rolling life is considered to disappear.

また、本願発明において、SiまたはAlを1〜2重量%
としたのは、1重量%以下のSiの添加では高温焼もどし
時の硬度が小さくなり、2重量%以上では、靱性の点で
好ましくなく、鍛造や旋削、研削の加工性に問題が生じ
る。Alの添加量もSiの場合と同様のことが言える。
In the present invention, the content of Si or Al is 1 to 2% by weight.
The reason for this is that if 1% by weight or less of Si is added, the hardness during high-temperature tempering becomes small, and if 2% by weight or more, the toughness is not preferable, and problems arise in workability of forging, turning and grinding. The same can be said for the addition amount of Al as in the case of Si.

さらにこの発明において残留オーステナイトを5%以
下とする理由はこの発明の軸受軌道輪は高温(200〜300
℃)で使用する際の方法変化を可及的少なくするため、
寸法変化の原因となるオーステナイトの量を減少させる
必要があるからであり、通常の場合焼戻しを350〜400℃
で行なうと残留オーステナイトの量を希望する5%以下
にすることが出来る。
Further, the reason why the retained austenite is set to 5% or less in the present invention is that the bearing race of the present invention has a high temperature (200 to 300).
° C) to minimize process changes when using
This is because it is necessary to reduce the amount of austenite, which causes dimensional change, and usually tempering is performed at 350 to 400 ° C.
In this case, the amount of retained austenite can be reduced to the desired 5% or less.

つぎに、焼入れ時の雰囲気中にアンモニアガスを導入
して素材表層に窒素を侵入させる方法はいわゆるマルス
トレッシングと呼ばれるもので、オーステナイト化温度
より焼入れる際、窒素の侵入により、外層部のMs点(マ
ルテンサイト変態の開始温度)を内層部より下げ、外層
部に圧縮の残留応力を生じさせる方法である。そして通
常用いられる具体的条件は、アンモニアを添加したRXガ
ス雰囲気中で焼入れ温度まで加熱し、以後油冷するとい
うものである。表層は焼入れ冷却時に内部のマルテンサ
イト変態よりも遅れてマルテンサイト変態が起こるか
ら、焼入れ後表層に圧縮残留応力が発生し、この際窒素
の固溶硬化によって硬度が僅かに上昇することが知られ
ているが、その硬度上昇は同一焼戻し温度に対してHRC
の数字でたかだか1前後でしかない。ところが、その理
由は明らかではないが、けい素もしくはアルミニウムを
含有するこの発明の鋼においては前記マルストレッシン
グ処理を施すと、400℃の焼戻しに対してもHRC60の硬度
を維持し、同一温度で焼戻しをした標準の軸受鋼の硬度
(HRC47)よりもHRCで10以上の硬度を上昇させるのであ
る。
Next, a method of introducing ammonia gas into the atmosphere at the time of quenching to cause nitrogen to penetrate into the surface layer of the material is called so-called marstressing. This is a method in which the point (start temperature of martensitic transformation) is lowered from the inner layer portion, and compressive residual stress is generated in the outer layer portion. Specific conditions that are usually used include heating to a quenching temperature in an RX gas atmosphere to which ammonia has been added, followed by oil cooling. The surface layer undergoes martensitic transformation later than the internal martensitic transformation during quenching and cooling, so that compressive residual stress is generated in the surface layer after quenching, and it is known that the hardness increases slightly due to solid solution hardening of nitrogen. However, the increase in hardness is H R C for the same tempering temperature.
The number is only around 1 at most. However, although the reason is not clear, in the steel of the present invention containing silicon or aluminum, when the above-mentioned martressing treatment is performed, the hardness of H R C60 is maintained even with tempering at 400 ° C., and the same. than it increases the 10 or more hardness H R C than the hardness (H R C47) standard bearing steel in which the tempering temperature.

〔実施例〕〔Example〕

以下に、この発明にかかる実施例を示す。なお、アル
ミニウムを含有する鋼については、先にも述べたように
けい素を用いた鋼の場合と同様のため、けい素を用いた
鋼を用いた実施例のみを示した。
Hereinafter, examples according to the present invention will be described. In addition, as for the steel containing aluminum, since it is the same as the case of the steel using silicon as described above, only the example using the steel using silicon is shown.

酸素含有量13ppm以下のけい素含有鋼(炭素1.0%、け
い素1.5%、マンガン0.4%、クロム1.4%、残部鉄およ
び不純物からなる)の径12mm、長さ22mmの円柱状試験片
をアンモニアガス雰囲気中で830℃まで加熱し、この温
度に4時間保持後、油冷して得られた試験片について、
焼戻し処理(温度180℃、260℃、400℃および450℃、保
持時間2時間)を施した。そして各試験片に対して硬度
測定および転動寿命試験を行なった。
A cylindrical specimen of 12 mm in diameter and 22 mm in length of a silicon-containing steel (composed of carbon 1.0%, silicon 1.5%, manganese 0.4%, chromium 1.4%, balance iron and impurities) with an oxygen content of 13ppm or less was treated with ammonia gas. Heated to 830 ° C in an atmosphere, kept at this temperature for 4 hours, and cooled the oil,
Tempering treatment (temperature 180 ° C, 260 ° C, 400 ° C and 450 ° C, holding time 2 hours) was performed. Then, a hardness measurement and a rolling life test were performed on each test piece.

硬度測定結果は焼戻し温度180℃のものでHRC64.5、26
0℃のもので62.5、400℃もので60.0を維持していたが45
0℃のものでは58.0と低下していた。
The hardness measurement results were for a tempering temperature of 180 ° C with H R C64.5, 26
62.5 at 0 ° C and 60.0 at 400 ° C, but 45
In the case of 0 ° C, it was 58.0.

一方、転動寿命試験は相手硬球3/4″SUJ2硬球、潤滑
タービン56飛沫給油、接触応力Pmax=5880MPa(600kg
・f/mm2)、負荷速度46240cpmの条件下で行ない、得ら
れた結果を第4図にまとめたが、400℃の焼戻し処理を
受けたものでも長寿命であることがわかる。
On the other hand, the rolling life test was performed on a 3/4 "SUJ2 hard ball of a mating ball, lubricating turbine # 56 splash lubrication, contact stress Pmax = 5880MPa (600kg
F / mm 2 ), and the load speed was 46240 cpm. The results obtained are summarized in FIG. 4. It can be seen that the steel subjected to tempering at 400 ° C. has a long life.

比較例: 前記実施例と同様に、炭素1.0%、けい素1.5%、マン
ガン0.4%、クロム1.4%、残部鉄および不純物からなる
けい素含有鋼の径12mm、長さ22mmの円柱状試験片を焼入
れした。焼入れ条件は実施例においてRXガスに添加した
アンモニアを添加しなかった以外同じ熱処理を行ない冷
却して得られた試験片について、焼戻し処理(温度180
℃、230℃および260℃、保持時間2時間)を施した。そ
して各試験片に対して、硬度試験および転動寿命試験を
行なった。
Comparative Example: In the same manner as in the above example, a cylindrical test piece having a diameter of 12 mm and a length of 22 mm of silicon-containing steel consisting of 1.0% carbon, 1.5% silicon, 0.4% manganese, 1.4% chromium, the balance iron and impurities was used. Hardened. The quenching conditions were the same as in Example except that the ammonia added to the RX gas was not added.
C., 230.degree. C. and 260.degree. C., holding time 2 hours). Then, a hardness test and a rolling life test were performed on each test piece.

硬度(HRC)測定結果は焼戻し温度180℃のもので63.
0、230℃もので62.0、260℃のもので61.0と温度上昇と
ともに徐々に低下し、350℃のものでは急にHRC58.0と低
下した。
Hardness (H R C) measurement results were for a tempering temperature of 180 ° C. 63.
Gradually decreases with 61.0 and the temperature rise in those 62.0,260 ° C. at 0,230 ° C. was dropped and sudden H R C58.0 intended for 350 ° C..

一方転動寿命試験は実施例と同じ条件下で行なったも
のであるが、第5図に示すように、焼戻した温度260℃
までは硬度の低下に伴って寿命は上昇しているが350℃
では寿命が急激に低下するので、比較例の条件で焼入れ
および焼戻しを行なえば、室温から200℃付近までの範
囲で使用する際に、寿命低下を来たさないで長寿命の軸
受を製造することが出来るけれども350℃以上の焼戻し
温度ではそのような軸受は製造出来ないとがわかった。
On the other hand, the rolling life test was performed under the same conditions as in the example, but as shown in FIG.
Up to 350 ° C, the service life increases with decreasing hardness
If the quenching and tempering are performed under the conditions of the comparative example, when used in the range from room temperature to around 200 ° C, a long-life bearing will be manufactured without shortening the life. It has been found that such bearings cannot be manufactured at tempering temperatures above 350 ° C., although they can.

〔効果〕〔effect〕

以上述べたように、けい素含有鋼にマルストレッシン
グ処理後、400℃までの高温焼戻しを施すと硬度HRC60以
上を維持することが可能となり、200〜300℃の使用温度
に対して、現在使用されている高価なM50鋼、T1鋼に代
えて、安価でしかも長寿命をもつ軸受を製造することが
出来るようになったので、この発明の意義はきわめて大
きいと言うことが出来るのである。
Above As mentioned, after the circle strike Lessing treatment to a silicon-containing steel, it is possible to maintain a higher hardness H R C60 when subjected to high temperature tempering up to 400 ° C., for use temperature of 200 to 300 [° C., It is now possible to manufacture inexpensive and long-lasting bearings in place of expensive M50 steel and T1 steel currently used, so it can be said that the significance of the present invention is extremely large. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は現在使用されている耐熱軸受用材としての高速
度鋼(M50)の焼戻し温度と硬度HRCとの関係を示す図、
第2図は非金属介在物の測定機(疲労試験機)の原理を
説明するための図、第3図はJISで示された軸受鋼の酸
素含有量を変えて介在物の大きさを測定結果を示す図、
第4図はこの発明の実施例における焼戻し温度と10%寿
命(×104サイクル)との関係を示す図、第5図はこの
発明の比較例における焼戻し温度と10%寿命(×104
イクル)との関係を示す図である。 1……試片、2、3……回転体。
Figure 1 is a diagram showing the relationship between tempering temperature and hardness H R C of the high speed steel of the heat-resistant bearing timber currently being used (M50),
Fig. 2 is a diagram for explaining the principle of a non-metallic inclusion measuring machine (fatigue tester), and Fig. 3 is to measure the size of inclusions by changing the oxygen content of the bearing steel specified in JIS. Figure showing the results,
Figure 4 is a diagram showing the relationship between the tempering temperature and 10% life in an embodiment of the present invention (× 10 4 cycles), Fig. 5 tempering temperature and 10% life (× 10 4 cycles in the comparative example of the invention FIG. 1 ... specimen, 2, 3 ... rotating body.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比にして炭素0.95〜1.10%、けい素も
しくはアルミニウム1〜2%、マンガン1.15%以下、ク
ロム0.90〜1.60%、残り鉄からなり、酸素含有量を13pp
m以下とした鋼を素材とし、その素材によって形成され
た製品の焼入れ加熱時の雰囲気にアンモニアガスを添加
して素材表層に窒素を侵入させ、焼入れ後350〜400℃の
高温で焼戻しして、残留オーステナイト5%以下、硬度
HRC60以上とすることを特徴とする軸受軌道輪の製造方
法。
1. A weight ratio of 0.95 to 1.10% of carbon, 1-2% of silicon or aluminum, 1.15% or less of manganese, 0.90 to 1.60% of chromium, and the balance of iron.
m or less as a material, and ammonia gas is added to the atmosphere at the time of quenching and heating of the product formed by the material to inject nitrogen into the surface layer of the material, and after quenching, tempered at a high temperature of 350 to 400 ° C. Retained austenite 5% or less, hardness
Method of manufacturing a bearing ring, characterized in that the H R C60 or higher.
JP62242011A 1987-09-24 1987-09-24 Manufacturing method of bearing race Expired - Lifetime JP2616934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62242011A JP2616934B2 (en) 1987-09-24 1987-09-24 Manufacturing method of bearing race

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62242011A JP2616934B2 (en) 1987-09-24 1987-09-24 Manufacturing method of bearing race

Publications (2)

Publication Number Publication Date
JPS6483625A JPS6483625A (en) 1989-03-29
JP2616934B2 true JP2616934B2 (en) 1997-06-04

Family

ID=17082933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62242011A Expired - Lifetime JP2616934B2 (en) 1987-09-24 1987-09-24 Manufacturing method of bearing race

Country Status (1)

Country Link
JP (1) JP2616934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475497B2 (en) * 1993-08-11 2003-12-08 日本精工株式会社 Small ball bearings
JP2000055132A (en) * 1998-08-07 2000-02-22 Ntn Corp Flywheel damper supporting structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913565A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd Production of casting

Also Published As

Publication number Publication date
JPS6483625A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
US6485581B2 (en) Bearing for main spindle of machine tool
CN102245793A (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP5196393B2 (en) Rolling member, rolling bearing, and rolling member manufacturing method
JPH07190072A (en) Method for thermally treating rolling bearing
US6248186B1 (en) Ball-and-roller bearing and method of manufacturing the same
JPH0633441B2 (en) Bearing race
JP2002180203A (en) Needle bearing components, and method for producing the components
JP2961768B2 (en) Rolling bearing
JP4343357B2 (en) Rolling bearing parts for high temperature
JP3941520B2 (en) Rolling device
JP2006038167A (en) Roller bearing
JP2616934B2 (en) Manufacturing method of bearing race
JPH10219402A (en) Rolling supporting device
JP5668283B2 (en) Manufacturing method of rolling sliding member
JPH05240253A (en) Mechanical part having rolling body
JP2009057589A (en) Needle roller bearing and needle roller
JP2008308743A (en) Rolling member for machine tool, and rolling bearing for machine tool
JP4458592B2 (en) Rolling bearing parts for high temperature
JP4993486B2 (en) Rolling member, rolling bearing, and rolling member manufacturing method
KR20010034008A (en) High-temperature rolling bearing part
JP2008025010A (en) Rolling parts and rolling bearing
JP2003268497A (en) Roller bearing
JP4343356B2 (en) Rolling bearing parts for high temperature
JP5263862B2 (en) Machine Tools
JPH11210767A (en) Rolling bearing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11