JP2616633B2 - Bead edge detection method and device - Google Patents

Bead edge detection method and device

Info

Publication number
JP2616633B2
JP2616633B2 JP12064492A JP12064492A JP2616633B2 JP 2616633 B2 JP2616633 B2 JP 2616633B2 JP 12064492 A JP12064492 A JP 12064492A JP 12064492 A JP12064492 A JP 12064492A JP 2616633 B2 JP2616633 B2 JP 2616633B2
Authority
JP
Japan
Prior art keywords
arc
welding
bead
bead end
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12064492A
Other languages
Japanese (ja)
Other versions
JPH05318122A (en
Inventor
雅智 村山
祐司 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP12064492A priority Critical patent/JP2616633B2/en
Publication of JPH05318122A publication Critical patent/JPH05318122A/en
Application granted granted Critical
Publication of JP2616633B2 publication Critical patent/JP2616633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高速回転アーク溶接法
におけるビード端部の検出方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a bead end in a high-speed rotary arc welding method.

【0002】[0002]

【従来の技術】高速回転アーク溶接法によって溶接継手
に対して溶接を行なう場合、通常、溶接線の自動追従の
ためにアークセンサによる開先倣い制御方法を採用して
いる。ここで、高速回転アーク溶接法とは電極ワイヤの
先端を偏心させておき、溶接トーチの電極ノズルを機械
的に回転させることによりアークを高速で回転させなが
ら溶接を行う方法である。また、かかる開先倣い制御方
法は、特開昭62−248571号公報等で公知であ
り、図12を参照し説明すると、アーク電圧波形とアー
ク回転位置(Cf,R,Cr,L)を検出し、溶接進行
方向前方のCf点を中心に、左右同一の位相角φ(5°
≦φ=90°)の範囲で、アーク電圧波形を積分し(S
L,SR)、その差(SL−SR)が零になるように開
先幅方向(X軸)のトーチ位置を修正するものである。
また、トーチ高さ方向(Y軸)については、アークの1
回転ごとに溶接電流波形の積分値が一定になるように制
御している。ところで、溶接継手の既設ビードと新設ビ
ードとのつなぎ部の溶接の品質を安定に確保するために
は溶接継手の既設ビード端位置を精度良く検出すること
が必要であった。
2. Description of the Related Art When welding is performed on a weld joint by a high-speed rotating arc welding method, a groove tracking control method using an arc sensor is usually employed for automatically following a welding line. Here, the high-speed rotating arc welding method is a method in which the tip of an electrode wire is eccentric, and welding is performed while rotating the arc at a high speed by mechanically rotating an electrode nozzle of a welding torch. Such a groove following control method is known in Japanese Patent Application Laid-Open No. 62-248571 and the like. Referring to FIG. 12, an arc voltage waveform and an arc rotation position (Cf, R, Cr, L) are detected. And the same phase angle φ (5 °
In the range of ≤φ = 90 °, the arc voltage waveform is integrated (S
L, SR) and the torch position in the groove width direction (X-axis) is corrected so that the difference (SL-SR) becomes zero.
In the torch height direction (Y axis), the arc 1
Control is performed so that the integral value of the welding current waveform is constant at each rotation. By the way, it is necessary to accurately detect the existing bead end position of the welded joint in order to stably secure the quality of welding at the joint between the existing bead of the welded joint and the new bead.

【0003】従来、既設ビードと新設ビードのつなぎ処
理を行うためには、既設ビードの端部の位置をあらかじ
め教示しておき、新設ビードの溶接において溶接トーチ
がその位置に到達した時点で所定のつなぎ処理を行って
いた。
[0003] Conventionally, in order to perform a joining process between an existing bead and a new bead, the position of the end of the existing bead is taught in advance, and a predetermined time is reached when the welding torch reaches that position in welding the new bead. Connection processing was performed.

【0004】[0004]

【発明が解決しようとする課題】上記のように、既設ビ
ード端部の位置をあらかじめ教示しておいても、溶接中
の熱変形や部材の加工寸法精度の不良により、新設ビー
ドの溶接時にはその位置がズレていたり、既設ビードと
新設ビードの溶接を別々の溶接装置で行う場合には、各
溶接トーチの位置検出器の原点位置のズレにより教示位
置と実際の既設ビード5の端部位置とにズレが生じ、溶
接継手の既設ビード端と新設ビードとのつなぎ部の溶接
品質の確保が困難という問題点もあった。
As described above, even if the position of the end of the existing bead is taught in advance, the position of the existing bead may be lost when welding a new bead due to thermal deformation during welding and poor processing dimensional accuracy of the member. When the position is shifted or when the existing bead and the new bead are welded by different welding devices, the teaching position and the actual end position of the existing bead 5 are determined by the deviation of the origin position of the position detector of each welding torch. In addition, there has been a problem that it is difficult to ensure welding quality at a joint between an existing bead end of a welded joint and a new bead.

【0005】本発明はかかる問題点を解決するためにな
されたもので、溶接継手の既設ビード端と新設ビードと
のつなぎ部の良好な溶接品質を安定して確保できるビー
ド端部の検出方法及び装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a method for detecting a bead end which can stably secure good welding quality at a joint between an existing bead end and a new bead of a welded joint. The aim is to obtain a device.

【0006】[0006]

【課題を解決するための手段】本発明に係るビード端部
の検出装置は、高速回転アーク溶接法により溶接する溶
接トーチとワーク間のアーク電圧又は溶接電流を検出す
るアーク電圧検出器又は溶接電流検出器と、電極ノズル
の回転角度位置を検出する回転位置検出器と、アーク電
圧検出器又は溶接電流検出器の検出信号を積分する2つ
の積分器と、アークの回転の2つの所定角度範囲におい
てのみ上記積分器が積分するようにその駆動信号を回転
位置検出器の位置検出信号に基づいて出力するタイミン
グパルス発生器と、2つの積分器によって積分された検
出信号の積分値の差である偏差信号を求める第1差動ア
ンプと、第1差動アンプから出力された偏差信号の平均
値を演算する平均値演算器と、溶接トーチの既設ビード
端手前の所望移動距離の間だけ平均値演算器を動作させ
る駆動信号を出力するビード端検出制御タイミング指令
発生器と、第1差動アンプの偏差信号と平均値演算器の
平均値との差である差分出力値を求める第2差動アンプ
と、ビード端検出制御タイミング指令発生器の駆動信号
終了時点から第2差動アンプ差分出力値をアーク1回転
毎に積算して積算値を演算する積算器と、積算器の積算
値の所定回転数、所定時間或いは所定信号数当たりの変
化量と所定のしきい値とを比較し、その変化量が所定の
しきい値を越えた時に溶接トーチが既設ビード端にきた
ことを示すビード端検出信号を出力するビード端判定器
とを備えてなるものである。
An apparatus for detecting a bead end according to the present invention comprises an arc voltage detector or a welding current for detecting an arc voltage or a welding current between a welding torch and a workpiece to be welded by a high-speed rotating arc welding method. A detector, a rotation position detector for detecting a rotation angle position of the electrode nozzle, two integrators for integrating detection signals of the arc voltage detector or the welding current detector, and two predetermined angle ranges of arc rotation. A timing pulse generator that outputs a drive signal based on the position detection signal of the rotational position detector so that the integrator only integrates, and a deviation that is a difference between the integrated values of the detection signals integrated by the two integrators. A first differential amplifier for obtaining a signal, an average calculator for calculating an average value of the deviation signal output from the first differential amplifier, and a desired movement of the welding torch just before the existing bead end. A bead end detection control timing command generator that outputs a drive signal for operating the average calculator only during the separation, and a difference output value that is a difference between the deviation signal of the first differential amplifier and the average of the average calculator. A second differential amplifier that calculates the differential output value of the bead end detection control timing command generator, and an integrator that integrates the differential output value of the second differential amplifier for each arc rotation to calculate an integrated value. The amount of change per unit number of revolutions, a predetermined time, or a predetermined number of signals of the vessel is compared with a predetermined threshold value, and when the change amount exceeds a predetermined threshold value, the welding torch is moved to the end of the existing bead. And a bead end determiner for outputting a bead end detection signal indicating that the bead has come.

【0007】[0007]

【作用】本発明においては、溶接トーチの電極ノズルの
先端に回転円運動を与えてワイヤ先端に発生するアーク
を高速回転させながら溶接する高速回転アーク溶接法に
よって溶接継手に溶接を行い、その溶接中のアーク電圧
または溶接電流とアークの回転位置とを検出し、アーク
の1回転毎にアーク回転位置の2つの所定角度範囲につ
いてアーク電圧波形または溶接電流波形を積分して、そ
の積分値の差である偏差信号をアーク1回転毎に演算
し、溶接トーチがビード端検出制御を始める位置に到達
した時点より、偏差信号と溶接トーチがビード端検出制
御を始まる位置より、所定距離手前の範囲であらかじめ
演算しておいた偏差信号の平均値との差をアーク1回転
毎に積算し、その積算値の所定回転数、所定時間或いは
所定信号数当りの変化量が所定のしきい値を越えた時に
溶接トーチが既設ビード端に到達したと判定して既設ビ
ードと新設ビードの所定のつなぎ処理を行うようにして
いる。
According to the present invention, welding is performed on a welded joint by a high-speed rotating arc welding method in which a rotating circular motion is applied to the tip of an electrode nozzle of a welding torch and an arc generated at the wire tip is rotated at a high speed to perform welding. The arc voltage or welding current in the arc is detected for two predetermined angular ranges of the arc rotation position for each rotation of the arc, and the difference between the integrated values is detected. The deviation signal is calculated for each rotation of the arc, and the deviation signal and the position where the welding torch starts the bead end detection control are within a predetermined distance before the welding torch reaches the position where the bead end detection control is started. The difference between the previously calculated deviation signal and the average value is integrated for each rotation of the arc, and the integrated value is changed for a predetermined number of rotations, a predetermined time, or a predetermined number of signals. Amount so that the welding torch when it exceeds a predetermined threshold performs a predetermined linkage process new bead with the existing bead was determined to have reached the existing bead end.

【0008】[0008]

【実施例】図1は本発明の実施例であるビード端部の検
出装置を示すブロック図、図2は同ビード端部の検出装
置のビード端判定器の内部構成を示すブロック図、図3
は溶接継手と電極ノズルの位置関係を示す説明図、図4
は溶接継手に電極ノズルで溶接が行われている状態を示
す斜視図、図5は電極ノズルのワイヤの回転軌跡と積分
器で積分するアーク電圧のCf 側とCr 側の対象角度範
囲の様態を示す説明図、図6はビード端部の検出方法の
原理を示す説明図、図7は2つの所定角度範囲のアーク
電圧波形の積分値の差を示す波形図である。
FIG. 1 is a block diagram showing a bead end detecting device according to an embodiment of the present invention. FIG. 2 is a block diagram showing an internal configuration of a bead end judging device of the bead end detecting device.
FIG. 4 is an explanatory view showing a positional relationship between a weld joint and an electrode nozzle, and FIG.
FIG. 5 is a perspective view showing a state in which welding is performed on the welded joint by the electrode nozzle, and FIG. 5 is a view showing a rotation locus of the wire of the electrode nozzle and a target angle range of the Cf side and the Cr side of the arc voltage integrated by the integrator. FIG. 6 is an explanatory diagram showing the principle of a method of detecting a bead end, and FIG. 7 is a waveform diagram showing a difference between integral values of arc voltage waveforms in two predetermined angle ranges.

【0009】図において、1は溶接継手であるT字形ワ
ーク、1aはT字形ワーク1の下板、1bは立板、2は
下板2aと立板1bとで形成される溶接線、3aは電極
ノズル3の溶接ワイヤ、5はT字形ワーク1の溶接線2
に設けられた既設ビードである。
In the figure, 1 is a T-shaped work which is a welding joint, 1a is a lower plate of a T-shaped work 1, 1b is a standing plate, 2 is a welding line formed by a lower plate 2a and a standing plate 1b, 3a is a welding line. Welding wire for electrode nozzle 3, welding wire 2 for T-shaped work 1
It is an existing bead provided in.

【0010】10は電極ノズル3の溶接ワイヤ3aとワ
ーク1間のアーク電圧を検出するアーク電圧検出器、1
1は電極ノズル3の溶接ワイヤ3aからワーク1に流れ
る溶接電流を検出する溶接電流検出器、12はアーク電
圧検出器10が検出したアーク電圧と溶接電流検出器1
1が検出した溶接電流とを切り換えて出力させる切換
器、13a,13bは切換器12の出力側にそれぞれ設
けられた積分器、14は溶接ワイヤ3aの回転角度位置
を検出するエンコーダ等の回転位置検出器、15は回転
位置検出器14の検出信号に基づいて積分器13a,1
3bを動作させる駆動信号を出力するタイミングパルス
発生器である。
An arc voltage detector 10 detects an arc voltage between the welding wire 3a of the electrode nozzle 3 and the workpiece 1.
Reference numeral 1 denotes a welding current detector for detecting a welding current flowing from the welding wire 3a of the electrode nozzle 3 to the work 1, and 12 denotes an arc voltage detected by the arc voltage detector 10 and the welding current detector 1.
Switchers for switching the welding current detected by 1 to output the same, 13a and 13b are integrators respectively provided on the output side of the switcher 12, and 14 is a rotational position of an encoder or the like for detecting a rotational angle position of the welding wire 3a. The detector 15 is provided with an integrator 13a, 1 based on a detection signal of the rotational position detector 14.
3b is a timing pulse generator that outputs a drive signal for operating 3b.

【0011】16は2つの積分器13a,13bからそ
れぞれ出力された積分値の差である偏差信号を求める第
1差動アンプである。17は溶接トーチ3の溶接始端か
ら既設ビード端までの予め教示された移動距離のうちビ
ード端手前から一定移動距離だけ駆動信号を出力するビ
ード端検出制御タイミング指令発生器、18はビード端
検出タイミング指令発生器17の駆動信号に基づいて第
1差動アンプ16から出力された偏差信号のビード端検
出制御を開始する地点から所定距離手前の範囲で平均値
を演算する平均値演算器、19は第1差動アンプ16の
偏差信号と平均値演算器18の平均値との差である差分
出力値を求める第2差動アンプ、20はビード端検出制
御タイミング指令発生器17の駆動信号終了時点から第
2差動アンプ19の差分出力値をアーク1回転毎に積算
して積算値を演算する積算器である。
Reference numeral 16 denotes a first differential amplifier for obtaining a deviation signal which is a difference between the integrated values output from the two integrators 13a and 13b. Reference numeral 17 denotes a bead end detection control timing command generator for outputting a drive signal for a fixed movement distance from just before the bead end of a pre-taught movement distance from the welding start end of the welding torch 3 to the existing bead end, and 18 is a bead end detection timing. An average calculator 19 for calculating an average of a deviation signal output from the first differential amplifier 16 based on a drive signal of the command generator 17 within a predetermined distance from a point where bead end detection control is started; A second differential amplifier 20 for obtaining a difference output value which is a difference between the deviation signal of the first differential amplifier 16 and the average value of the average value calculator 18. From the second differential amplifier 19 for each rotation of the arc to calculate an integrated value.

【0012】21は積算器20の積算値の所定時間当り
の変化量と所定のしきい値とを比較して電極ノズル3が
T字型ワーク1のビード端にきたことを示す終端検出信
号を出力するビード端判定器である。このビード端判定
器21は積算器20からの現在値の積算値からその一秒
前までの積算値の平均値(時刻T0 −ΔT/2からT0
+ΔT/2までの積算値Σの平均値Σ)を求める平均値
演算器22と、積算器20の積算値と平均値演算器22
の平均値との差である差分出力値を求める差動アンプ2
3と、差動アンプ23の差分出力値としきい値設定器2
5が設定したしきい値とを比較してビード端検出信号を
出力する比較器24とから構成されている。
Numeral 21 compares an amount of change in the integrated value of the integrator 20 per predetermined time with a predetermined threshold value, and generates an end detection signal indicating that the electrode nozzle 3 has come to the bead end of the T-shaped work 1. It is a bead end determiner that outputs. The bead end determiner 21 calculates the average value of the integrated value from the integrated value of the current value from the integrator 20 to one second before (from time T 0 −ΔT / 2 to T 0).
An average calculator 22 for calculating the average value of the integrated value Σ) up to + ΔT / 2, and an integrated value and average calculator 22 of the integrator 20
Differential amplifier 2 for obtaining a difference output value that is a difference from the average value of
3, the differential output value of the differential amplifier 23 and the threshold setting device 2
5 and a comparator 24 for comparing the set threshold value and outputting a bead end detection signal.

【0013】まず、ビード端部の検出方法の原理につい
て図6に基づいて説明する。高速回転アーク溶接法によ
り、アークセンサによる開先倣い制御しながら、電極ノ
ズル3の溶接ワイヤ3aがT字形ワーク1の溶接線2に
沿って溶接を行なっていく。このとき、アーク電圧検出
器10が検出するアーク電圧は、図3に示すように回転
位置の変化に応じて溶接ワイヤ3aとワーク1との距離
が変化するため、図6のAに示すように溶接進行方向W
Dにおける回転の前方のCf 点、後方のCr 点で極大、
立板側のR点、下板側のL点で極小となる。
First, the principle of a method for detecting a bead end will be described with reference to FIG. The welding wire 3a of the electrode nozzle 3 performs welding along the welding line 2 of the T-shaped workpiece 1 while controlling the groove following by the arc sensor by the high-speed rotating arc welding method. At this time, the arc voltage detected by the arc voltage detector 10 changes as shown in FIG. 3A because the distance between the welding wire 3a and the workpiece 1 changes according to the change in the rotational position as shown in FIG. Welding direction W
Maximum at the Cf point in front of the rotation in D and the Cr point behind,
The minimum value is obtained at the point R on the upright side and the point L on the lower side.

【0014】そして、電極ノズル3が溶接継手における
既設ビード5の端部付近に差しかかると、アークの回転
の前方Cf 側から、アークは既設ビードに乗りあげるた
め図6のBからEに示すようにCf 側の回転位置でのア
ーク電圧が次第に下降するが、Cr 側の回転位置でのア
ーク電圧は変化しない。従って、回転する電極ノズル3
のCf 側とCr 側のアーク電圧をそれぞれ検出し、両者
の電圧を比較すれば、電極ノズル3が既設ビード5の端
部に到達したことがわかる。そこで、Cf 側とCr 側と
のアーク電圧を検出し、検出した電圧を比較してその差
を求め、その差をビード端が検出できるよう設定された
しきい値と比較することにより、電極ノズル3が既設ビ
ード5の端部にきたかどうかを判断して所定のつなぎ処
理を行うことができるという訳である。
When the electrode nozzle 3 approaches the end of the existing bead 5 in the weld joint, the arc rides on the existing bead from the front Cf side of the rotation of the arc, as shown in FIGS. 6B to 6E. Then, the arc voltage at the rotation position on the Cf side gradually decreases, but the arc voltage at the rotation position on the Cr side does not change. Therefore, the rotating electrode nozzle 3
By detecting the arc voltages on the Cf side and the Cr side, respectively, and comparing the two voltages, it is understood that the electrode nozzle 3 has reached the end of the existing bead 5. Thus, by detecting the arc voltage between the Cf side and the Cr side, comparing the detected voltages to determine the difference, and comparing the difference with a threshold value set so that the bead end can be detected, the electrode nozzle is detected. That is, it is possible to determine whether or not 3 has come to the end of the existing bead 5 and perform a predetermined joining process.

【0015】次に、上記のように構成されたビード端部
の検出装置の動作について説明する。まず、ビード端検
出が行なわれる高速回転アーク溶接法における具体例に
ついて述べる。アーク回転速度は10Hz以上、アーク
回転直径Dは1〜6mm、溶接速度は10〜300cm
/分、溶接ワイヤ径0.6mm〜2.0mm、溶接電流
は100〜1000Aである。
Next, the operation of the bead end detecting device configured as described above will be described. First, a specific example in the high-speed rotating arc welding method in which bead end detection is performed will be described. The arc rotation speed is 10 Hz or more, the arc rotation diameter D is 1 to 6 mm, and the welding speed is 10 to 300 cm.
/ Min, the welding wire diameter is 0.6 mm to 2.0 mm, and the welding current is 100 to 1000 A.

【0016】電極ノズル3の溶接ワイヤ3aが高速回転
アーク溶接法によってT字形ワーク1に対して溶接を行
なっているとき、切換器12を例えばアーク電圧検出器
10側に切り換え、アーク電圧検出器10が検出した電
極ノズル3の回転によって変化しているアーク電圧を積
分器13a,13bに出力させる。また、回転位置検出
器14は回転している電極ノズル3の回転位置を検出し
て位置検出信号を出力している。そして、アーク電圧検
出器10から出力されている信号のうち、溶接進行方向
Wの前方側(以下Cf 側という)の例えば、図4に示す
ように315°〜45°(Gを原点とし、R方向への角
度で、以下同様とする)である90°の角度範囲S1
溶接進行方向Wの後方側(以下、Cr 側という)の例え
ば135°〜225°である90°の角度範囲S2 の間
だけ積分器13a,13bが動作して積分するように駆
動信号をタイミングパルス発生器15は回転位置検出器
14の位置検出信号に基づいて積分器13a,13bに
それぞれ出力する。
When the welding wire 3a of the electrode nozzle 3 is welding to the T-shaped work 1 by the high-speed rotating arc welding method, the switch 12 is switched to, for example, the arc voltage detector 10, and the arc voltage detector 10 is switched. Causes the integrators 13a and 13b to output the detected arc voltage that is changed by the rotation of the electrode nozzle 3. The rotation position detector 14 detects the rotation position of the rotating electrode nozzle 3 and outputs a position detection signal. Then, among the signals output from the arc voltage detector 10, for example, 315 ° to 45 ° as shown in FIG. 4 on the front side (hereinafter referred to as Cf side) in the welding progress direction W (G is the origin, R at an angle to the direction, the same applies hereinafter to) a is 90 ° angular range S 1 and the welding direction W rear side (hereinafter, the angle range of a, for example 135 ° to 225 ° is 90 ° as Cr side) S The timing pulse generator 15 outputs the drive signal to the integrators 13a and 13b based on the position detection signal of the rotational position detector 14 so that the integrators 13a and 13b operate and integrate only during the period 2 .

【0017】積分器13aではCf 側の90°の角度範
囲S1 の信号を積分し、積分器13bではCr 側90℃
の角度範囲における信号を積分し、これら積分器13
a,13bによって積分された信号の積分値は第1差動
アンプ16に入力される。このように、積分器13a,
13bで積分するのはアーク電圧波形にノイズがあり、
その影響を受けないようにするためである。
The integrator 13a integrates the signal of the angular range S 1 of the Cf side of 90 °, the integrator 13b in the Cr-side 90 ° C.
Are integrated over the angle range of
The integrated value of the signal integrated by a and 13b is input to the first differential amplifier 16. Thus, the integrators 13a,
Integrating at 13b is because the arc voltage waveform has noise,
This is so as not to be affected.

【0018】第1差動アンプ16では積分器13aによ
る積分値S1 と、積分器13bによる積分値S2 の差で
ある偏差信号ΔSを求めている。従って、偏差信号ΔS
としきい値S0 とを比較し、その偏差値ΔSがしきい値
0 を越えたときに電極ノズル3がT字形ワーク1既設
ビード5の端部にきたことを図7及び図9(a)に示す
ように検出することもできる。なお、図6中のLはかか
る検出法の確認のために用意したレーザセンサによるビ
ード端検出の信号を示している。
The seeking an integration values S 1 of the first differential amplifier 16 in the integrator 13a, a deviation signal ΔS is the difference between the integrated value S 2 by the integrator 13b. Therefore, the deviation signal ΔS
And the threshold value S 0, and when the deviation value ΔS exceeds the threshold value S 0 , the fact that the electrode nozzle 3 comes to the end of the existing bead 5 of the T-shaped workpiece 1 is shown in FIGS. ) Can also be detected. Note that L in FIG. 6 indicates a bead end detection signal by a laser sensor prepared for confirming such a detection method.

【0019】しかし、第1差動アンプ16から出力され
る偏差信号ΔSはアークの乱れやワイヤ送給速度の変動
などの種々の要因によって図9の(i)に示すようにそ
の偏差信号ΔSの波形が乱れることがある。このため、
溶接継手のビード端以前でもその偏差信号ΔSがしきい
値S0 を越えるために誤ってビード端検出されてしまう
場合が生じる。
However, the deviation signal ΔS output from the first differential amplifier 16 depends on various factors such as disturbance of the arc and fluctuation of the wire feeding speed, as shown in FIG. 9 (i). The waveform may be distorted. For this reason,
If the deviation signal ΔS even bead end earlier welded joint from being detected bead end erroneously to exceed the threshold S 0 is generated.

【0020】そこで、この実施例ではかかる誤検出をな
くするために、次に述べる信号処理をしてビード端検出
するようにしている。まず、第1差動アンプ16から出
力された偏差信号ΔSに対して平均値演算器18で溶接
継手のビード端手前における偏差信号の平均値を演算さ
せる。この平均値演算器18による平均値の演算はビー
ド端検出制御タイミング指令発生器17からの駆動信号
によって平均値演算器18が動作させられることにより
行われる。
Therefore, in this embodiment, in order to eliminate such an erroneous detection, the following signal processing is performed to detect a bead end. First, the average value calculator 18 causes the average value of the deviation signal just before the bead end of the welded joint to be calculated with respect to the deviation signal ΔS output from the first differential amplifier 16. The calculation of the average value by the average value calculator 18 is performed by operating the average value calculator 18 by the drive signal from the bead end detection control timing command generator 17.

【0021】即ち、ビード端検出タイミング指令発生器
17ではワーク1に対する図8に示す溶接トーチ3の溶
接始端Aからビード端Dまでの予め教示された移動距離
のうち、例えば溶接継手ビード端手前のB位置から溶接
継手のビード端近傍位置Cまでの一定移動距離lS の間
だけ駆動信号を平均値演算器18に出力する。従って、
平均値演算器19は図9の(i)に示すように一定移動
距離lS の間だけ動作して第1差動アンプ16から出力
される偏差信号ΔSの所定移動距離当りの平均値を演算
し、第2差動アンプ19にその平均値を出力する。
That is, in the bead end detection timing command generator 17, of the movement distances taught in advance from the welding start end A to the bead end D of the welding torch 3 shown in FIG. The driving signal is output to the average value calculator 18 only during a fixed movement distance l S from the position B to the position C near the bead end of the weld joint. Therefore,
The average value calculator 19 operates only during the fixed movement distance l S as shown in FIG. 9 (i), and calculates the average value of the deviation signal ΔS output from the first differential amplifier 16 per predetermined movement distance. Then, the average value is output to the second differential amplifier 19.

【0022】第2差動アンプ19では第1差動アンプ1
6から出力される偏差信号ΔSと平均値演算器18の偏
差信号の平均値との差を求め、その差である差分出力値
を積算器20に出力する。積算器20ではビード端検出
制御タイミング指令発生器17の駆動信号を受け、その
駆動信号終了時点から第2差動アンプ19の差分出力値
をアーク1回転毎に積算し、積算値を演算してビード端
判定器21に出力する。ビード端判定器21では積算器
20が出力する積算値の所定時間当りの変化量Vを求
め、その変化量Vと所定のしきい値とを比較し、その変
化量Vが所定のしきい値を越えた時に電極ノズル3がT
字形ワーク1の既設ビード5の端部にきたことを示すビ
ード端検出信号を出力する。
In the second differential amplifier 19, the first differential amplifier 1
The difference between the deviation signal ΔS output from the average value calculator 6 and the average value of the deviation signals of the average value calculator 18 is obtained, and the difference output value that is the difference is output to the integrator 20. The integrator 20 receives the drive signal of the bead end detection control timing command generator 17, accumulates the difference output value of the second differential amplifier 19 every arc rotation from the end of the drive signal, and calculates the accumulated value. Output to the bead end determiner 21. The bead end determiner 21 obtains a change amount V of the integrated value output from the integrator 20 per a predetermined time, compares the change amount V with a predetermined threshold value, and compares the change amount V with a predetermined threshold value. When the electrode nozzle 3 exceeds T
It outputs a bead end detection signal indicating that it has come to the end of the existing bead 5 of the character-shaped work 1.

【0023】ビード端判定器21の動作を図2に基づき
更に詳細に説明すると、ビード端判定器21における平
均値演算器22では積算器20からの出力Σの時刻T0
−ΔT/2から、T0 +ΔT/2までの平均値Σを求
め、その平均値Σを差動アンプ23に出力している。差
動アンプ23は積算器20からの積算値Σと平均値演算
値22の平均値Σとの差を求めて比較器24にその差の
信号を出力しているが、これは積算器20の積算値の所
定時間当りの変化量Vの演算方法の一例である。 {実施例 T0 =1、Δ1=1秒}
The operation of the bead end determiner 21 will be described in more detail with reference to FIG. 2. In the average value calculator 22 of the bead end determiner 21, the time T 0 of the output か ら from the integrator 20 is obtained.
From ΔT / 2, an average value T up to T 0 + ΔT / 2 is obtained, and the average value 出力 is output to the differential amplifier 23. The differential amplifier 23 obtains the difference between the integrated value か ら from the integrator 20 and the average value の of the average value operation value 22 and outputs the difference signal to the comparator 24. It is an example of a method of calculating the amount of change V of the integrated value per predetermined time. {Example T 0 = 1, Δ1 = 1 second}

【0024】比較器24では差動アンプ23から出力さ
れた積算値の所定時間当りの変化量Vとしきい値設定器
25によって設定された所定のしきい値とを比較し、そ
の差がしきい値を越えた時に電極ノズル3がT字形ワー
ク1の既設ビード5の端部にきたことを示すビード端検
出信号を出力する。従って、比較器24から出力された
ビード端検出信号によって電極ノズル3が既設ビード5
の端部にきたことを高精度で検出することができる。な
お、しきい値設定器24によるしきい値は積算器20の
積算値Σの変化量Vが急峻に増大して終端位置にきたこ
とを示す値に設定されており、比較器24は変化量Vが
しきい値を越えた瞬間にビード端と判定する。
The comparator 24 compares a change amount V of the integrated value output from the differential amplifier 23 per predetermined time with a predetermined threshold value set by the threshold value setting device 25, and the difference is a threshold. When the value exceeds the value, a bead end detection signal indicating that the electrode nozzle 3 has come to the end of the existing bead 5 of the T-shaped work 1 is output. Therefore, the electrode nozzle 3 is moved to the existing bead 5 by the bead end detection signal output from the comparator 24.
Can be detected with high accuracy. The threshold value set by the threshold value setting unit 24 is set to a value indicating that the change amount V of the integrated value の of the integrator 20 has increased sharply and has reached the end position. At the moment when V exceeds the threshold value, it is determined to be the bead end.

【0025】このように、第1差動アンプ16から出力
される偏差信号ΔSから平均値演算器18で平均値を求
め、第2差動アンプ19で偏差信号と平均値との差を求
め、その差を積算器20で加算させているのは、積算値
20で積算させる最初の基準となる積算値を零レベルに
して偏差信号の変化を急峻な変化として捉えることがで
きるようにしてアーク乱れやワイヤ送給速度の変動等の
種々の要因によって生じる偏差信号の波形の乱れによる
影響を受けないようにしたものである。
As described above, the average value calculator 18 calculates the average value from the deviation signal ΔS output from the first differential amplifier 16, and the second differential amplifier 19 calculates the difference between the deviation signal and the average value. The difference is added by the integrator 20 because the first reference value to be integrated with the integrated value 20 is set to zero level so that the change in the deviation signal can be regarded as a steep change, thereby causing the arc disturbance. In addition, it is not affected by the disturbance of the waveform of the deviation signal caused by various factors such as the fluctuation of the wire feeding speed and the like.

【0026】また、積算器20の積算値を直ちにしきい
値と比較してビード端検出せずに、その積算値の所定時
間当りの変化量をしきい値と比較してビード端検出する
ようにしたのは、既設ビードの端部において積算値が積
算中に急激に増加するため、積算値の急変点(変曲点)
を見つけることによりビード端判定をすれば、より確実
且つ高精度にビード端位置を検出することができるため
である。従って、溶接継手の既設ビード端と新設ビード
との良好な溶接品質を安定して確保することができる。
なお、積算値の変化量をその実施例では所定時間当りの
変化量として捉えるようにしているが、積算値の所定回
転数或いは所定信号数当りの変化量として捉えるように
してもビード端検出できることは勿論である。
Also, the integrated value of the integrator 20 is immediately compared with a threshold value to detect a bead end without detecting a bead end, but by comparing a change amount of the integrated value per predetermined time with a threshold value. The reason for this is that the integrated value suddenly increases during the integration at the end of the existing bead, so the sudden change point (inflection point) of the integrated value
This is because if the end of bead is determined by finding, the bead end position can be more reliably and accurately detected. Therefore, good welding quality between the existing bead end of the welded joint and the new bead can be stably ensured.
In this embodiment, the change amount of the integrated value is regarded as the change amount per a predetermined time. However, the bead end can be detected even if the integrated value is regarded as the change amount per a predetermined number of rotations or a predetermined number of signals. Of course.

【0027】上記図5に示す実施例では、積分器13
a,13bで積分するアーク電圧の対象をCf 側では3
15°〜45°である90°の角度範囲S1 とし、Cr
側では135°〜225°である90°の角度範囲S2
としているが、角度範囲は90°に限られるものでな
く、5°以上〜180°以下であればビード端検出でき
ることはいうまでもない。
In the embodiment shown in FIG. 5, the integrator 13
The target of the arc voltage to be integrated in a and 13b is 3 on the Cf side.
Is 15 ° to 45 ° and 90 ° angular range S 1, Cr
90 ° angle range S 2 which is 135 ° to 225 ° on the side
However, the angle range is not limited to 90 °, and it goes without saying that the bead end can be detected if the angle is 5 ° or more and 180 ° or less.

【0028】更に上述した実施例ではアーク電圧検出器
10によってアーク電圧を検出し、それを信号処理して
溶接継手のビード端を検出する説明をしたが、切換器1
2を溶接電流検出器11側に切換えて溶接電流検出器1
1によって検出した溶接電流に対して上述した実施例と
同様に信号処理するようにしても溶接継手のビード端を
検出することができる。なお、アーク電圧ではCf 位置
での電圧が減少するように対し、溶接電流では逆にCr
側のR位置での電流が増大するという相違があるだけで
ある。
In the above-described embodiment, the arc voltage is detected by the arc voltage detector 10 and the signal is processed to detect the bead end of the welded joint.
2 is switched to the welding current detector 11 side to switch the welding current detector 1
The bead end of the welded joint can also be detected by performing signal processing on the welding current detected in step 1 in the same manner as in the above-described embodiment. In the arc voltage, the voltage at the Cf position decreases, but in the welding current, the voltage decreases at the Cf position.
The only difference is that the current at the side R position increases.

【0029】[0029]

【発明の効果】本発明は以上説明したとおり、ワークに
対して高速回転アーク溶接法で溶接を行っている場合
に、溶接中のアーク電圧または溶接電流とアークの回転
位置とを検出し、アークの1回転毎にアーク回転位置の
2つの所定角度範囲についてアーク電圧波形または溶接
電流波形を積分して、その積分値の差である偏差信号を
アーク1回転毎に演算し、溶接トーチがビード端検出制
御を始める位置に到達した時点より、偏差信号と溶接ト
ーチがビード端検出制御を始まる位置より、所定距離手
前の範囲であらかじめ演算しておいた偏差信号の平均値
との差をアーク1回転毎に積算し、その積算値の所定回
転数、所定時間或いは所定信号数当りの変化量が所定の
しきい値を越えた時に溶接トーチが既設ビード端に到達
したと判定して既設ビードと新設ビードの所定のつなぎ
処理を行うようにしたので、溶接アーク自体がセンサの
役目を果たし、溶接による熱歪や収縮等の変型やワイヤ
の曲りグセ等の影響を受けず、しかもアーク乱れやワイ
ヤ送給速度の変動などの種々の要因によってアーク電圧
波形又は溶接電流波形自体が乱れた場合にも波形の乱れ
の影響を受けにくいように信号処理されるため、ビード
端を誤検出することなく、溶接過程で溶接継手のビード
端位置を確実且つ高精度に検出し、溶接継手の既設ビー
ドと新設ビードとビード継ぎ部の良好な溶接品質を安定
して確保できるという効果を有する。
As described above, the present invention detects the arc voltage or welding current during welding and the rotating position of the arc when welding is performed on the workpiece by the high-speed rotating arc welding method. The arc voltage waveform or the welding current waveform is integrated over two predetermined angular ranges of the arc rotation position for each rotation of the arc, and a deviation signal, which is the difference between the integrated values, is calculated for each arc rotation. The difference between the deviation signal and the average value of the deviation signal calculated in advance within a predetermined distance before the position where the welding torch starts the bead end detection control from the point in time when the detection control start position is reached is determined by one rotation of the arc. It is determined that the welding torch has reached the end of the existing bead when the amount of change per predetermined number of revolutions, predetermined time or predetermined number of signals exceeds a predetermined threshold value. The welding arc itself serves as a sensor because it performs a predetermined connection process between the bead and the newly-formed bead, and is not affected by deformation such as thermal distortion or shrinkage due to welding, bending of the wire, etc. Even if the arc voltage waveform or welding current waveform itself is disturbed due to various factors such as turbulence or fluctuations in the wire feeding speed, signal processing is performed so as to be hardly affected by the turbulence of the waveform. Without this, there is an effect that the bead end position of the welded joint is reliably and accurately detected in the welding process, and good welding quality of the existing bead, the new bead, and the bead joint of the welded joint can be stably secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるビード端部の検出装置
を示すブロック図である。
FIG. 1 is a block diagram showing a bead end detecting device according to an embodiment of the present invention.

【図2】同ビード端部の検出装置の変曲点判定器の内部
構成を示すブロック図である。
FIG. 2 is a block diagram showing an internal configuration of an inflection point determiner of the bead end detection device.

【図3】溶接継手と電極ノズルの関係を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a relationship between a weld joint and an electrode nozzle.

【図4】溶接継手に電極ノズルで溶接が行われている状
態を示す斜視図である。
FIG. 4 is a perspective view showing a state where welding is performed on a weld joint by an electrode nozzle.

【図5】電極ノズルのワイヤの回転軌跡と積分器で積分
するアーク電圧のCf 側とCr側の対象角度範囲の様態
を示す説明図である。
FIG. 5 is an explanatory diagram showing a rotation locus of a wire of an electrode nozzle and an aspect of a target angle range on the Cf side and the Cr side of an arc voltage integrated by an integrator.

【図6】ビード端部の検出方法の原理を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing the principle of a method of detecting a bead end;

【図7】2つの所定角度範囲のアーク電圧波形の積分値
の差を示す信号の波形図である。
FIG. 7 is a waveform diagram of a signal indicating a difference between integral values of arc voltage waveforms in two predetermined angle ranges.

【図8】溶接継手に対するビード端部の検出装置の検出
手順を示す説明図である。
FIG. 8 is an explanatory diagram showing a detection procedure of a bead end detection device with respect to a weld joint.

【図9】ビード端部の検出装置の各部位における信号波
形を示す波形図である。
FIG. 9 is a waveform chart showing signal waveforms at various parts of the bead end detection device.

【図10】従来のアークセンサによる開先倣い制御方法
を示す説明図である。
FIG. 10 is an explanatory view showing a groove tracing control method using a conventional arc sensor.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶接トーチの電極ノズルの先端に回転円
運動を与えてワイヤ先端に発生するアークを高速回転さ
せながら溶接する高速回転アーク溶接法において、 溶接中のアーク電圧または溶接電流とアークの回転位置
とを検出し、アークの1回転毎にアーク回転位置の2つ
の所定角度範囲についてアーク電圧波形または溶接電流
波形を積分して、その積分値の差である偏差信号をアー
ク1回転毎に演算し、溶接トーチがビード端検出制御を
始める位置に到達した時点より、偏差信号と溶接トーチ
がビード端検出制御を始まる位置より、所定距離手前の
範囲であらかじめ演算しておいた偏差信号の平均値との
差をアーク1回転毎に積算し、その積算値の所定回転
数、所定時間或いは所定信号数当りの変化量が所定のし
きい値を越えた時に溶接トーチが既設ビード端に到達し
たと判定して既設ビードと新設ビードの所定のつなぎ処
理を行うようにしたことを特徴とするビード端部の検出
方法。
In a high-speed rotary arc welding method in which welding is performed while giving a rotating circular motion to the tip of an electrode nozzle of a welding torch and rotating an arc generated at the tip of a wire at a high speed, the arc voltage or welding current during welding and the arc current are controlled. A rotation position is detected, an arc voltage waveform or a welding current waveform is integrated for two predetermined angular ranges of the arc rotation position for each rotation of the arc, and a deviation signal, which is a difference between the integrated values, is generated for each rotation of the arc. The deviation signal is calculated from the time the welding torch reaches the position where the bead end detection control is started, and the average of the deviation signal calculated in advance within a predetermined distance before the position where the welding torch starts the bead end detection control. The difference from the value is integrated for each rotation of the arc, and welding is performed when the amount of change of the integrated value for a predetermined number of rotations, a predetermined time, or a predetermined number of signals exceeds a predetermined threshold. Detection method of bead end over switch is characterized in that as it is determined to have reached the existing bead end performs predetermined boundary processing the existing bead with new beads.
【請求項2】 高速回転アーク溶接法により溶接する溶
接トーチとワーク間のアーク電圧又は溶接電流を検出す
るアーク電圧検出器又は溶接電流検出器と、電極ノズル
の回転角度位置を検出する回転位置検出器と、アーク電
圧検出器又は溶接電流検出器の検出信号を積分する2つ
の積分器と、アークの回転の2つの所定角度範囲におい
てのみ上記積分器が積分するようにその駆動信号を回転
位置検出器の位置検出信号に基づいて出力するタイミン
グパルス発生器と、2つの積分器によって積分された検
出信号の積分値の差である偏差信号を求める第1差動ア
ンプと、第1差動アンプから出力された偏差信号の平均
値を演算する平均値演算器と、溶接トーチの既設ビード
端手前の所望移動距離の間だけ平均値演算器を動作させ
る駆動信号を出力するビード端検出制御タイミング指令
発生器と、第1差動アンプの偏差信号と平均値演算器の
平均値との差である差分出力値を求める第2差動アンプ
と、ビード端検出制御タイミング指令発生器の駆動信号
終了時点から第2差動アンプ差分出力値をアーク1回転
毎に積算して積算値を演算する積算器と、積算器の積算
値の所定回転数、所定時間或いは所定信号数当たりの変
化量と所定のしきい値とを比較し、その変化量が所定の
しきい値を越えた時に溶接トーチが既設ビード端にきた
ことを示すビード端検出信号を出力するビード端判定器
とを備えてなることを特徴とするビード端部の検出装
置。
2. An arc voltage detector or a welding current detector for detecting an arc voltage or a welding current between a welding torch and a workpiece to be welded by a high-speed rotating arc welding method, and a rotation position detection for detecting a rotation angle position of an electrode nozzle. Detector, two integrators for integrating detection signals of an arc voltage detector or a welding current detector, and rotational position detection of the drive signal so that the integrator integrates only in two predetermined angular ranges of arc rotation. A timing pulse generator that outputs a signal based on a position detection signal of a detector, a first differential amplifier that obtains a deviation signal that is a difference between integrated values of detection signals integrated by two integrators, and a first differential amplifier. An average value calculator for calculating the average value of the output deviation signals and a drive signal for operating the average value calculator only for a desired moving distance before the existing bead end of the welding torch are output. A bead end detection control timing command generator, a second differential amplifier for obtaining a difference output value which is a difference between the deviation signal of the first differential amplifier and the average value of the average value calculator, and a bead end detection control timing command. An integrator for calculating an integrated value by integrating the differential output value of the second differential amplifier for each rotation of the arc from the end of the drive signal of the generator; a predetermined number of rotations, a predetermined time, or a predetermined number of signals of the integrated value of the integrator A bead end determiner that compares a change amount per hit with a predetermined threshold value and outputs a bead end detection signal indicating that the welding torch has come to the existing bead end when the change amount exceeds the predetermined threshold value. And a bead end detecting device.
JP12064492A 1992-05-13 1992-05-13 Bead edge detection method and device Expired - Lifetime JP2616633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12064492A JP2616633B2 (en) 1992-05-13 1992-05-13 Bead edge detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12064492A JP2616633B2 (en) 1992-05-13 1992-05-13 Bead edge detection method and device

Publications (2)

Publication Number Publication Date
JPH05318122A JPH05318122A (en) 1993-12-03
JP2616633B2 true JP2616633B2 (en) 1997-06-04

Family

ID=14791330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12064492A Expired - Lifetime JP2616633B2 (en) 1992-05-13 1992-05-13 Bead edge detection method and device

Country Status (1)

Country Link
JP (1) JP2616633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488756B1 (en) * 2002-07-24 2005-05-11 대우조선해양 주식회사 Automatic detecting method for welding robot by the rotating partition

Also Published As

Publication number Publication date
JPH05318122A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
US6429404B1 (en) Method and apparatus for determining seam tracking control of arc welding
JP2616633B2 (en) Bead edge detection method and device
JP2611604B2 (en) Method and apparatus for detecting end of weld joint
JP2699837B2 (en) Method and apparatus for detecting weld joint start end
JP4854860B2 (en) Welding line scanning determination device and scanning control device
JP5093189B2 (en) Welding line scanning control method and apparatus
JP3230476B2 (en) Root gap detection method in arc welding
JPH07121458B2 (en) Method and device for detecting end of welded joint
JPH11883A (en) Automatic teaching method for robot movement, locus correcting method for robot, and control method for welding robot
JPH07121457B2 (en) Method and device for detecting end of welded joint
JPH07121456B2 (en) Method and device for detecting end of welded joint
JP3323935B2 (en) Arc sensor
JP3209138B2 (en) Welding condition adaptive control method
JP2909981B2 (en) Rotary arc welding method for lap joints
JP3209139B2 (en) Welding condition adaptive control method
JP3075038B2 (en) Arc sensor
JPH0669626B2 (en) Automatic groove profile control method in short arc welding
KR100432526B1 (en) Method for prevent collision and automatically track weld wire of welding torch
JPH0698490B2 (en) Corner detection method in fillet welding
JP3248417B2 (en) Arc sensor device
JPH09253857A (en) Method for controlling profiling of welding line and device therefor
JPH0999369A (en) Arc sensor device
JPH0671664B2 (en) How to detect temporary beads
JPH01148465A (en) High-speed rotating arc pulse fillet welding method
JPH0461754B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16