JP2615903B2 - Haze evaluation method for semiconductor wafer surface - Google Patents
Haze evaluation method for semiconductor wafer surfaceInfo
- Publication number
- JP2615903B2 JP2615903B2 JP63226902A JP22690288A JP2615903B2 JP 2615903 B2 JP2615903 B2 JP 2615903B2 JP 63226902 A JP63226902 A JP 63226902A JP 22690288 A JP22690288 A JP 22690288A JP 2615903 B2 JP2615903 B2 JP 2615903B2
- Authority
- JP
- Japan
- Prior art keywords
- haze
- semiconductor wafer
- wafer surface
- mean square
- root
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】 〔概要〕 半導体ウエハ表面のヘイズ評価法に関し, ヘイズ強度の評価を客観的に行うことを目的とし, 半導体ウエハ表面の凹凸を測定し,その凹凸のプロフ
ィルの持つ変動から自乗平均平方根振幅,或いは自乗平
均平方根傾斜角,或いは自乗平均平方根波長を求め,該
振幅或いは該傾斜角或いは該波長の値でもって該ウエハ
表面のヘイズ強度を評価する半導体ウエハ表面のヘイズ
評価法により構成する。DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding a haze evaluation method for a semiconductor wafer surface, the purpose of which is to objectively evaluate the haze intensity. Root-mean-square amplitude, root-mean-square inclination, or root-mean-square wavelength is obtained, and the haze intensity of the semiconductor wafer surface is evaluated by the haze intensity of the wafer surface using the amplitude, the inclination angle, or the value of the wavelength. Configure.
本発明は半導体ウエハ表面のヘイズ評価法に関する。 The present invention relates to a method for evaluating haze on a semiconductor wafer surface.
半導体ウエハの表面に光にあてた時,光のあたってい
る部分が白くくもって見えることがある。このようなく
もりはヘイズと言われ,このくもりが大きい時は半導体
デイバイスを形成する基板として不適当であること知ら
れている。しかし,ヘイズ強度を信頼性よく客観的に評
価することが難しく,このため,ヘイズ強度の客観的評
価法を開発する必要がある。When exposed to light on the surface of a semiconductor wafer, the part that is exposed to light may appear white. Such a cloud is called haze, and it is known that when the cloud is large, the cloud is unsuitable as a substrate for forming a semiconductor device. However, it is difficult to objectively evaluate the haze strength with high reliability, and therefore, it is necessary to develop an objective evaluation method of the haze strength.
半導体デバイスの集積度が向上するにつれて形成する
酸化膜が薄くなり,デバイスの動作領域も薄くなってき
ている。このため,デバイスの電気特性はウエハ表面の
影響を受け易く,表面への微粒子の付着,表面汚染,表
面凹凸,表面欠陥等が特性に大きな影響を及ぼす。As the degree of integration of semiconductor devices increases, oxide films formed become thinner, and the operating regions of devices also become thinner. For this reason, the electrical characteristics of the device are easily affected by the wafer surface, and adhesion of fine particles to the surface, surface contamination, surface irregularities, surface defects, and the like greatly affect the characteristics.
従来,半導体ウエハの受入れ検査では暗室でウエハに
光を照射し,ヘイズの有無を人間が一枚づつ肉眼で調べ
ている。ヘイズがいかなる原因から生じるものであるか
は必ずしも明確ではない,ヘイズが強いとデバイスの電
気特性に悪い影響を及ぼすことが経験的に知られてい
て,ウエハの良否を判定する有効な検査法になってい
る。2. Description of the Related Art Conventionally, in an acceptance inspection of a semiconductor wafer, light is irradiated to the wafer in a dark room, and a human examines the presence or absence of haze one by one with the naked eye. It is not always clear what the haze is caused by. It is empirically known that strong haze has a bad effect on the electrical characteristics of devices, and it is an effective inspection method to judge the quality of wafers. Has become.
しかし,従来かかる検査の複数の人間が肉眼で行って
いるため,個人差が大きく,各種のヘイズ状態に対する
写真試料,限界見本等多く準備してもヘイズの判定には
なおかつ個人差があり,観客的な判定が困難であった。However, since a plurality of humans have conventionally performed such an inspection with the naked eye, individual differences are large. Even if a large number of photographic samples and limit samples for various haze states are prepared, there is still individual difference in the judgment of haze. Determination was difficult.
従って,半導体ウエハ良否の判定にあいまいさが生じ
ていた。本発明は,かかるあいまいさをなくしてヘイズ
強度の評価を客観的に求め,半導体ウエハ良否の判定に
使用することにより半導体デバイスの生産に寄与するこ
とを目的とする。Therefore, ambiguity has occurred in the determination of the quality of the semiconductor wafer. An object of the present invention is to eliminate the ambiguity, objectively evaluate the haze intensity, and use it for determining the quality of a semiconductor wafer to contribute to the production of semiconductor devices.
上記課題は、半導体ウエハ表面の凹凸のプロフィルを
測定し、該プロフィルの変動が持つ自乗平均平方根振
幅、或いは自乗平均平方根傾斜角、或いは自乗平均平方
根波長を求め、該振幅或いは該傾斜角或いは該波長の値
でもって該ウエハ表面のヘイズ強度を評価することを特
徴とする半導体ウエハ表面のヘイズ評価法により解決さ
れる。The object is to measure a profile of unevenness on the surface of a semiconductor wafer, determine a root-mean-square amplitude, or a root-mean-square inclination angle, or a root-mean-square wavelength having a variation in the profile, and obtain the amplitude or the inclination angle or the wavelength. The haze evaluation method for a semiconductor wafer surface is characterized in that the haze intensity of the wafer surface is evaluated by the value of (1).
本発明は半導体ウエハのヘイズ強度がウエハ表面の凹
凸のプロフィルと大きな相関を持っているという新しい
実験事実に基づいている。実施例で示すようにヘイズの
発生にはウエハ表面の凹凸が関与していることは確か
で,人間が肉眼で判定するヘイズ強度はウエハ表面の凹
凸のプロフィルの持つ変動から求めた自乗平均平方根振
幅,或いは自乗平均平方根傾斜角,或いは自乗平均平方
根波長と大きな相関を持っている。ヘイズ強度は複数の
判定者により判定に差を生じることはあるとしても,各
判定者毎に見るとヘイズ強度はウエハ表面の凹凸のプロ
フィルから求めた自乗平均平方根振幅,或いは自乗平均
平方根傾斜角,或いは自乗平均平方根波長の値と大きな
相関を持っている。The present invention is based on a new experimental fact that the haze intensity of a semiconductor wafer has a great correlation with the profile of the unevenness on the wafer surface. As shown in the examples, it is certain that unevenness of the wafer surface is involved in the generation of haze, and the haze intensity determined by the human eye is the root mean square amplitude determined from the variation in the profile of the unevenness of the wafer surface. Or a root mean square inclination angle or a root mean square wavelength. Although the haze intensity may cause a difference in the judgment by a plurality of judges, the haze intensity for each judge is determined by the root mean square amplitude or the root mean square inclination angle obtained from the profile of the unevenness on the wafer surface. Alternatively, it has a large correlation with the value of the root mean square wavelength.
従って,ヘイズ強度の評価にウエハ表面の凹凸のプロ
フィルの持つ変動から求めた自乗平均平方根振幅の値,
或いは自乗平均平方根傾斜角の値,或いは自乗平均平方
根波長の値を採用し,その値を複数の判定者による平均
的ヘイズ強度或いは経験豊富な判定者によるヘイズ強度
に置き換えて,客観的にヘイズ強度を評価することがで
きる。Therefore, the root-mean-square amplitude value obtained from the fluctuation of the profile of the unevenness on the wafer surface was used to evaluate the haze intensity,
Alternatively, the value of the root-mean-square inclination angle or the value of the root-mean-square wavelength is adopted, and the value is replaced with an average haze intensity by a plurality of judges or a haze intensity by an experienced judge to objectively determine the haze intensity. Can be evaluated.
第4図はよく知られたタリステップによる凹凸測定の
説明図である。FIG. 4 is an explanatory diagram of unevenness measurement by a well-known tally step.
タリステップの主要部は鉄心3と,それに固定された
触針2と,鉄心3を励起する1次コイル4と,鉄心3の
上下動により誘起電圧を発生する2次コイル5からな
る。The main part of the tally step includes an iron core 3, a stylus 2 fixed thereto, a primary coil 4 for exciting the iron core 3, and a secondary coil 5 for generating an induced voltage by the vertical movement of the iron core 3.
半導体ウエハ1の表面を水平にしてタリステップを水
平に移動すれば触針2は半導体ウエハ1の表面に接触し
たまま移動する。そのとき,ウエハ表面の凹凸に応じた
電圧が2次コイル5に誘起されるので,移動距離と誘起
電圧からウエハ表面の凹凸のプロフィルを求めることが
できる。When the surface of the semiconductor wafer 1 is leveled and the tally step is moved horizontally, the stylus 2 moves while being in contact with the surface of the semiconductor wafer 1. At this time, since a voltage corresponding to the unevenness of the wafer surface is induced in the secondary coil 5, the profile of the unevenness on the wafer surface can be obtained from the moving distance and the induced voltage.
第5図はその凹凸のプロフィルを説明する図で,xはウ
エハ上の位置をある定点から計った距離であり、f
(x)はx点における触針2の高さである。FIG. 5 is a diagram for explaining the profile of the unevenness, where x is the distance measured from a certain fixed point on the wafer, and f
(X) is the height of the stylus 2 at the point x.
第5図に示すような凹凸のプロフィルから,あるxの
区間lについて次の式で定義される自乗平均平方根振幅
(Root mean seuare roughness)Rrms,自乗自乗平均平
方根傾斜角(Root mean square slope)Θrms,自乗平均
平方根波長(Root mean seuare wave−length)λmrsを
求める。From the profile of the unevenness as shown in FIG. 5, the root mean square amplitude Rrms and the root mean square slope (Root mean square slope) Θrms defined by the following formula for a certain section l of x , A root mean square wave-length λmrs is obtained.
Rrms=(1/)(f(x)−m)2dx ただし,mはf(x)の平均値, Θrms=(1/)Θ(x)2dx ただし,Θ(x)=df(x)/dx λrms=2π(Rrms/Θrms) 第1図にヘイズ強度の異なる4種の試料(A乃至D)
について実測したヘイズ強度と自乗平均平方根振幅Rrms
の関係を示す。ヘイズ強度には判定者の肉眼によりあり
まいさがあるが,A,B,C,Dの順にヘイズ強度が大きくなっ
ていると複数の判定者全部が認めるように試料を選択
し,経験豊富な判定者によるヘイズ強度を横軸とした。Rrms = (1 /) (f (x) −m) 2 dx where m is the average value of f (x), Θrms = (1 /) Θ (x) 2 dx where Θ (x) = df (x ) / Dx λrms = 2π (Rrms / Θrms) Fig. 1 shows four samples with different haze intensities (A to D)
Haze intensity and root mean square amplitude Rrms
Shows the relationship. Although the haze intensity varies with the naked eye of the judge, the sample is selected so that all judges can recognize that the haze intensity increases in the order of A, B, C, and D. The abscissa indicates the haze strength of the tester.
第1図に見るようにヘイズ強度と自乗平均平方根振幅
Rrmsの間に強い相関関係を認めることができる。As shown in Fig. 1, haze intensity and root mean square amplitude
A strong correlation between Rrms can be observed.
同様に第2図にヘイズ強度と自乗平均平方根傾斜角Θ
rms(単位はmR(ミリラージアン))の関係を示す。こ
の場合もヘイズ強度と自乗平均平方根傾斜角Θrmsの間
に強い相関関係を認めることができる。Similarly, FIG. 2 shows the haze intensity and the root mean square inclination angle Θ
rms (unit is mR (milliradian)). Also in this case, a strong correlation can be recognized between the haze intensity and the root mean square inclination angle Θrms.
更に,第3図にヘイズ強度と自乗平均平方根波長λrm
s(単位はR/mm)の関係を示す。この場合もヘイズ強度
と自乗平均平方根波長λrmsの間に強い相関関係を認め
ることができる。FIG. 3 shows the haze intensity and the root mean square wavelength λrm.
Shows the relationship of s (unit is R / mm). Also in this case, a strong correlation can be recognized between the haze intensity and the root mean square wavelength λrms.
かかる実測結果に基づいて自乗平均平方根振幅Rrms,
或いは自乗平均平方根傾斜角Θrms,或いは自乗平均平方
根波長λrmsの値をもってヘイズ強度を客観的に評価す
ることができた。The root mean square amplitude Rrms,
Alternatively, the haze intensity could be objectively evaluated using the value of the root mean square inclination angle Θrms or the root mean square wavelength λrms.
なお,光学的位相シフト法を用いて光干渉により半導
体ウエハ表面の凹凸を非接触で測定することもできる。In addition, unevenness on the surface of the semiconductor wafer can be measured in a non-contact manner by optical interference using an optical phase shift method.
第6図はかかる光干渉式凹凸測定の例を説明する図で
ある。単色光は反射板6によって反射し,対物レンズ7
を通過後ビームスプリッタ8に入射する。一部は反射し
て凹凸の少ないレファレンス9表面に,残りは透過して
半導体ウエハ1表面に進む。各々の光はレファレンス9
表面及びウエハ1表面で反射後、,ビームスプリッタ8
で再び合流する。このときウエハ表面1の凹凸に応じて
光路差が生じ干渉を起こす。干渉によって起こる光強度
分布をCCDラインセンサ10で測定してウエハ1表面の凹
凸を決定する。かかる方法により半導体ウエハ1表面の
凹凸のプロフィルに対応する光強度分布をCCDラインセ
ンサ10上でいっぺんに捕捉することができる。FIG. 6 is a view for explaining an example of such an optical interference type unevenness measurement. The monochromatic light is reflected by the reflector 6 and the objective lens 7
After passing through the beam splitter 8. A part of the light is reflected to the surface of the reference 9 with less unevenness, and the rest is transmitted to the surface of the semiconductor wafer 1. Each light is a reference 9
After being reflected on the surface and the surface of the wafer 1, the beam splitter 8
To join again. At this time, an optical path difference occurs according to the unevenness of the wafer surface 1 and causes interference. The light intensity distribution caused by the interference is measured by the CCD line sensor 10 to determine the unevenness on the surface of the wafer 1. By this method, the light intensity distribution corresponding to the profile of the unevenness on the surface of the semiconductor wafer 1 can be captured on the CCD line sensor 10 at a time.
なお,測定を自動化して半導体ウエハ表面の凹凸のプ
ロフィルを求め,そのデータから自乗平均平方根振幅Rr
ms,自乗平均平方根傾斜角Θrms,自乗平均平方根波長λr
msを求め,半導体ウエハ表面のヘイズ強度の評価を行
い,客観的に半導体ウエハの良否を判定することも可能
である。The measurement was automated to determine the profile of the irregularities on the surface of the semiconductor wafer, and the root mean square amplitude Rr
ms, root mean square tilt angle Θrms, root mean square wavelength λr
It is also possible to determine ms and evaluate the haze intensity of the semiconductor wafer surface to objectively judge the quality of the semiconductor wafer.
以上説明した様に,本発明によれば,半導体ウエハ表
面のヘイズ強度を客観的に評価することができる。半導
体ウエハを大量に扱う工場等において半導体ウエハの良
否の判定に本発明の評価法は著しい効果を奏するもの
で,半導体デバイスの生産に寄与するところが大きい。As described above, according to the present invention, the haze intensity on the surface of a semiconductor wafer can be objectively evaluated. The evaluation method of the present invention has a remarkable effect in determining the quality of a semiconductor wafer in a factory or the like that handles a large amount of semiconductor wafers, and greatly contributes to the production of semiconductor devices.
第1図はヘイズ強度とRrmsの関係, 第2図はヘイズ強度とΘrmsの関係, 第3図はヘイズ強度とλrmsの関係, 第4図はタリステップによる凹凸測定の説明図, 第5図は凹凸のプロフィル, 第6図は光干渉式凹凸測定の説明図 である。図において, 1は半導体ウエハ, 2は触針, 3は鉄心, 4は1次コイル, 5は2次コイル, 6は反射板, 7は対物レンズ, 8はビームスプリッタ, 9はレファレンス, 10はCCDラインセンサ を表す。 FIG. 1 shows the relationship between haze intensity and Rrms, FIG. 2 shows the relationship between haze intensity and Θrms, FIG. 3 shows the relationship between haze intensity and λrms, FIG. Fig. 6 is an explanatory view of the optical interference type unevenness measurement. In the figure, 1 is a semiconductor wafer, 2 is a stylus, 3 is an iron core, 4 is a primary coil, 5 is a secondary coil, 6 is a reflector, 7 is an objective lens, 8 is a beam splitter, 9 is a reference, and 10 is a reference. Represents a CCD line sensor.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−143939(JP,A) 特開 昭63−143830(JP,A) 特開 昭63−143831(JP,A) 特開 昭60−239919(JP,A) 特開 平1−165941(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-143939 (JP, A) JP-A-63-143830 (JP, A) JP-A-63-1443831 (JP, A) JP-A 60-143 239919 (JP, A) JP-A-1-1655941 (JP, A)
Claims (1)
定し、該プロフィルの変動が持つ自乗平均平方根振幅、
或いは自乗平均平行根傾斜角、或いは自乗平均平方根波
長を求め、該振幅或いは該傾斜角或いは該波長の値でも
って該ウエハ表面のヘイズ強度を評価することを特徴と
する半導体ウエハ表面のヘイズ評価法。A profile of irregularities on a surface of a semiconductor wafer is measured, and a root-mean-square amplitude of a variation in the profile is measured.
Alternatively, a haze evaluation method for a semiconductor wafer surface, wherein a root mean square parallel inclination angle or a root mean square wavelength is obtained, and the haze intensity of the wafer surface is evaluated based on the amplitude, the inclination angle, or the value of the wavelength. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63226902A JP2615903B2 (en) | 1988-09-09 | 1988-09-09 | Haze evaluation method for semiconductor wafer surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63226902A JP2615903B2 (en) | 1988-09-09 | 1988-09-09 | Haze evaluation method for semiconductor wafer surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0274051A JPH0274051A (en) | 1990-03-14 |
JP2615903B2 true JP2615903B2 (en) | 1997-06-04 |
Family
ID=16852386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63226902A Expired - Lifetime JP2615903B2 (en) | 1988-09-09 | 1988-09-09 | Haze evaluation method for semiconductor wafer surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2615903B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5239049B2 (en) * | 2007-07-31 | 2013-07-17 | レーザーテック株式会社 | Roughness measuring method and roughness measuring apparatus |
US8269960B2 (en) * | 2008-07-24 | 2012-09-18 | Kla-Tencor Corp. | Computer-implemented methods for inspecting and/or classifying a wafer |
WO2017006880A1 (en) * | 2015-07-03 | 2017-01-12 | Toto株式会社 | Bonding capillary |
JP6064308B2 (en) * | 2015-07-03 | 2017-01-25 | Toto株式会社 | Bonding capillary |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60239919A (en) * | 1984-05-14 | 1985-11-28 | Sony Corp | Flexible magnetic disk |
JPH0787208B2 (en) * | 1986-12-08 | 1995-09-20 | 日立電子エンジニアリング株式会社 | Face plate defect detection optical device |
JPS63143830A (en) * | 1986-12-08 | 1988-06-16 | Hitachi Electronics Eng Co Ltd | Haze-defect detecting method |
-
1988
- 1988-09-09 JP JP63226902A patent/JP2615903B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0274051A (en) | 1990-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4789393B2 (en) | Overlapping alignment mark design | |
CN102818528B (en) | Apparatus and method for inspecting an object with increased depth of field | |
TW201942539A (en) | Sample inspection using topography | |
US7505144B2 (en) | Copper CMP flatness monitor using grazing incidence interferometry | |
Ishihara et al. | High-speed surface measurement using a non-scanning multiple-beam confocal microscope | |
KR20130095211A (en) | Device for noncontact determination of edge profile at a thin disk-shaped object | |
KR20010070521A (en) | Semiconductor wafer inspection machine | |
TWI623725B (en) | Method for providing high accuracy inspection or metrology in a bright-field differential interference contrast system | |
KR20100110321A (en) | Inspecting apparatus and inspecting method | |
US20240183655A1 (en) | Measuring apparatus and method for roughness and/or defect measurement on a surface | |
US20200357704A1 (en) | Laser triangulation sensor system and method for wafer inspection | |
JPH09218017A (en) | Method and equipment for measuring thickness of film | |
US6646735B2 (en) | Surface inspection apparatus and surface inspection method | |
JP2615903B2 (en) | Haze evaluation method for semiconductor wafer surface | |
US7767982B2 (en) | Optical auto focusing system and method for electron beam inspection tool | |
JPS6330570B2 (en) | ||
CN105277131B (en) | Measuring device and measuring method of three-dimensional pore structure | |
WO2011148138A1 (en) | Apparatus and method for locating the centre of a beam profile | |
US11761906B2 (en) | Optical device | |
JPH06302492A (en) | Exposure condition inspection pattern, exposure original plate and exposure method using them | |
JP2000146528A (en) | Method for measuring optical aberration of positional deviation inspecting device and method for inspecting positional deviation | |
JP3570488B2 (en) | Measurement method of alloying degree of galvanized steel sheet using laser beam | |
JPH04289409A (en) | Substrate inspecting method | |
JP3338118B2 (en) | Method for manufacturing semiconductor device | |
JPS6342222B2 (en) |