JP2612191B2 - Application method - Google Patents

Application method

Info

Publication number
JP2612191B2
JP2612191B2 JP63225942A JP22594288A JP2612191B2 JP 2612191 B2 JP2612191 B2 JP 2612191B2 JP 63225942 A JP63225942 A JP 63225942A JP 22594288 A JP22594288 A JP 22594288A JP 2612191 B2 JP2612191 B2 JP 2612191B2
Authority
JP
Japan
Prior art keywords
temperature
semiconductor wafer
heating element
heating
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63225942A
Other languages
Japanese (ja)
Other versions
JPH0275378A (en
Inventor
英一 白川
雅文 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP63225942A priority Critical patent/JP2612191B2/en
Publication of JPH0275378A publication Critical patent/JPH0275378A/en
Application granted granted Critical
Publication of JP2612191B2 publication Critical patent/JP2612191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、塗布方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a coating method.

(従来の技術) 半導体集積回路の製造において、被処理体例えば半導
体ウエハにフオトレジストを塗布した後や、フォトレジ
スト膜の露光・現像時に上記半導体ウエハを加熱処理す
るベーキング工程がある。
(Prior Art) In the manufacture of a semiconductor integrated circuit, there is a baking step of heating the semiconductor wafer after applying a photoresist to an object to be processed, for example, a semiconductor wafer, or exposing and developing a photoresist film.

このベーキングは一般に、発熱板により半導体ウエハ
を加熱してフォトレジスト膜を熱処理するものである
が、上記発熱体に上記半導体ウエハを載置し密着状態に
て熱処理する場合、発熱板上に存在するごみが半導体ウ
エハの裏面に付着したり、また、半導体ウエハの反りに
より密着が不完全となるため加熱温度が不均一になりや
すい。
Generally, this baking is to heat the photoresist film by heating the semiconductor wafer with a heating plate. However, when the semiconductor wafer is placed on the heating element and heat-treated in close contact, the baking is present on the heating plate. The heating temperature tends to be non-uniform because dust adheres to the back surface of the semiconductor wafer and the adhesion is incomplete due to the warpage of the semiconductor wafer.

上記点を考慮して、最近、上記半導体ウエハを発熱板
の上面から所定距離の間隔を設け近接配置して加熱する
装置、いわゆるプロキシミティベーキング装置と呼称さ
れる装置が実用されている。
In consideration of the above points, recently, an apparatus called a proximity baking apparatus, which heats the semiconductor wafer by closely arranging the semiconductor wafer at a predetermined distance from the upper surface of the heat generating plate, that is, a so-called proximity baking apparatus, has been put into practical use.

例えば、第2図に示すように、電源装置(1)により
ヒーター(2)を通電して発熱させ、この発熱により発
熱板(3)を加熱昇温する。そして、この発熱板(3)
の上面部にピン(4)を例えば3個突出する如く設けて
半導体ウエハ(5)を載置し、この半導体ウエハ(5)
下面と上記発熱体(3)上面との間隔を0.1〜1mm程度の
範囲に設定して上記半導体ウエハ(5)を加熱する。
For example, as shown in FIG. 2, the heater (2) is energized by the power supply device (1) to generate heat, and the generated heat causes the heating plate (3) to heat up. And this heating plate (3)
The semiconductor wafer (5) is mounted on the upper surface of the semiconductor wafer (5) with, for example, three pins (4) protruding therefrom.
The distance between the lower surface and the upper surface of the heating element (3) is set in a range of about 0.1 to 1 mm to heat the semiconductor wafer (5).

また、上記発熱体(3)に、熱電対や測温抵抗体等の
測温素子(6)を取着して温度測定装置(7)により上
記発熱板(3)の温度を検出し、この検出結果に基づい
て温度制御装置(8)を介して電源装置(1)を制御す
ることにより発熱板(3)を所定の温度に調整し、半導
体ウエハ(5)を加熱するように構成したものである。
A temperature measuring element (6) such as a thermocouple or a resistance temperature detector is attached to the heating element (3), and the temperature of the heating plate (3) is detected by a temperature measuring device (7). The heating plate (3) is adjusted to a predetermined temperature by controlling the power supply device (1) via the temperature control device (8) based on the detection result, and the semiconductor wafer (5) is heated. It is.

(発明が解決しようとする課題) しかしながら、上記従来装置では、発熱板(3)自身
は一般に熱容量を大きく形成することにより温度の変動
を少く且つ均一な温度分布が得られるものの、半導体ウ
エハ(5)と発熱板(3)との間隔(ギャップ)が広い
と、上記半導体ウエハ(5)と発熱板(3)との温度差
が大きくなると共に、発熱板(3)の昇温降温に対する
半導体ウエハ(5)温度の応答性が悪化するのは避け難
い。また、発熱板(3)の温度制御の最適条件が半導体
ウエハ(5)の温度制御の最適条件と一致するとは限ら
ない。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional apparatus, although the heating plate (3) itself generally has a large heat capacity, the temperature fluctuation can be reduced and a uniform temperature distribution can be obtained. When the distance (gap) between the heating plate (3) and the heating plate (3) is large, the temperature difference between the semiconductor wafer (5) and the heating plate (3) increases, and the semiconductor wafer with respect to the temperature rise and fall of the heating plate (3). (5) It is unavoidable that the temperature responsiveness deteriorates. In addition, the optimum condition for controlling the temperature of the heating plate (3) does not always match the optimum condition for controlling the temperature of the semiconductor wafer (5).

一方、上記間隔が狭いほど上記応答性・温度制御の点
は改善できるが、狭すぎると半導体ウエハ(5)の反り
等により上記発熱板(3)と半導体ウエハ(5)が接触
する可能性がある。
On the other hand, the shorter the interval is, the better the responsiveness and temperature control can be. However, if the interval is too narrow, the heating plate (3) may come into contact with the semiconductor wafer (5) due to the warpage of the semiconductor wafer (5). is there.

本発明は、上記事情に対処してなされたもので、被処
理体の温度応答性が良く、加熱温度が安定した塗布方法
を提供するものである。
The present invention has been made in view of the above circumstances, and provides a coating method in which the temperature response of an object to be processed is good and the heating temperature is stable.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 請求項(1)の発明は、被処理体上に液状物を塗布し
た後、この被処理体を発熱体によって所定の温度に加熱
する工程を有する塗布方法において、前記発熱体の上方
にて測定対象の温度を非接触で検出する温度検出装置を
用い、前記発熱体の温度を非接触で検出する第1の工程
と、前記第1の工程の後に、前記発熱体における加熱面
側に被処理体を位置させる第2の工程と、前記第2の工
程の後に、被処理体の温度を前記温度検出装置によって
非接触で検出しつつ、当該検出結果に基づいて前記発熱
体の発熱制御を行う第3の工程とを備えたことを特徴と
する、塗布方法である。
(Means for Solving the Problems) The invention according to claim (1) is a coating method comprising a step of applying a liquid material on an object to be processed, and then heating the object to be processed to a predetermined temperature by a heating element. A first step of detecting the temperature of the heating element in a non-contact manner using a temperature detection device that detects the temperature of the measurement target in a non-contact manner above the heating element, and after the first step, A second step of positioning the target object on the heating surface side of the heating element, and after the second step, the temperature of the target object is detected in a non-contact manner by the temperature detection device, and based on the detection result. And a third step of controlling the heat generation of the heating element.

また請求項(2)の発明は、被処理体上に液状物を塗
布した後、この被処理体を発熱体によって所定の温度に
加熱する工程を有する塗布方法において、前記発熱体の
上方にて測定対象の温度を非接触で検出する温度検出装
置を用い、前記発熱体の温度を非接触で検出する第1の
工程と、前記第1の工程の後に、発熱体における加熱面
から離して被処理体をこの発熱体の加熱面側に位置させ
る第2の工程と、前記第2の工程の後に、被処理体の温
度を前記温度検出装置によって非接触で検出しつつ、当
該検出結果に基づいて前記発熱体の発熱制御を行う第3
の工程とを備えたことを特徴とする、塗布方法である。
According to a second aspect of the present invention, there is provided a coating method including a step of applying a liquid material on a target object and then heating the target object to a predetermined temperature by a heating element. A first step of detecting the temperature of the heating element in a non-contact manner by using a temperature detection device for detecting the temperature of the measurement object in a non-contact manner; and A second step of positioning the processing object on the heating surface side of the heating element, and after the second step, while detecting the temperature of the processing object by the temperature detection device in a non-contact manner, based on the detection result. A third control for controlling the heat generation of the heating element
And a coating method.

(作用) 請求項(1)の発明は、発熱体、被処理体とも、非接
触で同一の温度検出装置を用いて測定し、そのデータに
基づき温度制御を行っている。その結果、従来の装置の
ように各々異なった測定系を用いるよりも、正確な温度
測定ができ、最適条件での温度制御が可能である。従っ
て、常に予め定められた温度で安定な熱処理が実行され
るので、安定した特性の塗膜を常に得られる。そして、
安定した熱処理は歩留まり向上に有効である。
(Function) In the invention of claim (1), both the heating element and the object to be processed are measured in a non-contact manner using the same temperature detection device, and the temperature is controlled based on the data. As a result, accurate temperature measurement can be performed and temperature control can be performed under optimum conditions, as compared with the case where different measurement systems are used as in a conventional apparatus. Therefore, stable heat treatment is always performed at a predetermined temperature, so that a coating film having stable characteristics can always be obtained. And
Stable heat treatment is effective for improving the yield.

また、請求項(2)の発明も同様に、発熱体、被処理
体とも非接触で同一の温度測定系にて測定し、その結果
に基づき温度制御を行っている。そのため、請求項
(1)と同じように最適な温度制御により所定の処理が
可能である。そして、被処理体を発熱体の加熱面から離
して位置させるようにしているので、例えば、レジスト
処理直後のまだレジスト液の乾燥していないウエハを処
理することができる。また、この構成により発熱体上に
存在するゴミが被処理体に付着することを防止できる。
Similarly, in the invention of claim (2), the heating element and the object to be processed are measured in the same temperature measurement system in a non-contact manner, and the temperature is controlled based on the result. Therefore, predetermined processing can be performed by optimal temperature control in the same manner as in claim (1). Since the object to be processed is positioned away from the heating surface of the heating element, it is possible to process, for example, a wafer immediately after the resist processing, in which the resist liquid has not been dried yet. In addition, with this configuration, dust present on the heating element can be prevented from adhering to the processing target.

(実 施 例) 以下、本発明方法をレジスト塗布工程後のベーキング
する塗布工程に適用した一実施例を図面を参照して説明
する。
(Embodiment) An embodiment in which the method of the present invention is applied to a baking coating process after a resist coating process will be described below with reference to the drawings.

先ず、塗布工程後のベーキング装置について説明す
る。
First, the baking device after the application step will be described.

発熱体、例えば電気的絶縁性を有し熱伝導体であるア
ルミナ等のセラミックス製で平板状に形成された発熱体
(9)の下面側には、電源装置(10)からの通電によっ
て発熱するヒーター(11)が取着されており、発熱体
(9)を加熱昇温可能に構成されている。また、上記発
熱体(9)の上面には、被処理体例えば半導体ウエハ
(12)を先端部で支持し、上記発熱体(9)上面と半導
体ウエハ(12)下面との間隔を所定の間隔例えば0.5mm
に設定するセラミックス製のピン(13)が3本突設され
ている。
A heating element, for example, a heating element (9) made of ceramics such as alumina which is an electrically insulating and heat conductor and is formed in a flat plate shape, generates heat by power supply from a power supply device (10). A heater (11) is attached, and the heating element (9) can be heated and heated. An object to be processed, for example, a semiconductor wafer (12) is supported on the upper surface of the heating element (9) at the tip, and the distance between the upper surface of the heating element (9) and the lower surface of the semiconductor wafer (12) is set to a predetermined distance. For example 0.5mm
There are three ceramic pins (13) protruding.

一方、発熱板(9)の中央部上方には、半導体ウエハ
(12)の表面から輻射される熱線(14)を検知するセン
サ(15)が配置されており、此のセンサ(15)の出力は
温度測定装置(16)に入力され、半導体ウエハ(12)の
中心部分の温度を非接触状態で光電的に検出可能に構成
されている。すなわち、一般に表面温度計、放射温度計
と呼称されている温度計を構成している。
On the other hand, a sensor (15) for detecting a heat ray (14) radiated from the surface of the semiconductor wafer (12) is disposed above the center of the heating plate (9), and the output of the sensor (15) is provided. Is input to a temperature measuring device (16), and is configured to be able to photoelectrically detect the temperature of the central portion of the semiconductor wafer (12) in a non-contact state. That is, it constitutes a thermometer generally called a surface thermometer or a radiation thermometer.

また、上記温度測定装置(16)は温度制御装置(17)
に接続されており、温度測定装置(16)による温度測定
結果に基づいて温度制御装置(17)により電源装置(1
0)を制御して発熱板(9)の加熱温度を自動調整し、
発熱板(9)からの輻射熱により光導体ウエハ(12)を
所定の予め定められた温度に加熱する如く構成されてい
る。上記のように発熱体を温度制御する手段が構成され
ている。
The temperature measuring device (16) is a temperature control device (17)
Is connected to the power supply (1) by the temperature control device (17) based on the temperature measurement result by the temperature measurement device (16).
0) to automatically adjust the heating temperature of the heating plate (9),
The photoconductor wafer (12) is configured to be heated to a predetermined temperature by radiant heat from the heating plate (9). The means for controlling the temperature of the heating element is configured as described above.

なお、上記発熱板(9)には、半導体ウエハ(12)を
搬入搬出する際半導体ウエハ(12)を発熱板(9)から
持ち上げるための昇降用ピン(図示せず)が設けられて
いる。また、半導体ウエハ(12)を発熱板(9)に搬送
する搬送装置(図示せず)、上記発熱板(9)ヒーター
(11)の側面下面部分を取囲むように断熱材(図示せ
ず)、および上記各部全体を囲む如くカバー(図示せ
ず)が設けられている。
The heating plate (9) is provided with elevating pins (not shown) for lifting the semiconductor wafer (12) from the heating plate (9) when loading and unloading the semiconductor wafer (12). Further, a transfer device (not shown) for transferring the semiconductor wafer (12) to the heating plate (9), a heat insulating material (not shown) so as to surround the lower surface of the side surface of the heating plate (9) heater (11). , And a cover (not shown) is provided so as to surround the whole of the above-mentioned parts.

次に、動作を説明する。 Next, the operation will be described.

先ず、半導体ウエハ(12)を発熱板(9)のピン(1
3)に載置する前に、予め発熱板(9)の温度を所定の
加熱処理温度例えば200℃程度の温度となるように、温
度測定装置(16)で発熱板(9)表面の温度を検出しつ
つ電源装置(10)によりヒーター(11)を通電制御して
発熱させ上記発熱板(9)を加熱する。
First, the semiconductor wafer (12) is placed on the pins (1
Before mounting on 3), the temperature of the surface of the heating plate (9) is measured by the temperature measuring device (16) so that the temperature of the heating plate (9) is set to a predetermined heat treatment temperature, for example, a temperature of about 200 ° C. While detecting, the heater (11) is energized and controlled by the power supply (10) to generate heat, thereby heating the heating plate (9).

そして、昇降用ピン(図示せず)を発熱板(9)上面
から突出させ、搬送装置(図示せず)により液状物例え
ばレジスト塗布後の半導体ウエハ(12)を搬入してレジ
スト塗布面を上にした状態にて上記昇降ピン(図示せ
ず)の先端部に乗せる。次に、この昇降ピン(図示せ
ず)を下降させて上記半導体ウエハ(12)をピン(13)
に乗せる。
Then, the lifting pins (not shown) are projected from the upper surface of the heating plate (9), and a liquid material, for example, a semiconductor wafer (12) after resist coating is carried in by a transfer device (not shown) to raise the resist coated surface upward. In this state, it is put on the tip of the elevating pin (not shown). Next, the elevating pins (not shown) are lowered to move the semiconductor wafer (12) to the pins (13).
Put on.

そして、半導体ウエハ(12)表面からの熱線(14)を
センサ(15)で検出し温度測定装置(16)によって温度
を測定し、上記半導体ウエハ(12)表面の温度が所定温
度例えば200℃になるように加熱する。
Then, a heat ray (14) from the surface of the semiconductor wafer (12) is detected by a sensor (15), and the temperature is measured by a temperature measuring device (16). Heat to become.

ここで、半導体ウエハ(12)の加熱および温度につい
て説明する。
Here, the heating and the temperature of the semiconductor wafer (12) will be described.

半導体ウエハ(12)は発熱板(9)の上面に設けられ
たピン(13)に乗っており、発熱板(9)とは0.5mm程
度の間隔を設けて配置されているので、対流は生じない
ため、半導体ウエハ(12)の加熱は主として熱伝導によ
って行われる。また、半導体ウエハ(12)はピン(13)
と点接触の状態で発熱板(9)から離れているため、こ
の発熱板(9)上面にごみが存在していても半導体ウエ
ハ(12)の下面に上記ごみが付着する可能性は低い。
Since the semiconductor wafer (12) rides on the pins (13) provided on the upper surface of the heating plate (9) and is arranged at an interval of about 0.5 mm from the heating plate (9), convection occurs. Therefore, heating of the semiconductor wafer (12) is mainly performed by heat conduction. The semiconductor wafer (12) is replaced with the pins (13)
Since the heat generating plate (9) is separated from the heat generating plate (9) in a state of point contact with the semiconductor wafer (12), there is a low possibility that the dust will adhere to the lower surface of the semiconductor wafer (12) even if there is dust on the upper surface of the heat generating plate (9).

さらに、上記半導体ウエハ(12)の熱による反りは例
えば6インチのシリコン(Si)半導体ウエハの場合0.1
〜0.2mm程度であり、上記半導体ウエハ(12)が発熱板
(9)上面に接触することもない。
Further, the warpage of the semiconductor wafer (12) due to heat is, for example, 0.1% in the case of a 6 inch silicon (Si) semiconductor wafer.
The semiconductor wafer (12) does not come into contact with the upper surface of the heating plate (9).

また、熱線を半導体ウエハ(12)とは非接触状態でセ
ンサ(15)で検知して温度を測定するので、温度検出速
度は速く、且つセンサ(15)による半導体ウエハ(12)
の部分温度低下も生じない。
Further, since the temperature is measured by detecting the heat rays with the sensor (15) in a non-contact state with the semiconductor wafer (12), the temperature detection speed is high and the semiconductor wafer (12) by the sensor (15) is used.
No partial temperature drop occurs.

したがって、半導体ウエハ(12)表面の温度を熱処理
期間中モニターしながらヒーター(11)の発熱制御を行
うため、昇温降温に対する応答性を速くすることができ
ると共に、半導体ウエハ(12)を正確に迅速に加熱する
ことが可能である。
Accordingly, since the heat generation of the heater (11) is controlled while monitoring the temperature of the surface of the semiconductor wafer (12) during the heat treatment, the response to the temperature rise and fall can be increased, and the semiconductor wafer (12) can be accurately formed. It is possible to heat quickly.

なお、半導体ウエハ(12)に塗布されているレジスト
の膜厚は、一般に数μm程度であり半導体ウエハ(12)
の厚さ0.5mm程度と比較して十分に薄いので、上記レジ
スト膜の温度と半導体ウエハ(12)表面温度とは同一温
度と見なして差支えない。
The thickness of the resist applied to the semiconductor wafer (12) is generally about several μm,
The thickness of the resist film and the surface temperature of the semiconductor wafer (12) can be regarded as the same temperature because the thickness of the resist film is sufficiently thin compared to about 0.5 mm.

従来装置においては、発熱板(9)自体は温度制御さ
れて所定の温度に設定されていたが、発熱板(9)と近
接して配置された半導体ウエハ(12)の温度は、この半
導体ウエハ(12)と上記発熱板(9)の昇温降温特性が
異なるため、半導体ウエハ(12)の温度が正確に発熱板
(9)の温度に追従しているとは言い難く、半導体ウエ
ハ(12)の温度制御は難しい。
In the conventional apparatus, the temperature of the heating plate (9) itself is controlled and set to a predetermined temperature. However, the temperature of the semiconductor wafer (12) disposed in close proximity to the heating plate (9) depends on the temperature of the semiconductor wafer (12). Since the temperature rise / fall characteristics of the heating plate (9) and the heating plate (9) are different, it is difficult to say that the temperature of the semiconductor wafer (12) accurately follows the temperature of the heating plate (9). Temperature control is difficult.

また、上記実施例においては、上記説明したように、
半導体ウエハ(12)自身の温度を測定するので、半導体
ウエハ(12)と発熱板(9)との間隔もそれほど厳格な
ものではなく広く設定でき、例えば0.5〜2mm程度の範囲
にしても支障なく半導体ウエハ(12)を加熱することが
可能である。
In the above embodiment, as described above,
Since the temperature of the semiconductor wafer (12) itself is measured, the distance between the semiconductor wafer (12) and the heating plate (9) is not so strict and can be set widely, for example, even if it is in the range of about 0.5 to 2 mm. It is possible to heat the semiconductor wafer (12).

上記のようにして半導体ウエハ(12)の加熱処理が終
了すると、昇降用ピン(図示せず)を発熱板(9)上に
突出させて処理が終了した半導体ウエハ(12)を持ち上
げ、搬送装置(図示せず)により搬出し、次に処理すべ
き半導体ウエハ(12)を搬入してセットし加熱する。
When the heating process of the semiconductor wafer (12) is completed as described above, lifting pins (not shown) are projected above the heating plate (9) to lift the processed semiconductor wafer (12), and the transfer device is provided. (Not shown), the semiconductor wafer (12) to be processed next is carried in, set and heated.

なお、上記実施例ではセンサ(15)を半導体ウエハ
(12)の中心部上方に配置して半導体ウエハ(12)の中
心部分の温度を検出測定し、この温度により加熱制御す
る構成について説明したが、他の方法、例えば半導体ウ
エハ(12)とセンサ(15)とを相対的に移動させて複数
箇所の温度を測定した平均温度を算出し、この温度に基
づいて温度制御するように構成してもよい。
In the above embodiment, the sensor (15) is arranged above the center of the semiconductor wafer (12), and the temperature of the center of the semiconductor wafer (12) is detected and measured, and the heating is controlled based on the temperature. In another method, for example, the semiconductor wafer (12) and the sensor (15) are relatively moved to calculate an average temperature measured at a plurality of locations, and the temperature is controlled based on this temperature. Is also good.

また、発熱板(9)をヒーター(11)によって加熱す
る例について説明したが、他の加熱方法例えば赤外線ラ
ンプを使用して加熱するように構成してもよい。
Further, the example in which the heating plate (9) is heated by the heater (11) has been described. However, another heating method, for example, an infrared lamp may be used to heat the heating plate (9).

さらに、上記実施例では、本発明をレジスト塗布後の
加熱処理装置に適用した例について説明したが、他の処
理、例えば現像液塗布後の熱処理、塗布後の塗膜の乾
燥、プラスチック材料の接着前の表面処理の加熱、印刷
抵抗器の熱処理等、加熱を必要とする工程など液状物を
塗布後熱処理する工程であれば何れにも適用できる。
Further, in the above embodiment, an example was described in which the present invention was applied to a heat treatment apparatus after application of a resist, but other treatments, such as heat treatment after application of a developer, drying of a coating film after application, and adhesion of a plastic material The present invention can be applied to any step of performing a heat treatment after applying a liquid material, such as a step requiring heating, such as heating of the preceding surface treatment and heat treatment of the printing resistor.

〔発明の効果〕〔The invention's effect〕

請求項(1)の発明は、発熱体と被処理体とを非接触
で同一の温度検出装置を用いて測定を行い、その結果に
基づき発熱体の温度制御をしているため、各々異なった
測定系を用いるよりも正確な温度測定ができ、最適な温
度制御が可能である。従って、常に予め定められた温度
により安定した熱処理を実行できるので、意図する所定
の塗膜を常に得ることができる。そして、安定した熱処
理により歩留まりを向上させることができる。
According to the invention of claim (1), the heating element and the object to be processed are measured in a non-contact manner using the same temperature detecting device, and the temperature of the heating element is controlled based on the result. The temperature can be measured more accurately than using a measurement system, and optimal temperature control is possible. Therefore, since a stable heat treatment can be always performed at a predetermined temperature, an intended predetermined coating film can always be obtained. And the yield can be improved by stable heat treatment.

そして、請求項(2)の発明も同様に、発熱体と被処
理体とを非接触で同一の温度測定装置を用いて測定し、
その結果に基づき温度制御を行っている。従って請求項
(1)の発明と同様に、最適条件での温度制御が可能で
ある。そして、被処理体を発熱体の加熱面から離して位
置するようにしているので、発熱体上のゴミが被処理体
に付着するのを防ぐことができる。また、例えばレジス
ト処理直後のまだレジスト液の乾燥していないウエハを
処理することができる。
Similarly, in the invention of claim (2), the heating element and the object to be processed are measured in a non-contact manner by using the same temperature measuring device,
Temperature control is performed based on the result. Therefore, similarly to the invention of claim (1), temperature control under optimum conditions is possible. Since the object to be processed is located away from the heating surface of the heating element, dust on the heating element can be prevented from adhering to the object to be processed. Further, for example, it is possible to process a wafer that has not yet dried the resist liquid immediately after the resist processing.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法をレジスト塗布後のベーキング工程
に適用した一実施例を説明するための装置構成図、第2
図は従来のレジスト塗布後のベーキング処理する装置の
説明図である。 9……発熱板、10……電源装置、 11……ヒーター、12……半導体ウエハ、 13……ピン、15……センサ、 16……温度測定装置、17……温度制御装置。
FIG. 1 is an apparatus configuration diagram for explaining an embodiment in which the method of the present invention is applied to a baking step after application of a resist.
The figure is an explanatory view of a conventional apparatus for performing a baking process after resist application. 9: Heating plate, 10: Power supply device, 11: Heater, 12: Semiconductor wafer, 13: Pin, 15: Sensor, 16: Temperature measurement device, 17: Temperature control device.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被処理体上に液状物を塗布した後、この被
処理体を発熱体によって所定の温度に加熱する工程を有
する塗布方法において、 前記発熱体の上方にて測定対象の温度を非接触で検出す
る温度検出装置を用い、 前記発熱体の温度を非接触で検出する第1の工程と、 前記第1の工程の後に、前記発熱体における加熱面側に
被処理体を位置させる第2の工程と、 前記第2の工程の後に、被処理体の温度を前記温度検出
装置によって非接触で検出しつつ、当該検出結果に基づ
いて前記発熱体の発熱制御を行う第3の工程とを備えた
ことを特徴とする、塗布方法。
1. A coating method comprising the steps of: applying a liquid material on an object to be processed; and heating the object to be processed to a predetermined temperature by a heating element, wherein the temperature of the object to be measured is measured above the heating element. A first step of detecting the temperature of the heating element in a non-contact manner using a temperature detection device detecting the temperature of the heating element in a non-contact manner; and after the first step, an object to be processed is positioned on a heating surface side of the heating element. A second step, and after the second step, a third step of controlling the heat generation of the heating element based on the detection result while non-contactly detecting the temperature of the object to be processed by the temperature detection device. And a coating method.
【請求項2】被処理体上に液状物を塗布した後、この被
処理体を発熱体によって所定の温度に加熱する工程を有
する塗布方法において、 前記発熱体の上方にて測定対象の温度を非接触で検出す
る温度検出装置を用い、 前記発熱体の温度を非接触で検出する第1の工程と、 前記第1の工程の後に、発熱体における加熱面から離し
て非処理体をこの発熱体の加熱面側に位置させる第2の
工程と、 前記第2の工程の後に、被処理体の温度を前記温度検出
装置によって非接触で検出しつつ、当該検出結果に基づ
いて前記発熱体の発熱制御を行う第3の工程とを備えた
ことを特徴とする、塗布方法。
2. A coating method comprising the steps of: applying a liquid material on an object to be processed; and heating the object to be processed to a predetermined temperature by a heating element, wherein the temperature of the object to be measured is set above the heating element. A first step of detecting the temperature of the heating element in a non-contact manner using a temperature detection device for detecting the temperature of the heating element in a non-contact manner; A second step of positioning the heating element on the heating surface side of the body, after the second step, the temperature of the object to be processed is detected in a non-contact manner by the temperature detection device, and the temperature of the heating element is determined based on the detection result. A third step of controlling heat generation.
JP63225942A 1988-09-08 1988-09-08 Application method Expired - Fee Related JP2612191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225942A JP2612191B2 (en) 1988-09-08 1988-09-08 Application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225942A JP2612191B2 (en) 1988-09-08 1988-09-08 Application method

Publications (2)

Publication Number Publication Date
JPH0275378A JPH0275378A (en) 1990-03-15
JP2612191B2 true JP2612191B2 (en) 1997-05-21

Family

ID=16837311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225942A Expired - Fee Related JP2612191B2 (en) 1988-09-08 1988-09-08 Application method

Country Status (1)

Country Link
JP (1) JP2612191B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250627A (en) * 1985-08-29 1987-03-05 Fujitsu Ltd Controlling method for surface temperature of substrate
US4794021A (en) * 1986-11-13 1988-12-27 Microelectronics And Computer Technology Corporation Method of providing a planarized polymer coating on a substrate wafer

Also Published As

Publication number Publication date
JPH0275378A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US7831135B2 (en) Method and system for controlling bake plate temperature in a semiconductor processing chamber
US6100506A (en) Hot plate with in situ surface temperature adjustment
JP3764278B2 (en) Substrate heating apparatus, substrate heating method, and substrate processing method
US8920162B1 (en) Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
US6265696B1 (en) Heat treatment method and a heat treatment apparatus for controlling the temperature of a substrate surface
KR100323310B1 (en) Method and apparatus for detecting wrong position of semiconductor wafer
US20120275484A1 (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
JP3708786B2 (en) Resist pattern forming method and semiconductor manufacturing system
JP2759116B2 (en) Heat treatment method and heat treatment apparatus
TW201703114A (en) Heat treatment apparatus, abnormality detection method in heat treatment and computer readable memory medium capable of accurately detecting abnormality in the heat treatment of a substrate
US7425689B2 (en) Inline physical shape profiling for predictive temperature correction during baking of wafers in a semiconductor photolithography process
JPH06177141A (en) Heat treatment furnace
JP2612191B2 (en) Application method
JPH1167619A (en) Substrate-heating device
JPS63216283A (en) Heater
JP2008141071A (en) Apparatus for heat-treating substrate
JP2882180B2 (en) Bake processing equipment
JP2807844B2 (en) Substrate heating device
JP3895893B2 (en) Substrate heating apparatus and substrate heating method
JPS6250627A (en) Controlling method for surface temperature of substrate
JPS60137027A (en) Optical irradiation heating method
JP2001307981A (en) Heating device and its method
JP3977275B2 (en) Heat treatment equipment
JPH06178964A (en) Portable heater
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees