JP2611964B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2611964B2
JP2611964B2 JP58234566A JP23456683A JP2611964B2 JP 2611964 B2 JP2611964 B2 JP 2611964B2 JP 58234566 A JP58234566 A JP 58234566A JP 23456683 A JP23456683 A JP 23456683A JP 2611964 B2 JP2611964 B2 JP 2611964B2
Authority
JP
Japan
Prior art keywords
magnetic
parts
conductive
layer
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234566A
Other languages
Japanese (ja)
Other versions
JPS60125926A (en
Inventor
弘毅 横山
章蔵 日出山
良一 佐藤
勉 三宅
良仁 津金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58234566A priority Critical patent/JP2611964B2/en
Publication of JPS60125926A publication Critical patent/JPS60125926A/en
Application granted granted Critical
Publication of JP2611964B2 publication Critical patent/JP2611964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気記録媒体に関し、特に六方晶フェライト
超微粒子を用いた塗布型の高密度磁気記録媒体に係る。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium, and more particularly, to a coating type high-density magnetic recording medium using ultrafine hexagonal ferrite particles.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体はポリエチレンテレフタレート等の可撓
性で非磁性の基体と、この基体上に設けられた主として
磁性体微粒子及び結合剤からなる磁性層とで構成されて
いる。磁性体微粒子としては、従来よりγ−Fe2O3,Cr
O2,Co−γFeO3などの針状の磁性粒子が用いられてい
る。これに対し、最近、磁気記録密度の大幅な向上を図
るために、垂直磁気記録のできる記録媒体が強く要望さ
れ、これに適する六方晶フェライトの超微粒子を磁性体
粒子として使用した磁気記録媒体が研究されている。
The magnetic recording medium is composed of a flexible non-magnetic substrate such as polyethylene terephthalate and a magnetic layer mainly formed of magnetic fine particles and a binder provided on the substrate. As magnetic fine particles, conventionally, γ-Fe 2 O 3 , Cr
Acicular magnetic particles such as O 2 and Co-γFeO 3 are used. On the other hand, in recent years, a recording medium capable of perpendicular magnetic recording has been strongly demanded in order to greatly improve the magnetic recording density, and a magnetic recording medium using hexagonal ferrite ultrafine particles as magnetic particles suitable for this purpose has been developed. Has been studied.

本発明者らは六方晶フェライトの超微粒子を結合剤と
共に可撓性で絶縁性の基体上に塗布して形成した磁性層
が、上記針状磁性粒子を結合剤と共に基体上に塗布して
形成した磁性層に比べて高密度の磁気記録媒体が得られ
ることを見い出した。しかしながら、かかる磁気記録媒
体の磁性層は表面抵抗値が1012Ω以上と高いために帯電
し易いという欠点があった。従来より、表面抵抗値を下
げて帯電を防止する手段としてはカーボンブラックなど
の導電性粉体を磁性層中に含有させる方法が広く採用さ
れている。しかしながら、こうした方法を六方晶フェラ
イトの超微粒子の塗布媒体に適用した場合には、導電性
粉体を多量に必要とすることに伴なう再生出力低下や分
散性の低下に伴なうノイズ増大などを招き易い欠点が生
じる。
The present inventors have formed a magnetic layer formed by coating ultrafine particles of hexagonal ferrite with a binder on a flexible and insulating substrate, and forming the magnetic layer formed by coating the needle-shaped magnetic particles together with the binder on the substrate. It has been found that a magnetic recording medium having a higher density than that of the magnetic layer obtained can be obtained. However, the magnetic layer of such a magnetic recording medium has a drawback that it is easily charged due to its high surface resistance of 10 12 Ω or more. Conventionally, as a means for lowering the surface resistance to prevent charging, a method of incorporating a conductive powder such as carbon black into a magnetic layer has been widely adopted. However, when such a method is applied to a coating medium of hexagonal ferrite ultra-fine particles, the reproduction output decreases due to the need for a large amount of conductive powder and the noise increases due to the decrease in dispersibility. There is a drawback that tends to cause such problems.

一方、磁気記録媒体の表面抵抗を下げる他の手段とし
て基体と磁性層の間に導電層を設ける方法が知られてい
る。しかしながら、この方法を六方晶フェライト超微粒
子の塗布媒体、例えば磁気テープに適用すると、磁気テ
ープ裏面(基体裏面)の帯電によるはり付きが著しく、
特にリールに巻き取られたテープ層間のはり付きは導電
層のない場合に比べてむしろ顕著となる。
On the other hand, as another means for lowering the surface resistance of a magnetic recording medium, a method of providing a conductive layer between a substrate and a magnetic layer is known. However, when this method is applied to a coating medium of hexagonal ferrite ultrafine particles, for example, a magnetic tape, the adhesion of the magnetic tape back surface (substrate back surface) due to charging is remarkable,
In particular, the sticking between the tape layers wound on the reel is more remarkable than in the case where there is no conductive layer.

〔発明の目的〕[Object of the invention]

本発明は記録再生特性を損なうことなく帯電を防止
し、帯電に伴なうトラブルのない高密度記録に適する磁
気記録媒体を提供しようとするものである。
An object of the present invention is to provide a magnetic recording medium suitable for high-density recording which prevents charging without impairing the recording and reproducing characteristics and has no troubles due to charging.

〔発明の概要〕[Summary of the Invention]

本発明者らは六方晶フェライト微粒子及び結合剤を主
成分とする磁性層を有する磁気記録媒体の帯電を防止す
べく鋭意研究を重ねた結果、可とう性で絶縁性の基体と
前記磁性層との間に導電物質及び結合剤を主成分とする
導電層を設け、さらに前記基体の裏面に導電物質及び結
合剤を主成分とする導電層を設け、前記磁性層の表面抵
抗と前記裏面の導電層の表面抵抗とを略等しくすること
によって、六方晶フェライト微粒子の磁性層を用いるこ
とによる高密度記録性を保持しつつ磁性層表面の帯電を
防止でき、しかも基体裏面の帯電を防止してはり付き現
象を回避し得る磁気記録媒体を見い出した。
The present inventors have conducted intensive studies to prevent electrification of a magnetic recording medium having a magnetic layer containing hexagonal ferrite fine particles and a binder as a main component. As a result, a flexible insulating substrate and the magnetic layer A conductive layer mainly composed of a conductive substance and a binder is provided between them, and a conductive layer mainly composed of a conductive substance and a binder is further provided on the back surface of the base, and the surface resistance of the magnetic layer and the conductivity of the back surface are provided. By making the surface resistance of the layer substantially equal, it is possible to prevent the charging of the magnetic layer surface while maintaining the high density recording performance by using the magnetic layer of hexagonal ferrite fine particles, and also prevent the charging of the back surface of the substrate. A magnetic recording medium that can avoid the sticking phenomenon has been found.

上記可撓性で絶縁性の基体としては、特に制限はない
が、例えばポリエチレンテレフタレートなどのポリエス
テルのフィルムを使用できる。
The flexible and insulating substrate is not particularly limited, and for example, a polyester film such as polyethylene terephthalate can be used.

上記六方晶フェライト微粒子としては、M型もしくは
W型などの結晶構造を有するバリウムフェライト、スト
ロンチウムフェライト、鉛フェライト、カルシウムフェ
ライト或いはそれらのイオン置換体等を挙げることがで
きる。こうした微粒子は粒径が0.01〜0.2μm、より好
ましくは0.02〜0.1μmで、保磁力(Hc)が200〜2000O
e、より好ましくは300〜1500Oeのものを使用することが
望ましい。また、磁性層の形成に用いられる縮合剤は特
に制限されず、従来使用されている熱可塑性樹脂、熱硬
化性樹脂或いは反応型樹脂が用いられる。
Examples of the hexagonal ferrite fine particles include barium ferrite, strontium ferrite, lead ferrite, calcium ferrite, and ion substitutes thereof having a crystal structure of M type or W type. These fine particles have a particle size of 0.01 to 0.2 μm, more preferably 0.02 to 0.1 μm, and a coercive force (Hc) of 200 to 2000O.
e, more preferably 300 to 1500 Oe. The condensing agent used for forming the magnetic layer is not particularly limited, and a conventionally used thermoplastic resin, thermosetting resin, or reactive resin is used.

上記基体と磁性層の間に介在される導電層としては、
例えば高分子の結合剤にカーボンブラックなどの導電物
質を加えたものを導く塗布した層を挙げることができ
る。こうした導電層の表面抵抗値は磁性層の表面抵抗値
が5×1011Ω以下で帯電防止がなされることから、該磁
性層の表面抵抗値が5×1011Ω以下となるように選定す
ることが望ましく、具体的には1×1011Ω以下であるこ
とが好ましい。
As the conductive layer interposed between the base and the magnetic layer,
For example, there may be mentioned a coated layer which leads to a polymer binder to which a conductive substance such as carbon black is added. The surface resistance of these conductive layers from the surface resistance of the magnetic layer is 5 × 10 11 Ω or less antistatic is made, selected so that the surface resistivity of the magnetic layer is 5 × 10 11 Ω or less More specifically, it is preferably 1 × 10 11 Ω or less.

基体裏面に設けられる導電層は、高分子の結合剤を用
いてカーボンブラック、グラファイトなどの導電物質を
塗布したものが使用できる。この際、導電物質と共に無
機物粒子、例えばアルミナ、α−ヘマタイト、二酸化チ
タン、炭酸カルシウムなど同時に混合塗布することによ
り、塗膜強度および耐摩擦性の優れた導電性の形成が可
能となる。磁気記録媒体の裏面に与える導電性は、表面
抵抗値にて1011以下であって、磁性層の表面抵抗と略等
しいことが好ましい。
As the conductive layer provided on the back surface of the base, a layer coated with a conductive substance such as carbon black or graphite using a polymer binder can be used. At this time, by simultaneously mixing and applying inorganic particles such as alumina, α-hematite, titanium dioxide, calcium carbonate, etc. together with the conductive material, it is possible to form a conductive film having excellent coating film strength and friction resistance. The conductivity given to the back surface of the magnetic recording medium is preferably 10 11 or less in surface resistance value, and is preferably substantially equal to the surface resistance of the magnetic layer.

〔発明の実施例〕(Example of the invention)

次に、本発明の実施例を説明する。なお、実施例中で
は重量部を単に部として示す。
Next, examples of the present invention will be described. In the examples, parts by weight are simply indicated as parts.

実施例 まず、カーボンブラック30部、ウレタン樹脂60部及び
塩化ビニル−酢酸ビニル共重合体10部を、メチルエチル
ケトン180部、トルエン180部、シクロヘキサノン180部
と共に混練、分散させた後、硬化剤20部を加えて導電性
塗料を調整した。つづいて、この導電性塗料を厚さ11μ
mのポリエチレンテレフタレートフィルム上に乾燥厚さ
で0.3μmとなるように塗布した後、乾燥して導電層を
形成した。こうして形成された導電層の表面抵抗をJIS
−C−6240に従って測定したところ、3×107Ωであっ
た。
First, 30 parts of carbon black, 60 parts of a urethane resin and 10 parts of a vinyl chloride-vinyl acetate copolymer were mixed and kneaded with 180 parts of methyl ethyl ketone, 180 parts of toluene and 180 parts of cyclohexanone, and then dispersed, followed by 20 parts of a curing agent. In addition, a conductive paint was prepared. Then, apply this conductive paint to a thickness of 11μ.
m was applied on a polyethylene terephthalate film having a dry thickness of 0.3 μm, and then dried to form a conductive layer. The surface resistance of the conductive layer thus formed is determined by JIS
It was 3 × 10 7 Ω when measured according to —C-6240.

次いで、六方晶バリウムフェライトCoTi置換体超微粒
子(平均粒径0.08μm、保持力He;800Oe)100部、塩化
ビニル−酢酸ビニル共重合体10部、ウレタン樹脂10部及
び酸化アルミニウム2部潤滑剤(ミリスチン酸およびパ
ルミチン酸ブチル)1部を、メチルエチルケトン60部、
トルエン60部、シクロヘキサノン60部と共に十分に混
練、分散せしめた後、硬化剤6部を加えて磁性塗料を調
製した。つづいて、この磁性塗料を前記導電層上に塗布
し、乾燥した後、表面平滑処理を施して厚さ3.5μmの
磁性層を形成した。この磁性層の表面抵抗は5×109Ω
であった。
Then, 100 parts of hexagonal barium ferrite CoTi-substituted ultrafine particles (average particle size 0.08 μm, holding power He: 800 Oe), 10 parts of vinyl chloride-vinyl acetate copolymer, 10 parts of urethane resin and 2 parts of aluminum oxide lubricant ( 1 part of myristic acid and butyl palmitate), 60 parts of methyl ethyl ketone,
After sufficiently kneading and dispersing with 60 parts of toluene and 60 parts of cyclohexanone, 6 parts of a curing agent was added to prepare a magnetic paint. Subsequently, the magnetic paint was applied on the conductive layer, dried, and then subjected to a surface smoothing treatment to form a magnetic layer having a thickness of 3.5 μm. The surface resistance of this magnetic layer is 5 × 10 9 Ω
Met.

次いで、カーボンブラック20部、αFe2O340部、ウレ
タン樹脂15部及び塩化ビニル−酢酸ビニル共重合体を、
メチルエチルケトン120部、トルエン120部及びシクロヘ
キサノンと共に十分に混練、分散せしめた後、硬化剤8
部を加えてバックコート用導電性塗料を調製した。つづ
いて、この塗料を前記ポリエチレンテレフタレートフィ
ルムの裏面に乾燥厚さで0.7μmとなるように塗布し、
乾燥して導電層を形成した。こうして形成された導電層
の表面抵抗値は5×109Ωであった。
Next, 20 parts of carbon black, 40 parts of αFe 2 O 3 , 15 parts of a urethane resin and a vinyl chloride-vinyl acetate copolymer,
After thoroughly kneading and dispersing with 120 parts of methyl ethyl ketone, 120 parts of toluene and cyclohexanone, a curing agent 8
The resultant was added to prepare a conductive coating for a back coat. Subsequently, this paint was applied to the back surface of the polyethylene terephthalate film so as to have a dry thickness of 0.7 μm,
After drying, a conductive layer was formed. The surface resistance of the conductive layer thus formed was 5 × 10 9 Ω.

次いで、硬化処理後にスリッタで截断し、1/2インチ
幅の磁気テープサンプルを造った。
Then, after the curing treatment, it was cut with a slitter to produce a 1 / 2-inch wide magnetic tape sample.

比較例1 実施例と同様な方法により厚さ11μmのポリエチレン
テレフタレートフィルム上に乾燥厚さ0.3μmの導電層
を形成し、更に導電層上に厚さ3.5μmの磁性層を形成
した。この後、ポリエチレンテレフタレートフィルム裏
面にバックコート用導電性塗料を塗布せずにそのまま硬
化処理を行ない、更にスリッタで実施例と同様な寸法幅
に截断して磁気テープサンプルを造った。
Comparative Example 1 A conductive layer having a dry thickness of 0.3 μm was formed on a polyethylene terephthalate film having a thickness of 11 μm and a magnetic layer having a thickness of 3.5 μm was further formed on the conductive layer in the same manner as in Example. Thereafter, the back surface of the polyethylene terephthalate film was subjected to a curing treatment as it was without applying a conductive coating material for a back coat, and further cut with a slitter to the same size and width as in the example to produce a magnetic tape sample.

比較例2 厚さ11μmのポリエチレンテレフタレートフィルム上
に実施例と同様な磁性塗料を厚さ3.5μmとなるように
直接塗布し、乾燥した後、表面平滑処理を施して磁性層
を形成した。つづいて、ポリエチレンテレフタレートフ
ィルムの裏面に実施例と同様なバックコート用導電性塗
料を乾燥厚さで0.7μmとなるように塗布した。硬化処
理を行なった後、スリックで截断して実施例と同寸法幅
の磁気テープサンプルを造った。
Comparative Example 2 A magnetic paint similar to that of the example was directly applied to a polyethylene terephthalate film having a thickness of 11 μm so as to have a thickness of 3.5 μm, dried, and then subjected to a surface smoothing treatment to form a magnetic layer. Subsequently, the same conductive paint for back coating as in the example was applied to the back surface of the polyethylene terephthalate film so as to have a dry thickness of 0.7 μm. After performing the hardening treatment, the sample was cut with a slick to produce a magnetic tape sample having the same size and width as the example.

比較例3 まず、六方晶バリウムフェライトCoTi置換体超微粒子
(平均粒径0.08μm、保持力He;800Oe)100部、塩化ビ
ニル−酢酸ビニル共重合体10部、ウレタン樹脂10部、カ
ーボンブラック5部及び酸化アルミニウム2部を、メチ
ルエチルケトン60部、トルエン60部、シクロヘキサノン
60部と共に十分に混練、分散せしめた後、硬化剤6部を
加えて磁性塗料を調製した。つづいて、この塗料を厚さ
11μmのポリエチレンテレフタレートフィルム上に乾燥
厚さが3.5μmとなるように直接塗布し、乾燥した後、
表面平滑処理を施して導電性の磁性層を形成した。次い
で、硬化処理を行なった後、スリッタで截断し1/2イン
チ幅の磁気テープサンプルを造った。この磁気テープサ
ンプルの磁性層の表面抵抗値は3×109Ωであった。
Comparative Example 3 First, 100 parts of ultrafine hexagonal barium ferrite CoTi-substituted particles (average particle size 0.08 μm, coercive force He: 800 Oe), 10 parts of vinyl chloride-vinyl acetate copolymer, 10 parts of urethane resin, 5 parts of carbon black And 2 parts of aluminum oxide, 60 parts of methyl ethyl ketone, 60 parts of toluene, cyclohexanone
After sufficiently kneading and dispersing together with 60 parts, 6 parts of a curing agent was added to prepare a magnetic paint. Next, apply this paint to the thickness
After directly applying on a 11 μm polyethylene terephthalate film to a dry thickness of 3.5 μm and drying,
The surface was subjected to a surface smoothing treatment to form a conductive magnetic layer. Next, after a hardening treatment, it was cut with a slitter to produce a magnetic tape sample having a width of 1/2 inch. The surface resistance of the magnetic layer of this magnetic tape sample was 3 × 10 9 Ω.

しかして、本実施例及び比較例1〜3で得た磁気テー
プサンプルを、βフォーマットのVTRカセットに巻き込
み、テープヘッド間相対速度を標準の1/2となるように
改造したβ型VTRにて記録再生を行なって電磁変換特性
及び走行性を調べた。その結果を下記表に示した。
Thus, the magnetic tape samples obtained in this example and Comparative Examples 1 to 3 were wound into a β-format VTR cassette, and the β-type VTR was modified so that the relative speed between the tape heads was reduced to half of the standard. Recording and reproduction were performed, and the electromagnetic conversion characteristics and running properties were examined. The results are shown in the table below.

上表より明らかな如く、本発明に係る磁気テープは高
密度記録における電磁変換特性が良好で、しかも帯電と
これに伴なうトラブルがないことがわかる。
As is clear from the above table, the magnetic tape according to the present invention has good electromagnetic conversion characteristics in high-density recording, and has no charging and troubles associated therewith.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明によれば可撓性で絶縁性の
基体と六方晶フェライト微粒子及び結合剤を主成分とす
る磁性層の間に導電層を介在させ、更に磁性層と反対側
の基体の面に、表面抵抗値にて磁性層の表面抵抗と略等
しい導電層を設けることによって高密度記録における特
性を損なうことなく、帯電及びこれに伴なうトラブルを
解消した高性能の磁気記録媒体を提供できる。
As described above in detail, according to the present invention, a conductive layer is interposed between a flexible and insulating substrate and a magnetic layer containing hexagonal ferrite fine particles and a binder as main components. By providing a conductive layer on the surface of the base material with a surface resistance value approximately equal to the surface resistance of the magnetic layer, high-performance magnetic recording that eliminates charging and troubles associated with it without impairing the characteristics of high-density recording. Media can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 良一 川崎市幸区小向東芝町1番地 東京芝浦 電気株式会社総合研究所内 (72)発明者 三宅 勉 川崎市幸区小向東芝町1番地 東京芝浦 電気株式会社総合研究所内 (72)発明者 津金 良仁 川崎市幸区小向東芝町1番地 東京芝浦 電気株式会社総合研究所内 (56)参考文献 特開 昭58−205928(JP,A) 特開 昭55−55432(JP,A) 特開 昭59−94231(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ryoichi Sato, Inventor Ryoichi Sato, Kobayashi-ku, Kawasaki 1st Tokyo Shibaura Electric Co., Ltd. (72) Inventor Yoshihito Tsugane 1st institution, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi Tokyo Shibaura Electric Co., Ltd. (56) References JP-A-58-205928 (JP, A) JP-A-55-55432 (JP, A) JP-A-59-94231 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可とう性で絶縁性の基体と、六方晶フェラ
イト微粒子及び結合剤を主成分とする磁性層と、 前記基体と前記磁性層との間に設けられた導電物質及び
結合剤を主成分とする第1の導電層と、 前記基体の裏面に設けられた導電物質及び結合剤を主成
分とする第2の導電層を備え、前記磁性層の表面抵抗と
前記第2の導電層の表面抵抗が略等しいことを特徴とす
る磁気記録媒体。
1. A flexible insulating substrate, a magnetic layer mainly containing hexagonal ferrite fine particles and a binder, and a conductive material and a binder provided between the substrate and the magnetic layer. A first conductive layer having a main component; a second conductive layer having a conductive material and a binder provided on a back surface of the base as a main component; a surface resistance of the magnetic layer and a second conductive layer; A magnetic recording medium characterized by having substantially the same surface resistance.
JP58234566A 1983-12-13 1983-12-13 Magnetic recording media Expired - Lifetime JP2611964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234566A JP2611964B2 (en) 1983-12-13 1983-12-13 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234566A JP2611964B2 (en) 1983-12-13 1983-12-13 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPS60125926A JPS60125926A (en) 1985-07-05
JP2611964B2 true JP2611964B2 (en) 1997-05-21

Family

ID=16973019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234566A Expired - Lifetime JP2611964B2 (en) 1983-12-13 1983-12-13 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2611964B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555432A (en) * 1978-10-17 1980-04-23 Hitachi Maxell Ltd Magnetic recording medium
JPS58205928A (en) * 1982-05-25 1983-12-01 Toshiba Corp Magnetic recording medium
JPS5994231A (en) * 1982-11-22 1984-05-30 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS60125926A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
JP2563711B2 (en) Magnetic tape
JPH0610873B2 (en) Magnetic disk
JPS61214127A (en) Magnetic recording medium
JPH01300419A (en) Magnetic recording medium
JP2611965B2 (en) Magnetic recording media
JP2611964B2 (en) Magnetic recording media
JPH03701B2 (en)
JP2852773B2 (en) Manufacturing method of magnetic disk
JPH0935245A (en) Magnetic recording medium
JPH09212847A (en) Magnetic recording medium
JP2975922B2 (en) Manufacturing method of magnetic disk
JP2632943B2 (en) Magnetic recording media
JP2839745B2 (en) Magnetic recording media
JPH03120613A (en) Magnetic disk and its production
JP3017261B2 (en) Magnetic disk
JPS589487B2 (en) Jikiki Rokubaitai
JPH0442727B2 (en)
JP3333965B2 (en) Magnetic recording media
JP3139469B2 (en) Magnetic recording media
JP2820551B2 (en) Magnetic recording media
JP2839485B2 (en) Magnetic recording media
JP2820550B2 (en) Magnetic recording media
JPH027223A (en) Magnetic recording medium
JPH06236543A (en) High-recording-density magnetic recording medium
JPS62219331A (en) Production of magnetic recording medium