JP2611684B2 - Manufacturing method of quartz glass - Google Patents

Manufacturing method of quartz glass

Info

Publication number
JP2611684B2
JP2611684B2 JP7083771A JP8377195A JP2611684B2 JP 2611684 B2 JP2611684 B2 JP 2611684B2 JP 7083771 A JP7083771 A JP 7083771A JP 8377195 A JP8377195 A JP 8377195A JP 2611684 B2 JP2611684 B2 JP 2611684B2
Authority
JP
Japan
Prior art keywords
glass
quartz glass
temperature
precursor
dry gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7083771A
Other languages
Japanese (ja)
Other versions
JPH08143319A (en
Inventor
悟 宮下
貞男 神戸
元幸 土岐
哲彦 竹内
宏仁 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7083771A priority Critical patent/JP2611684B2/en
Publication of JPH08143319A publication Critical patent/JPH08143319A/en
Application granted granted Critical
Publication of JP2611684B2 publication Critical patent/JP2611684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ゾルーゲル法を用
石英ガラスの製造方法に関する。
The present invention relates to a process for the production of quartz glass that had use of the sol-gel method.

【0002】[0002]

【従来の技術】石英ガラスはフオトマスク基板をはじ
め、ガラスウエハ、半導体工業材料、光学材料、光ファ
ィバー用プリフオーム、サポートチユーブ等多方面に使
用され、今後ますます需要が拡大するものと期待されて
いる。
2. Description of the Related Art Quartz glass is used in various fields such as photomask substrates, glass wafers, semiconductor industrial materials, optical materials, preforms for optical fibers, and support tubes. It is expected that the demand will continue to increase in the future. .

【0003】石英ガラスを安価に製造する方法としてゾ
ルーゲル法が提案され、種々の方法が知られている。
The sol-gel method has been proposed as a method for producing quartz glass at low cost, and various methods are known.

【0004】例えば野上らによる.”Journal
of NonーCrystalline Solid
s”Vo1.37.No(l980)、Rabinov
itchらによる.”Journal of Non−
Crystalline Solids”Vol.4
7.No.435(l982)、土岐らによるU.S.
Patent Application Serial
No.642,606、松尾らによる(外国出願予定
949一a)などがある。
[0004] For example, Nogami et al. "Journal
of Non-Crystalline Solid
s "Vo 1.37. No (l980), Rabinov
Itch et al. "Journal of Non-
Crystalline Solids "Vol.4
7. No. 435 (1982); S.
Patent Application Serial
No. 642, 606, and Matsuo et al.

【0005】前記の方法の相異点は、原料となるゾル溶
液の成分にあり、以下の四種類に分類できる. 1)アルキルシリケート、水、アルコールおよび塩酸や
アンモニア等の適当な触媒を混合し、加水分解したゾル
溶液を用いる(野上らの方法)。 2)アルキルシリケートを酸性試薬で加水分解して得ら
れる溶液と、アルキルシリケートケ塩基性試薬で加水分
解して得られるシリカ微粒子を含む溶液とを所定の割合
で混合したゾル溶液を用いる(松尾らの方法)。 3)アルキルシリケートな酸性試薬で加水分解して得ら
れる溶液と、超微紛末シリカとを所定の割合で混合した
ゾル溶液を用いる(土岐らの方法)。 4)超微粉末シリカを水あるいは有機溶媒に所定の割合
で分散させたゾル溶液を用いる(Rabinovitc
hらの方法)。
[0005] The difference between the above methods lies in the components of the sol solution as a raw material, and can be classified into the following four types. 1) An alkyl silicate, water, alcohol and a suitable catalyst such as hydrochloric acid or ammonia are mixed and hydrolyzed, and a sol solution is used (the method of Nogami et al.). 2) A sol solution obtained by mixing a solution obtained by hydrolyzing an alkyl silicate with an acidic reagent and a solution containing silica fine particles obtained by hydrolyzing an alkyl silicate keto basic reagent at a predetermined ratio (Matsuo et al.) the method of). 3) A sol solution obtained by mixing a solution obtained by hydrolysis with an alkylsilicate acidic reagent and ultrafine powdered silica at a predetermined ratio is used (the method of Toki et al.). 4) Use a sol solution in which ultrafine silica powder is dispersed in water or an organic solvent at a predetermined ratio (Rabinovitc)
h et al.).

【0006】以上各種も方法で準備したゾル溶液を適当
な形状の容器中でゲル化させた後乾燥させてドライゲル
とし、前記ドライゲルを焼結すると石英ガラスが製造で
きる。各々長所短所があるので、特徴を表lにまとめて
みる。
[0006] The sol solutions prepared by the above various methods are gelled in a container having an appropriate shape and then dried to form a dry gel. By sintering the dry gel, quartz glass can be produced. Each has its strengths and weaknesses, so the features are summarized in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】表1から生産性を重視すれば土岐らの方法
が、高純度による物質を重視すれば松尾らの方法がすぐ
れているといえる。
From Table 1, it can be said that the Toki et al. Method is superior when productivity is emphasized, and the Matsuo et al. Method is superior when high purity substances are emphasized.

【0009】ただし、前記ゾル溶液を原料として、単に
乾燥、焼結を行なつても製造した石英ガラス中には多く
のインクルージヨンが存在する。品質を何上させる為に
松尾らはクリーンな環境で作業を行ない、ゾル溶液に超
音波を照射して分散性を高めめたり、フイル夕リングや
遠心分離により規格以上の大きさの粒子を除去してい
る。
However, even if the sol solution is used as a raw material and the sol solution is simply dried and sintered, many inclusions are present in the manufactured quartz glass. In order to improve the quality, Matsuo et al. Work in a clean environment, irradiating the sol solution with ultrasonic waves to increase the dispersibility, and remove particles larger than the standard by filtration and centrifugation. doing.

【0010】また焼結によるドライゲルの閉孔化をへリ
ウム雰囲気や減圧下で行なうことにより、気泡の発生を
防いでいる。
[0010] In addition, the formation of bubbles is prevented by closing the dry gel by sintering in a helium atmosphere or under reduced pressure.

【0011】[0011]

【発明が解決しようとする課題】前記方法により、石英
ガラス中のインクルージヨンは著しく減少した。しか
し、結晶、異物、マイクロクラツク、気泡等の全く存在
しない石英ガラスは未だ得られていない。フオトマスク
基板や光ファイバー用プリフオームのように極めて高い
品質が要求される分野には、依然として使用できないの
が現状である。
By the above method, inclusions in quartz glass were significantly reduced. However, quartz glass free of crystals, foreign matter, microcracks, bubbles and the like has not yet been obtained. At present, it cannot be used in fields requiring extremely high quality, such as photomask substrates and optical fiber preforms.

【0012】本発明の目的は、ゾルーゲル法に新しい手
法を導入し、フオトマスク基板や光フアイバー用プリフ
オームとして使用可能な、光学的に極めて高品質な石英
ガラスを製造し得る方法を堤供することにある。あわせ
て量産性を向上させる方法や、石英ガラスを成形する方
法も提供する。
An object of the present invention is to introduce a new method to the sol-gel method and to provide a method for producing optically extremely high-quality quartz glass that can be used as a photomask substrate or a preform for an optical fiber. . In addition, a method for improving mass productivity and a method for forming quartz glass are provided.

【0013】ゾルーゲル法の長所の一つに、高融点ガラ
スを低温で合成できることが挙げられている。事実、石
英ガラスを溶融法で製造する場合、1700℃以上の高
温域で困難な製造工程が必要なのに対し、ゾルーゲル法
を用いると、l200℃前後で容易に製造可能である。
One of the advantages of the sol-gel method is that a high-melting glass can be synthesized at a low temperature. In fact, when quartz glass is produced by a melting method, a difficult production step is required in a high temperature range of 1700 ° C. or higher, whereas when a sol-gel method is used, it can be easily produced at around 1200 ° C.

【0014】ガラス化温度は原料であるゾル溶液の成分
で異なり、アルキルシリケートを酸性試薬で加水分解し
た場合900℃、塩基性試薬で加水分解した場合120
0℃程度である。アルキルシリケートを酸性試薬で加水
分解した溶液に、アルキルシリケートを塩基性試薬で加
水分解して得られるシリカ微粒子を混合したり、超微粉
末シリカを混合した場合、その混合比によりガラス化温
度は異なるものの、1400℃以下でガラス化は終了す
る。超微粉未シリカを溶液に分散させた場合が最も高温
を必要とするが、1470℃以下でガラス化は終了す
る。
The vitrification temperature differs depending on the components of the sol solution as a raw material, and 900 ° C. when the alkyl silicate is hydrolyzed with an acidic reagent, and 120 ° C. when the alkyl silicate is hydrolyzed with a basic reagent.
It is about 0 ° C. When the silica silicate is mixed with the solution obtained by hydrolyzing the alkyl silicate with the basic reagent, or the silica fine particles obtained by hydrolyzing the alkyl silicate with the basic reagent are mixed or the ultrafine powder silica is mixed, the vitrification temperature varies depending on the mixing ratio. However, vitrification ends at 1400 ° C. or lower. The highest temperature is required when ultrafine non-silica is dispersed in the solution, but the vitrification ends at 1470 ° C. or lower.

【0015】このようにゾルーゲル法を用いると、溶融
法に比べ少ないエネルギーで石英ガラスを合成すること
ができる。しかし、ゾルーゲル法で製造した石英ガラス
中には、ゾル溶液の成分に関係なく次のようなインクル
ージヨン、欠陥等が存在する。
By using the sol-gel method, quartz glass can be synthesized with less energy than the melting method. However, the following inclusions, defects, and the like exist in quartz glass manufactured by the sol-gel method regardless of the components of the sol solution.

【0016】(l)原料やゾルに混入する無機吻 (2)有機混入物の焼失による空隔 (3)収縮の際発生するマイクロクラツク (4)ゲル化時に取り込んだり、焼結工程で発生する気
泡 (5)焼結工程で生成する結晶(主にクリストバライ
ト) (6)焼結が不十分なシリカ
(1) Inorganic proboscis mixed in raw materials and sols (2) Voids caused by burning of organic contaminants (3) Micro cracks generated during shrinkage (4) Incorporation during gelation or generated in sintering process (5) Crystals generated in the sintering process (mainly cristobalite) (6) Insufficient sintering silica

【0017】[0017]

【課題を解決するための手段】本発明はゾルーゲル法の
常識を根底からくつがえす。高温で処埋する発想を導入
したことを特徴とする。物質の溶融温度付近まで加熱
し、従来のゾルーゲル法で作製したガラスあるいはガラ
ス前駆体を一時的に半溶融状態に置いたのである。この
工程により、画期的な効果があらわれた.(5)の結晶
や(6)のシリカ塊状物は石英の溶融温度以上なら勿論
溶融し、それ以下の温度でも消失し、均一な石英ガラス
となつた。また(2)の空隔(3)のマイクロクラッ
ク、(4)の気泡等は、ドライゲルの閉孔化をへリウム
雰囲気か減圧下で行なっていれば、高温まで加熱するこ
とにより焼結が進み消失した。
The present invention overturns the common sense of the sol-gel method. It is characterized by the idea of processing at high temperatures. The material was heated to near the melting temperature, and the glass or glass precursor produced by the conventional sol-gel method was temporarily placed in a semi-molten state. This process has produced a revolutionary effect. The crystal of (5) and the silica lump of (6) were naturally melted at a temperature higher than the melting temperature of quartz, and disappeared even at a temperature lower than the melting temperature, resulting in uniform quartz glass. Further, if the dry gel is closed in a helium atmosphere or under reduced pressure, the sintering proceeds by heating to a high temperature for the microcracks in the space (3), the bubbles in the space (3), and the like in (2). Disappeared.

【0018】(1)の無機物は石英より低融点のものは
勿論、高融点の無機物が混入していても、石英の溶融温
度付近まで加熱してやれば界面が消失し、均質化が進ん
だ。しかし、極度に大きな粒子やガラス化しにくい無機
物が混入していると、完全に均質にはいたらない。ゾル
処理をクリーンな環境で行ない、フイル夕リングや遠心
分離により、規格以上の大きさの粒子を除去することが
好ましい。
Even if the inorganic substance (1) has a melting point lower than that of quartz and a high-melting inorganic substance, the interface disappears when heated to a temperature close to the melting temperature of quartz, and the homogenization proceeds. However, if extremely large particles or inorganic substances that are difficult to vitrify are mixed in, it will not be completely homogeneous. It is preferable to perform the sol treatment in a clean environment and remove particles having a size larger than the standard by filtration or centrifugation.

【0019】石英の溶融温度は1713℃であるので、
この温度以上で保持すると、確実に高品質な石英ガラス
が製造できる。高品質化という点からみれば、l500
℃以上なら十分にその効果が現われる。希望する品質と
消費エネルギーを考慮して、高温処理温度を決めればよ
い。逆に余り高温だと石英の揮発が激しくなるため、2
200℃程度が上限である。
Since the melting temperature of quartz is 1713 ° C.,
If the temperature is maintained at or above this temperature, high quality quartz glass can be reliably produced. From the point of quality improvement, l500
If the temperature is higher than ℃, the effect appears sufficiently. The high processing temperature may be determined in consideration of desired quality and energy consumption. Conversely, if the temperature is too high, the volatilization of quartz will increase,
The upper limit is about 200 ° C.

【0020】以上述べたように1500〜2200℃に
加熱して一定時間保持し、高品質の石英ガラスを製造す
る方法は、ゾル溶液の成分を選ばない。ただし、以下に
示すいずれかの方法を用いてドライゲルの閉孔化を行な
わないと、高温にすることにより、閉孔は巨大な気泡に
成長する。
As described above, the method for producing high quality quartz glass by heating to 1500 to 2200 ° C. and holding for a certain period of time does not select the components of the sol solution. However, if the dry gel is not closed using any of the following methods, the closed holes grow into huge bubbles by increasing the temperature.

【0021】1)へリウム雰囲気で焼結し閉孔化する。 2)減圧下で焼結し閉孔化する。 3)へリウム雰囲気にした後、減圧にして焼結し閉孔化
する。閉孔化工程は完全に透明なガラス体にする必要は
なく、半透明のガラス前駆体でかまわない。
1) Sintering is performed in a helium atmosphere to form pores. 2) Sinter under reduced pressure to make pores. 3) After a helium atmosphere, sintering is performed under reduced pressure to form pores. The pore closing step does not need to be a completely transparent glass body, but may be a translucent glass precursor.

【0022】閉孔化したガラスあるいはガラス前駆体を
1500〜2200℃に加熱する方法は、種々考えられ
る。まず水素、アセチレン等のガスバーナーを用いる方
法が挙げられる。容易に入手でき、操作も簡単である
が、温度制御が難かしく、試料表面と内部での温度差が
大きいという欠点を有する。また、量産化には不適当で
ある。
Various methods are conceivable for heating the closed glass or glass precursor to 1500 to 2200 ° C. First, a method using a gas burner such as hydrogen or acetylene is used. Although it is easily available and easy to operate, it has the disadvantage that the temperature control is difficult and the temperature difference between the sample surface and the inside is large. It is not suitable for mass production.

【0023】次に黒鉛あるいはタングステン、モリブデ
ン等を発熱体とした高温炉を用いる方法が挙げられる。
装置が高価であり、酸素の存在しない雰囲気で使用する
など操作が難かしいが、温度制御が確実にでき、高品質
の石英ガラスを安定して製造することができる。装置の
組み方で高温連続熱処理炉とすることができ。量産化が
容易である。その他、水素または炭化水素ガスの燃焼を
熱源とする高温ガス炉を用いる方法も挙げられる。
Next, a method using a high-temperature furnace using graphite, tungsten, molybdenum or the like as a heating element can be used.
Although the apparatus is expensive and difficult to operate, for example, when used in an atmosphere where oxygen does not exist, temperature control can be reliably performed, and high-quality quartz glass can be stably manufactured. A high-temperature continuous heat treatment furnace can be used by assembling the equipment. Mass production is easy. In addition, there is a method using a high-temperature gas furnace using combustion of hydrogen or hydrocarbon gas as a heat source.

【0024】フォトマスク基板への応用を考えると、安
定した品質保証に加えて、5×5×0.09inch、
6×6×0.12inchといった大面積が要求され
る。それを達成するために黒鉛あるいはタングステン、
モリブデン等を発熱体とした高温炉を用いる方法が適し
ている。しかし、試料を半溶融状態にすることから、試
料が炉材に融着して割れや変形が起こる。それを防ぐた
めには炉材と試料間に分離層設けることが必要とな
る。
Considering application to a photomask substrate, in addition to stable quality assurance , 5 × 5 × 0.09 inch,
A large area such as 6 × 6 × 0.12 inch is required. Graphite or tungsten, to achieve it
A method using a high-temperature furnace using molybdenum or the like as a heating element is suitable. However, since the sample is in a semi-molten state, the sample is fused to the furnace material and cracks and deformations occur. To prevent this, it is necessary to provide a separation layer between the furnace material and the sample.

【0025】炭素質は不活性雰囲気だと化学的に安定
で、石英ガラスと反応せず、高純度品が容易に入手でき
る。粉末あるいは繊維で分離層を設けると、分離層が移
動することにより試料と炉材の膨張率差を吸収し、割れ
や変形にいたらない。試料に一部付着しても、洗浄や燃
焼により、容易に除去することができる。紙状または布
状に加工した炭素質を用いると操作性が向上し、接触面
はより良好になる。試料と試料間に設けても同様の分離
効果が得られ、高密度の処理が可能となり、量産性が向
上する。
The carbonaceous material is chemically stable in an inert atmosphere, does not react with quartz glass, and a high-purity product can be easily obtained. When the separation layer is provided with powder or fiber, the difference in the expansion coefficient between the sample and the furnace material is absorbed by the movement of the separation layer, and no cracking or deformation occurs. Even if it adheres partially to the sample, it can be easily removed by washing or burning. When the carbonaceous material processed into the shape of paper or cloth is used, the operability is improved, and the contact surface becomes better. The same separation effect can be obtained even when provided between samples, and high-density processing can be performed, and mass productivity is improved.

【0026】タングステン,モリブデン等を発熱体とし
た高温炉の場合,炭素が存在すると発熱体が炭素化し,
劣化する。そこで分離層としてはアルミナ,ジルコニ
ア,窒化ケイ素等の難焼結性粉末を用いることが適当で
ある。ただし試料に付着した粉末を除去することは困難
である。
In the case of a high-temperature furnace using tungsten, molybdenum or the like as a heating element, the heating element is carbonized when carbon is present, and
to degrade. Therefore, it is appropriate to use a hard-to-sinter powder such as alumina, zirconia, or silicon nitride as the separation layer. However, it is difficult to remove the powder attached to the sample.

【0027】ガラスあるいはガラス前駆体を1500〜
2200℃に加熱すると、軟化することにより試料が変
形やすくなる。ゾルーゲル法の長所として、ゲル化時の
成形性が挙げられているが、高温処理の際、再度成形す
ることが可能である。例えば大面積の石英ガラス平板を
製造する際、平板の鋳型となる容器内でゲル化させて
も、ガラス化時にその平面性が必す保持されているわけ
ではない。平面を有する炉内治具上に試料をのせ、高温
に加熱すると試料は自重で平面化する。その後の研削工
程を考慮すると非常に有利である。
The glass or glass precursor is mixed with
When heated to 2200 ° C., the sample is easily deformed due to softening. As an advantage of the sol-gel method, moldability at the time of gelation is mentioned, but it is possible to form again at the time of high temperature treatment. For example, when manufacturing a large-area quartz glass flat plate, even if it is gelled in a container serving as a mold of the flat plate, the flatness is not necessarily maintained during vitrification. When the sample is placed on a furnace jig having a flat surface and heated to a high temperature, the sample is flattened by its own weight. This is very advantageous in view of the subsequent grinding process.

【0028】平板に限らず、求める形状の鋳型となる炉
内治具を用いると、極めて高精度の成形を達成すること
ができる。自重にたよらず、プレス装置を炉内に組み込
み、加圧する方法も可能である。
Not only a flat plate but also a very high-precision molding can be achieved by using an in-furnace jig which is a mold having a desired shape. It is also possible to adopt a method in which a press device is incorporated in a furnace and pressurized without depending on its own weight.

【0029】石英ガラスロッドやチューブを製造する時
は,リングバーナーやリングヒーターを用いた方が効率
が良い。ロッドやチューブの両端を固定し,中心部を高
温加熱する際,両端から張力を加えると真直度を良くす
ることができる。光ファイバー用プリフォームやサポー
チューブに応用する際,非常に重要である。
When manufacturing a quartz glass rod or tube , it is more efficient to use a ring burner or a ring heater. When fixing both ends of the rod or tube and heating the center at a high temperature, the straightness can be improved by applying tension from both ends. This is very important when applied to optical fiber preforms and support tubes .

【0030】1500〜2200℃に加熱し、急冷する
と石英ガラスには内部応力が残っている。そのため高温
処理の後徐冷するか、急冷後アニール処理を行なつてか
ら徐冷することが必要である。少なくとも1回は120
0℃から室温までの冷却を徐々に行なわなければならな
い。
When heated to 1500 to 2200 ° C. and quenched, internal stress remains in the quartz glass. Therefore, it is necessary to perform slow cooling after high-temperature treatment or slow cooling after annealing after rapid cooling. 120 at least once
Cooling from 0 ° C. to room temperature must be done gradually.

【0031】本発明の高温処理は溶融法とは根本的に異
なる。まず、石英ガラスのバルクそのものは従来のゾル
ーゲル法の手法で既に成形されている点、高温処理の保
持時間が溶融法に比べ極めて短かいという点、そして高
温処理時の作業が皆無に近いという点が大きな相異点と
して挙げられる。概念的にはガラス内の歪みを除くアニ
ール処理に近く、ガラス内のインクルージヨンを消失さ
せる処理として位置付けることができる。
The high temperature treatment of the present invention is fundamentally different from the melting method. First, the bulk of quartz glass itself has already been formed by the conventional sol-gel method, the retention time of high-temperature treatment is extremely shorter than that of the melting method, and there is almost no work during high-temperature treatment. Is a major difference. It is conceptually close to an annealing process for removing distortion in glass, and can be positioned as a process for eliminating inclusions in glass.

【0032】以上述べたように、本発明の製造方法を用
いれば、従来のゾルーゲル法では不可能であつた高品質
の石英ガラスを製造することができると共に、成形性を
向上させることができ、従来よりもはるかに低価格で石
英ガラスを提供することができる。
As described above, the use of the production method of the present invention makes it possible to produce high-quality quartz glass, which was impossible with the conventional sol-gel method, and to improve the formability. Quartz glass can be provided at a much lower price than before.

【0033】また,本発明の製造方法を応用すれば,他
成分系ガラス,例えばSi2−ZrO2系の耐アルカリ
ガラスあるいはSi2−TiO2系の低膨張率ガラスな
ども高品質,低価格で製造することができる。
Further, when applying the manufacturing method of the present invention, other component glass, for example, Si O 2 -ZrO 2 based alkali resistant glass or Si O 2 -TiO 2 based high quality, low expansion glass of Can be manufactured at a low price.

【0034】本発明により、フオトマスク基板や光フア
イバ一用ブリフオームとして使用可能な、光学的に極め
て高品質な石英ガラスを、低価格で大量に市場に供給で
きる。
According to the present invention, very high quality optically usable quartz glass which can be used as a photomask substrate or a briform for an optical fiber can be supplied to the market in large quantities at a low price.

【0035】[0035]

【実施例】(実施例1) エチルシリケート440mlと0.05規定塩酸水溶液
360mlを激しく攪拌し、無色透明の均一溶液を得
た。0.1規定アンモニア水でpH4.2に調整してか
ら1μmのフィルターを通過させ、ポリプロピレン製容
器(幅20cm×20cm×高さ10cm)に500m
l注入した。開口率0.5%のフタをし、60℃で10
日間乾燥させたところ、無色透明のドライゲルが作製で
きた。
EXAMPLES Example 1 440 ml of ethyl silicate and 360 ml of a 0.05 N aqueous hydrochloric acid solution were vigorously stirred to obtain a colorless and transparent homogeneous solution. After adjusting the pH to 4.2 with 0.1N ammonia water, the solution was passed through a 1 μm filter, and placed in a polypropylene container (width 20 cm × 20 cm × height 10 cm) for 500 m.
1 was injected. Close the lid with an opening ratio of 0.5%.
After drying for days, a colorless and transparent dry gel was produced.

【0036】ガス置換炉内にドライゲルを入れ、30℃
/hrの速度で700℃まで昇温した。700℃から純
へリウムガスを1l/minの流量で炉内に流入しはじ
め、10℃/hrの速度で900℃まで昇温し、900
℃で1時間保持した。比重は2.20になつており、ガ
ラス化していた。
Place the dry gel in a gas displacement furnace,
/ Hr at a rate of / hr. From 700 ° C., pure helium gas was introduced into the furnace at a flow rate of 1 l / min, the temperature was increased to 900 ° C. at a rate of 10 ° C./hr, and 900 ° C.
C. for 1 hour. The specific gravity was 2.20, and it was vitrified.

【0037】大きさは8cm×8cm×0.5cmだつ
た。直径数ミクロンのインクルージヨンがわずかに検出
された。
The size was 8 cm × 8 cm × 0.5 cm. Slight inclusions of several microns in diameter were detected.

【0038】得られた石英ガラス板の両側から、ガスバ
ーナ一を用いて、酸水素炎を当てた。表面温度が180
0℃以上になつた状態で10秒以上保持し、全面をほぼ
均一条件で加熱した。100倍の顕微鏡ではインクルー
ジヨンが検出できなかつたが、歪が全面に発生してい
た。
An oxyhydrogen flame was applied from both sides of the obtained quartz glass plate using a gas burner. Surface temperature 180
The temperature was maintained at 0 ° C. or higher for 10 seconds or longer, and the entire surface was heated under substantially uniform conditions. Although inclusions could not be detected with a 100 × microscope, distortion occurred on the entire surface.

【0039】1200℃で1時間保持した後100℃/
hrの速度で降温し、除歪を行なつた。厚さ2mmに鏡
面研磨し、暗室内で50,000luxの照度になるよ
う集光ランプを当てたが、光点は全く検出できなかっ
た。
After holding at 1200 ° C. for 1 hour, 100 ° C. /
The temperature was lowered at a rate of hr to remove strain. The mirror was polished to a thickness of 2 mm, and a condenser lamp was applied so that the illuminance was 50,000 lux in a dark room. However, no light spot was detected.

【0040】(実施例2)エチルシリケート440m
l、エタノール900ml、0.1規定アンモニア水3
60mlを均一に混合し、室温で1日放置した。白濁し
たゾルを、ロータリーエバポレーターを用いて400m
lまで濃縮した。
(Example 2) 440 m of ethyl silicate
l, ethanol 900ml, 0.1N ammonia water 3
60 ml were mixed uniformly and left at room temperature for 1 day. Using a rotary evaporator, the turbid sol is 400 m
and concentrated to 1.

【0041】1μmフィルターを通過させ,内径5c
m,深さ30cmのポリプロピレン製容器に400ml
注入し,開口率2%のフタをした。60℃で10日間乾
燥させたところ,白色のドライゲルが作製できた。
After passing through a 1 μm filter,
m, 400ml in a 30cm deep polypropylene container
It was injected and a lid having an opening ratio of 2% was provided. After drying at 60 ° C. for 10 days, a white dry gel was produced.

【0042】真空炉内にドライゲルを入れ、60℃/h
rの速度で900℃まで昇温した。
The dry gel is placed in a vacuum furnace, and the temperature is 60 ° C./h.
The temperature was raised to 900 ° C. at a rate of r.

【0043】900℃でロータリーポンプを用いて1T
orrまで減圧にし、以後この真空度を保ちながら10
0℃/hrの速度で1200℃まで昇温した。1200
℃で1時間保持したところ、ガラス化しており、比重は
2.20であつた。大ささは直径2cm、長さ10cm
だつた。波長0.633μmのレーザー光をこの石英ガ
ラスロッド内に照射したところ、いたる所で散乱が観察
された。
1T using a rotary pump at 900 ° C.
orr, and then maintain the degree of vacuum at 10
The temperature was raised to 1200 ° C. at a rate of 0 ° C./hr. 1200
After holding at 1 ° C. for 1 hour, it was vitrified, and the specific gravity was 2.20. The size is 2cm in diameter and 10cm in length
Swearing. When a laser beam having a wavelength of 0.633 μm was irradiated into the quartz glass rod, scattering was observed everywhere.

【0044】ガラス旋盤にロツドを固定し、回転させな
がら酸水素炎で加熱した。表面温度が2000℃以上に
なった状態で30秒以上保持した後、バーナーをスライ
ドさせ、全体を均一に加熱した。再びレーザー光を照射
したところ散乱は全く観察されなかつた。
The rod was fixed on a glass lathe and heated with an oxyhydrogen flame while rotating. After maintaining the surface temperature at 2000 ° C. or higher for 30 seconds or more, the burner was slid and the whole was heated uniformly. When the laser beam was irradiated again, no scattering was observed.

【0045】(実施例3)エチルシリケート440m
l、エタノール900ml、0.1規定アンモニア水3
60mlを均一に混合し、室温で1日放置した。白濁し
たゾルを、ロータリーエバポレーターを用いて400m
lまで濃縮した後、l規定塩酸水溶液を添加してPH
4.0に調整した。
(Example 3) 440 m of ethyl silicate
l, ethanol 900ml, 0.1N ammonia water 3
60 ml were mixed uniformly and left at room temperature for 1 day. Using a rotary evaporator, the turbid sol is 400 m
and then add 1N aqueous hydrochloric acid and add
It was adjusted to 4.0.

【0046】それとは別にエチルシリケート440ml
と0.05規定塩酸水溶液360mlを激しく撹拌し、
無色透明の均一溶液を得た。先のゾルと均一に混合した
後、1μmのフィルターを通過させた。0.1規定アン
モニア水でpH4.8に調整してから、内径6cm、長
さ40cmのテフロン容器に1000ml注入して密栓
をした。管軸を中心にして1時間、回転数500r.
p.mで回転させた後、2日静置した。
Separately, 440 ml of ethyl silicate
And 360 ml of 0.05N hydrochloric acid aqueous solution are vigorously stirred,
A colorless and transparent homogeneous solution was obtained. After uniformly mixing with the above sol, the mixture was passed through a 1 μm filter. After adjusting the pH to 4.8 with 0.1 N aqueous ammonia, 1000 ml of the solution was poured into a Teflon container having an inner diameter of 6 cm and a length of 40 cm, and the container was sealed. The rotation speed is 500 r.
p. m, and allowed to stand for 2 days.

【0047】栓をはずしてゲルを取り出し、ポリプロピ
レン製容器(W10×D45×H15cm)に移し開口
率1%のフタをした。60℃で10日間乾繰させたとこ
ろ、チユーブ形状のドライゲルが作製できた。
The gel was taken out by removing the stopper, transferred to a polypropylene container (W10 × D45 × H15 cm), and covered with a lid having an opening ratio of 1%. After drying at 60 ° C. for 10 days, a tube-shaped dry gel was produced.

【0048】真空炉内にドライゲルを入れ、60℃/h
rの速度で800℃まで昇温した。800℃で1Tor
r以下まで減圧にしてから純へリウムガスを炉内に流入
した。その後再び1Torr以下まで減圧にし、以後こ
の真空度を保ちながら100℃/hrの速度で1200
℃まで昇温した。1200℃で1時間保持したところガ
ラス化しており、比重は2.20であつた。大きさは外
径3cm、内径1cm、長さ20cmだつた。波長0.
633μmのレーザー光を、この石英チユーブ内に照射
したところ、いたる所で散乱が観察された。
The dry gel is placed in a vacuum furnace at 60 ° C./h
The temperature was raised to 800 ° C. at a rate of r. 1 Torr at 800 ° C
After reducing the pressure to r or less, pure helium gas was introduced into the furnace. Thereafter, the pressure was reduced again to 1 Torr or less, and thereafter, at a rate of 100 ° C./hr, 1200
The temperature was raised to ° C. When it was kept at 1200 ° C. for 1 hour, it was vitrified, and the specific gravity was 2.20. The size was 3 cm in outer diameter, 1 cm in inner diameter, and 20 cm in length. Wavelength 0.
When a 633 μm laser beam was irradiated into the quartz tube, scattering was observed everywhere.

【0049】黒鉛発熱炉に石英ガラスチユーブを鉛直に
立てて入れ、窒素ガスで置換した後、2時間で1600
℃まで昇温し、10分間保持した。1200℃まで10
00℃/hrの速度で降温し、それ以後室温まで100
℃/hrの速度で降温した。再びレーザー光を照射した
ところ、散乱はほんのわすか観察されただけだつた。
A quartz glass tube was placed vertically in a graphite heating furnace, and was replaced with nitrogen gas.
The temperature was raised to ° C. and maintained for 10 minutes. 10 to 1200 ° C
The temperature was lowered at a rate of 00 ° C./hr,
The temperature was lowered at a rate of ° C / hr. When again irradiated with laser light, scattering was only slightly observed.

【0050】(実施例4) エチルシリケート440mlと0.05規定の塩酸水溶
液360mlを激しく攪拌し、無色透明の均一溶液を得
た。そこに超微粉末シリカ(AerosilOX−5
0)150gを徐々に添加し、充分に攪拌した。このゾ
ルを20℃に保ちながら28kHzの超音波を2時間照
射し、更に1500Gの遠心力を10分間かけてダマ状
物を取り除いた後、1μmのフィルターを通過させた。
Example 4 440 ml of ethyl silicate and 360 ml of a 0.05 N hydrochloric acid aqueous solution were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultrafine silica (AerosilOX-5)
0) 150 g was added slowly and stirred thoroughly. The sol was irradiated with ultrasonic waves of 28 kHz for 2 hours while maintaining the temperature at 20 ° C., and centrifugal force of 1500 G was further removed for 10 minutes to remove lumps, and then passed through a 1 μm filter.

【0051】得られた均質度の高いゾルを、0.1規定
アンモニア水でpH4.2に調整してからポリプロピレ
ン製容器(幅20cm×20cm×高さ10cm)に5
00ml注入した。開口率1%のフタをし、60℃で7
日間乾燥させたところ、白色で多孔質のドライゲルが作
製できた。
The obtained sol having a high degree of homogeneity was adjusted to pH 4.2 with 0.1N ammonia water, and then placed in a polypropylene container (width 20 cm × 20 cm × height 10 cm).
00 ml was injected. Cover with 1% opening ratio, 7 ℃ at 60 ℃
After drying for days, a white and porous dry gel was produced.

【0052】ガス置換炉内にドライゲルを入れ、60℃
/hrの速度で1000℃まで昇温した。1000℃か
ら純へリウムガスを1l/minの流量で炉内に流入し
はじめ、30℃/hrの速度で1300℃まで昇温し、
1300℃で1時間保持した。ガラス化が終了してお
り、比重は2.20になつていた。大きさは10cm×
10cm×0.5cmだつた。直径10ミクロン程度の
インクルージヨン及びβクリストバライト型結晶がわず
かに検出された。
Dry gel is placed in a gas replacement furnace,
/ Hr at a rate of / hr. From 1000 ° C., pure helium gas began to flow into the furnace at a flow rate of 1 l / min, and was heated to 1300 ° C. at a rate of 30 ° C./hr.
It was kept at 1300 ° C. for 1 hour. Vitrification was completed, and the specific gravity was 2.20. The size is 10cm x
It was 10 cm x 0.5 cm. An inclusion having a diameter of about 10 μm and a β-cristobalite type crystal were slightly detected.

【0053】15cm×15cm×1cmの黒鉛平板上
に、炭素粉末を約1mmの厚さになるよう均一に敷い
た。その上に石英ガラス板をのせ、黒鉛発熱炉内にセッ
トした。
A carbon powder was evenly spread on a 15 cm × 15 cm × 1 cm graphite flat plate so as to have a thickness of about 1 mm. A quartz glass plate was placed thereon, and set in a graphite heating furnace.

【0054】窒素ガスで置換した後、2時間で1800
℃まで昇温し、10分間保持した。1200℃まで10
00℃/hrの速度で降温し、それ以後室温まで100
℃/hrの速度で降温した。
After replacing with nitrogen gas, 1800
The temperature was raised to ° C. and maintained for 10 minutes. 10 to 1200 ° C
The temperature was lowered at a rate of 00 ° C./hr,
The temperature was lowered at a rate of ° C / hr.

【0055】黒鉛平板と石英ガラス板は融着しておら
ず、石英ガラス板の平面性は良好だった。厚さ2mmに
鏡面研磨し、暗室内で50,000luxの照度になる
よう集光ランプを当てたが、光点は全く検出できなかっ
た。結晶及び歪みも存在せず、光学的に極めて高品質だ
った。
The graphite flat plate and the quartz glass plate were not fused, and the flatness of the quartz glass plate was good. The mirror was polished to a thickness of 2 mm, and a condenser lamp was applied so that the illuminance was 50,000 lux in a dark room. However, no light spot was detected. There were no crystals or strains, and the optical quality was extremely high.

【0056】(実施例5) 純水500mlに超微粉末シリカ(Aerosil 2
00)250gを分散させ、20℃に保ちながら28
Hzの超音波を2時間照射した。粘性の高いスラリーを
内径5cm,深さ30cmのポリプロピレン製容器に4
00ml注入し、開口率2%のフタをした。60℃で1
日間乾燥させたところ、白色で多孔質のドライゲルが作
製できた。
(Example 5) Ultrafine powdered silica (Aerosil 2) was added to 500 ml of pure water.
00) Disperse 250 g and keep 28 k
Hz ultrasonic waves were irradiated for 2 hours. Put the viscous slurry in a polypropylene container with an inner diameter of 5 cm and a depth of 30 cm.
00 ml was injected, and a lid having an opening ratio of 2% was provided. 1 at 60 ° C
After drying for days, a white and porous dry gel was produced.

【0057】ガス置換炉内にドライゲルを入れ、60℃
/hrの速度で1100℃まで昇温した。1100℃か
ら純へリウムガスを1l/minの流量で炉内に流入し
はじめ、30℃/hrの速度で1400℃まで昇温し、
1400℃で1時間保持した。半透明状態だつたが、比
重はほぼ2.20になつていた。
Place the dry gel in a gas replacement furnace,
/ Hr at a rate of 1100 ° C. From 1100 ° C., pure helium gas began to flow into the furnace at a flow rate of 1 l / min, and the temperature was raised to 1400 ° C. at a rate of 30 ° C./hr.
It was kept at 1400 ° C. for 1 hour. Although it was translucent, the specific gravity was almost 2.20.

【0058】得られた石英ガラス前駆体ロツドを高温ガ
ス炉に鉛直に立てて入れ、ブロパンガス炎で1800℃
に加熱し、10分間保持した。1200℃まで1000
℃/hrの速度で降温し、それ以後室温で100℃/h
rの速度で降温した。
The quartz glass precursor rod thus obtained was placed vertically in a high-temperature gas furnace, and heated at 1800 ° C. with a propane gas flame.
And held for 10 minutes. 1000 up to 1200 ° C
The temperature was lowered at a rate of 100 ° C / hr.
The temperature dropped at a rate of r.

【0059】気泡が発生することなく、透明の石英ガラ
スロッドが得られた。大ささは、直径4cm、長さ24
cmだつた。
A transparent quartz glass rod was obtained without generating bubbles. The size is 4cm in diameter and 24 in length
cm.

【0060】波長0.633μmのレーザー光を照射し
たところ,散乱は全く観察されなかった。
When a laser beam having a wavelength of 0.633 μm was irradiated, no scattering was observed .

【0061】(実施例6)15cm×15cm×0.2
cmタングステン平板上に、ジルコニア粉末を約1mm
の厚さになるよう均一に敷いた。その上に実施例4と同
様の方法で閉孔化した石英ガラス板をのせ、夕ングステ
ン発熱炉内にセツトした。窒素ガスで置換した後、2時
間で1800℃まで昇温し、10分間保持した。120
0℃まで1000℃/hrの速度で降温し、それ以後室
温まで100℃/hrの速度で降温した。
Example 6 15 cm × 15 cm × 0.2
zirconia powder on a 1 cm tungsten plate
It was spread evenly to a thickness of A quartz glass plate closed in the same manner as in Example 4 was placed thereon, and set in a stainless steel heating furnace. After purging with nitrogen gas, the temperature was raised to 1800 ° C. in 2 hours and maintained for 10 minutes. 120
The temperature was lowered to 0 ° C. at a rate of 1000 ° C./hr, and then to room temperature at a rate of 100 ° C./hr.

【0062】タンダステン平板と石英ガラス板は融着し
ておらず、石英ガラス板の平面性は良好だつた。厚さ2
mmに鏡面研磨し、暗室内で50,000luxの照度
になるよう集光ランプを当てたが、光点は全く検出でき
なかった。結晶及び歪も存在せず、光学的に極めて高品
質だつた。
The Tandasten flat plate and the quartz glass plate were not fused, and the flatness of the quartz glass plate was good. Thickness 2
mm, and a condensing lamp was applied to the illuminance of 50,000 lux in a dark room, but no light spot was detected. There was no crystal or strain, and the optical quality was very high.

【0063】エチルシリケート1,760ml、エタノ
ール2,690ml、1規定アンモニア水670mlを
均一に混合し、室温で5日放置した。白濁したゾルに純
水400mlを添加してから、ロータリーエバポレータ
ーを用いて1000mlまで濃縮した。更に2規定塩酸
水溶液を添加してpH4.0に調整した。
1,760 ml of ethyl silicate, 2,690 ml of ethanol, and 670 ml of 1N ammonia water were uniformly mixed and allowed to stand at room temperature for 5 days. 400 ml of pure water was added to the cloudy sol, and then concentrated to 1000 ml using a rotary evaporator. Further, a 2N hydrochloric acid aqueous solution was added to adjust the pH to 4.0.

【0064】それとは別にエチルシリケート760ml
と0.02規定塩酸水溶液250mlを激しく撹拌し、
無色透明の均一溶液を得た。先のゾルと均一に混合した
後、1μmのフィルターを通過させた。0.1規定アン
モニア水でpH4.2に調整してから、1500Gの遠
心力を10分間かけてダマ状物を取り除いた後、1μm
のフィルターを通過させた。
Separately, 760 ml of ethyl silicate
And 250 ml of 0.02 N hydrochloric acid aqueous solution are vigorously stirred,
A colorless and transparent homogeneous solution was obtained. After uniformly mixing with the above sol, the mixture was passed through a 1 μm filter. After adjusting the pH to 4.2 with 0.1 N aqueous ammonia, centrifugal force of 1500 G was applied for 10 minutes to remove lumps, and then 1 μm
Passed through the filter.

【0065】得られた均質度の高いゾルをポリプロピレ
ン製容器(幅30cm×30cm×高さ15cm)に1
100ml注入した。開ロ率0.5%のフタをし、60
℃で20日間乾繰させたところ、白色で多孔質のドライ
ゲル(22cm×22cm×0.9cm)が作製でき
た。
The obtained sol having a high degree of homogeneity was placed in a polypropylene container (30 cm × 30 cm × 15 cm in height).
100 ml was injected. Cover with 0.5% opening rate, 60
After drying at 20 ° C. for 20 days, a white and porous dry gel (22 cm × 22 cm × 0.9 cm) was produced.

【0066】ガス置換炉内にドライゲルを入れ、乾燥空
気を2l/minの流入で炉内に流入した。60℃/h
rの速度で700℃まで昇温し、700℃で20時間保
持した。
The dry gel was placed in the gas replacement furnace, and dry air was flowed into the furnace at a flow rate of 2 l / min. 60 ° C / h
The temperature was raised to 700 ° C. at a rate of r, and maintained at 700 ° C. for 20 hours.

【0067】流入ガスをへリウムに切り換え、2l/m
inの流量で流入し、900℃、1000℃、1100
℃、1200℃の各温度で10時間ずつ保持した。ガラ
ス化が終了しており、大きさは15.5cm×l5.5
cm×0.6cm、フラットネスは2mmだつた。
Switching the incoming gas to helium, 2 l / m
in at a flow rate of 900 ° C., 1000 ° C., 1100
And 1200 ° C. for 10 hours. Vitrification has been completed and the size is 15.5 cm x 5.5
cm × 0.6 cm, and flatness was 2 mm.

【0068】20cm×20cm×1cmの黒鉛平枚上
に、厚さ0.3mmのカーボンペーパ一(クレハカーボ
ンファイバーペーパー)を敷き、石英ガラス板をのせ、
黒鉛発熱炉内にセットした。
A carbon paper (Kureha carbon fiber paper) having a thickness of 0.3 mm is laid on a flat graphite sheet of 20 cm × 20 cm × 1 cm, and a quartz glass plate is placed thereon.
It was set in a graphite heating furnace.

【0069】窒素ガスで置換した後、2時間で1850
℃まで昇温し、5分間保持した。1200℃まで100
0℃/hrの速度で降温し、それ以後室温まで100℃
/hrの速度で降温した。
After replacing with nitrogen gas, 1850
The temperature was raised to ° C. and maintained for 5 minutes. 100 to 1200 ° C
The temperature is lowered at a rate of 0 ° C./hr, and thereafter the temperature is lowered to room temperature at 100 ° C.
/ Hr.

【0070】黒鉛平板と石英ガラス板は融着しておら
ず、石英ガラス板のフラツトネスは0.1mm以下だつ
た。
The graphite flat plate and the quartz glass plate were not fused, and the flatness of the quartz glass plate was 0.1 mm or less.

【0071】6×6×0.12inchに鏡面研磨し、
暗室内で50,000luxの照度になるよう集光ラン
プを当てたが、光点は全く検出できなかつた。紫外域で
の透過率を測定したところ、200mmまで90%以上
を保持しており、特定の吸収は認められなかつた。
Mirror polishing to 6 × 6 × 0.12 inch,
A condensing lamp was applied so that the light intensity was 50,000 lux in a dark room, but no light spot could be detected. When the transmittance in the ultraviolet region was measured, the transmittance was maintained at 90% or more up to 200 mm, and no specific absorption was observed.

【0072】(実施例8) エチルシリケート1150mlと0.01規定塩酸水溶
液620mlを激しく攪拌し、無色透明の均一溶液を得
た。そこに超微粉末シリカ(ReolosiQS−10
2)300gを徐々に添加し、充分に攪拌した。このゾ
ルを20℃に保ちながら28kHzの超音波を2時間照
射し、更に1500Gの遠心力を10分間かけてダマ状
物を取り除いた後、1μmのフィルターを通過させた。
0.1規定アンモニア水でpH4.2に調整してから、
再び1500Gの遠心力を10分間かけ、1μmのフィ
ルターを通過させた。
Example 8 1150 ml of ethyl silicate and 620 ml of a 0.01 N hydrochloric acid aqueous solution were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultra fine powder silica (ReolosiQS-10)
2) 300 g was gradually added, followed by sufficient stirring. The sol was irradiated with ultrasonic waves of 28 kHz for 2 hours while maintaining the temperature at 20 ° C., and centrifugal force of 1500 G was further removed for 10 minutes to remove lumps, and then passed through a 1 μm filter.
After adjusting the pH to 4.2 with 0.1N aqueous ammonia,
Again, a centrifugal force of 1500 G was applied for 10 minutes to pass through a 1 μm filter.

【0073】得られた均質度の高いゾルをポリプロピレ
ン製容器(幅30cm×30m×高さ15cm)に11
00ml注入した。開ロ率0.5%のフタをし、60℃
で20日間乾燥させたところ、白色で多孔質のドライゲ
ルが作製できた。
The obtained sol having a high degree of homogeneity was placed in a polypropylene container (width 30 cm × 30 m × height 15 cm).
00 ml was injected. Cover with 0.5% opening rate, 60 ℃
After drying for 20 days, a white and porous dry gel was produced.

【0074】ガス置換炉内にドライゲルを入れ、乾燥空
気を2l/minの流量で炉内に流入した。60℃/h
rの速度で700℃まで昇温する途中、200℃、30
0℃、500℃の各温度で3時間ずつ保持した。流入ガ
スをへリウムに切り換え、2l/minで流量で流入
し、700℃,900℃,1000℃,1100℃,1
200℃の各温度で10時間ずつ保持した。
The dry gel was placed in a gas replacement furnace, and dry air was flowed into the furnace at a flow rate of 2 l / min. 60 ° C / h
r, 200 ° C, 30 ° C
It was kept at each of 0 ° C. and 500 ° C. for 3 hours. The inflow gas is switched to helium and flows in at a flow rate of 2 l / min, 700 ° C, 900 ° C, 1000 ° C, 1100 ° C, 1
Each temperature was kept at 200 ° C. for 10 hours.

【0075】ガラス化が終了しており、比重は2.20
になつていた。
The vitrification has been completed, and the specific gravity is 2.20.
Had become.

【0076】20cm×20cm×lcmの黒鉛平板上
に厚さ0.3mmのカーボンペーパーを敷き、得られた
石英ガラス板をのせ、1800℃の黒鉛発熱炉内に投入
し、10分間保持した後、冷却室に移動させ、30分間
で室温まで冷却した。歪が発生していたため、1200
℃で1時間保持した後、100℃/hrの速度で降温
し、除歪を行なつた。フラツトネスは0.1mm以下だ
つた。
A 0.3 mm thick carbon paper was spread on a 20 cm × 20 cm × 1 cm graphite flat plate, and the obtained quartz glass plate was placed on the plate and put into a graphite heating furnace at 1800 ° C., and held for 10 minutes. It moved to a cooling room and cooled to room temperature for 30 minutes. Because distortion occurred, 1200
After holding at 1 ° C. for 1 hour, the temperature was lowered at a rate of 100 ° C./hr to remove strain. Flatness was less than 0.1 mm.

【0077】6×6×12inchに鏡面研磨し、暗室
内で50,000luxの照度になるよう集光ランプを
当てたが、光点は全く検出できなかつた。紫外域での透
過率を測定したところ、200nmまで85%以上を保
持しており、特定の吸収は認められなかつた。
A mirror was polished to 6 × 6 × 12 inches and a condensing lamp was applied so that the illuminance was 50,000 lux in a dark room, but no light spot could be detected. When the transmittance in the ultraviolet region was measured, the transmittance was maintained at 85% or more up to 200 nm, and no specific absorption was observed.

【0078】(実施例9)実施例7と同様の方法で作製
した白色で多孔質のドライゲル(22cm×22cm×
0.9cm)をカス置換炉内に入れ、乾燥空気を2l/
minの流量で炉内に流入した。60℃/hrの速度で
700℃まで昇温し、700℃で20時間保持した。流
入ガスをへリウムに切り換え、2l/minの流量で流
入し、800℃,900℃,1000℃の各温度で5時
間ずつ保持した。室温まで冷却したところ、大きさは1
8cm×18cm×0.7cmであり、白色で多孔質だ
つた。
(Example 9) White and porous dry gel (22 cm x 22 cm x
0.9 cm) in a dregs replacement furnace, and dry air at 2 l /
It flowed into the furnace at a flow rate of min. The temperature was raised to 700 ° C. at a rate of 60 ° C./hr and maintained at 700 ° C. for 20 hours. The inflow gas was switched to helium, flowed in at a flow rate of 2 l / min, and maintained at 800 ° C., 900 ° C., and 1000 ° C. for 5 hours. After cooling to room temperature, the size is 1
It was 8 cm × 18 cm × 0.7 cm, white and porous.

【0079】20cm×20cm×1cmの黒鉛平板上
に厚さ0.3mmのカーボンぺーパーを敷き、1000
℃まで加熱した該焼結ゲルをのせ、黒鉛発熱炉内にセツ
トした。
A 0.3 mm thick carbon paper was spread on a graphite plate of 20 cm × 20 cm × 1 cm,
The sintered gel heated to 0 ° C was placed and set in a graphite heating furnace.

【0080】ロータリーポンプを用いて1Torr以下
の減圧を保ちながら10分間で1000℃まで急激に昇
温した。引さ続き300℃/hrの速度で1300℃ま
で昇温し、1300℃で1時間保持した。窒素ガスを炉
内に流入して常圧にもどしてから、600℃/hrの速
度で1750℃まで昇温し、30分間保持した。
Using a rotary pump, the temperature was rapidly raised to 1000 ° C. for 10 minutes while maintaining a reduced pressure of 1 Torr or less. Subsequently, the temperature was raised to 1300 ° C. at a rate of 300 ° C./hr and maintained at 1300 ° C. for 1 hour. Nitrogen gas was flown into the furnace to return to normal pressure, then the temperature was raised to 1750 ° C. at a rate of 600 ° C./hr and held for 30 minutes.

【0081】冷却室に移動させ、30分間で室温まで冷
却した。
It was moved to a cooling room and cooled to room temperature for 30 minutes.

【0082】15.5cm×15.5cm×0.6cm
の大きさの透明石英ガラスが製造できており、割れやク
ラツクの発生はなかつた。歪みが発生していたため、1
200℃で1時間保持した後、100℃/hrの速度で
降温し、除歪を行なつた。
15.5 cm × 15.5 cm × 0.6 cm
A transparent quartz glass with a size of was produced, and no cracks or cracks occurred. Because distortion occurred, 1
After maintaining at 200 ° C. for 1 hour, the temperature was lowered at a rate of 100 ° C./hr to remove strain.

【0083】6×6×0.12inchに鏡面研磨し、
暗室内で50,000luxの照度になるよう集光ラン
プを当てたが、光点は全く検出できなかつた。結晶及び
歪も存在せず、光学的に極めて高品質だつた.紫外域で
の透過率を測定したところ、200nmまで90%以上
を保持しており、特定の吸収は認められなかつた。
Mirror polishing to 6 × 6 × 0.12 inch,
A condensing lamp was applied so that the light intensity was 50,000 lux in a dark room, but no light spot could be detected. There was no crystal or strain, and the optical quality was extremely high. When the transmittance in the ultraviolet region was measured, the transmittance was maintained at 90% or more up to 200 nm, and no specific absorption was observed.

【0084】(実施例10)実施例7と同様の方法で閉
孔化した石英ガラス(15.5cm×15.5cm×
0.6cm)を20枚用意した.20cm×2cm×1
cmの黒鉛平板上に17cm×17cm×0.03cm
のカーボンぺ一パ一と石英ガラス各5枚を、交互に積み
重ねた。高さ4cmの黒鉛支柱を4本立て、黒鉛平板を
のせた。その上に一段目と同様に5枚の石英ガラス板
を、カーボンぺーパーを介しながら積み重ねた。以下同
じように、20枚をセットした。
(Example 10) Quartz glass (15.5 cm x 15.5 cm x
0.6 cm) were prepared. 20cm x 2cm x 1
17cm × 17cm × 0.03cm on a black graphite flat plate
Of carbon paper and 5 pieces of quartz glass were alternately stacked. Four graphite pillars having a height of 4 cm were erected and a graphite flat plate was placed thereon. On top of this, five quartz glass plates were stacked on top of each other in the same manner as in the first stage via a carbon paper. Hereinafter, 20 sheets were set in the same manner.

【0085】窒素ガスで置換した後、1800℃の黒鉛
発熱炉内に投入し、15分間保持した。冷却室に移動さ
せ、30分間で室温まで冷却した。黒鉛平板と石英ガラ
ス板、及び石英ガラス板同志は融着しておらず、石英ガ
ラス板のフラットネスは0.2cm以下だつた。
After purging with nitrogen gas, the mixture was charged into a graphite heating furnace at 1800 ° C. and maintained for 15 minutes. It moved to a cooling room and cooled to room temperature for 30 minutes. The graphite plate, the quartz glass plate, and the quartz glass plates were not fused together, and the flatness of the quartz glass plate was 0.2 cm or less.

【0086】歪が発生していたため、1200℃で1時
間保持した後、100℃/hrの速度で降温し、除歪を
行なった。
Since strain was generated, the temperature was kept at 1200 ° C. for 1 hour, and then the temperature was lowered at a rate of 100 ° C./hr to remove the strain.

【0087】6×6×0.12inchに鏡面研磨し、
暗室内で50.000luxの照度になるよう集光ラン
プを当てたが、光点は全く検出できなかつた。結晶及び
歪も存在せず、光学的に極めて高品質だった。紫外域で
の透過率を測定したところ、200nmまで90%以上
を保持しており、特定の吸収は認められなかつた。
Mirror polishing to 6 × 6 × 0.12 inch,
The condenser lamp was turned on so that the illuminance was 50.000lux in a dark room, but no light spot could be detected. There were no crystals or strains, and the optical quality was extremely high. When the transmittance in the ultraviolet region was measured, the transmittance was maintained at 90% or more up to 200 nm, and no specific absorption was observed.

【0088】(実施例11) エチルシリケート2200mlと0.02規定塩酸水溶
液1600mlを激しく攪拌し、無色透明の均一溶液を
得た。そこに超微粉末シリカ(AerosilOX−5
0)600gを徐々に添加し、充分に攪拌した。このゾ
ルを20℃に保ちながら28kHzの超音波を2時間照
射し、更に1500Gの遠心力を10分間かけてダマ状
物を除去した後、1μmのフィルターを通過させた。
0.1規定アンモニア水でpH4.8に調整してから、
再び1μmのフィルターを通過させた。
Example 11 2200 ml of ethyl silicate and 1600 ml of a 0.02 N aqueous hydrochloric acid solution were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultrafine silica (AerosilOX-5)
0) 600 g was added slowly and stirred thoroughly. The sol was irradiated with 28 kHz ultrasonic waves for 2 hours while maintaining the sol at 20 ° C., and centrifugal force of 1500 G was further applied for 10 minutes to remove lumps, and then passed through a 1 μm filter.
After adjusting the pH to 4.8 with 0.1N ammonia water,
It was passed again through a 1 μm filter.

【0089】得られた均質度の高いゾルを、アルミニウ
ム管にテフロンコーテイングした容器(円径6cm、長
さl50cm)に3,770ml注入し、密栓をした。
3,770 ml of the obtained sol having a high degree of homogeneity was poured into a Teflon-coated container (circular diameter: 6 cm, length: 150 cm) in an aluminum tube and sealed.

【0090】回転装置に装着し、管の中心軸を回転軸と
して、回転数500r・p・mで1時間回転させた。
The tube was mounted on a rotating device and rotated at a rotation speed of 500 rpm for 1 hour around the central axis of the tube.

【0091】室温に4日間静置した後、密栓をはずし、
ゲルをポリプロピレン容器(10cm×17cm×高さ
20cm)内に移した。開ロ率0.5%のフタをし、6
0℃で30日間乾燥させたところ、チユーブ形状のドラ
イゲルが作製できた。
After leaving at room temperature for 4 days, the stopper was removed.
The gel was transferred into a polypropylene container (10 cm × 17 cm × height 20 cm). Cover with 0.5% opening rate, 6
After drying at 0 ° C. for 30 days, a tube-shaped dry gel was produced.

【0092】ガス置換炉内にドライゲルを入れ、乾燥空
気を2l/minの流域で炉内に流入した。60℃/h
rの速度で700℃まで昇温し、10時間保待した。流
入ガスをへリウム(1.8l/min)と塩素(0.2
l/min)の混合ガスに切り換え、30℃/hrの速
度で1000℃まで昇温した。流入ガスを酸素(0.2
l/min)に切り換え、1000℃と1050℃でそ
れそれ10時間保持した。
Dry gel was placed in a gas replacement furnace, and dry air was flowed into the furnace at a flow rate of 2 l / min. 60 ° C / h
The temperature was raised to 700 ° C. at a rate of r and kept for 10 hours. The incoming gas was helium (1.8 l / min) and chlorine (0.2
1 / min) and the temperature was raised to 1000 ° C. at a rate of 30 ° C./hr. Oxygen (0.2
1 / min) and maintained at 1000 ° C. and 1050 ° C. for 10 hours.

【0093】最後に流入ガスをへリウム(2l/mi
n)に切り換え、1050℃、ll00℃、1200℃
の各温度で10時間ずつ保持した。
Finally, the inflow gas was changed to helium (2 l / mi).
Switch to n), 1050 ° C, 110 ° C, 1200 ° C
At each temperature for 10 hours.

【0094】半透明状態だつたが、比重はほぼ2.20
になつていた。大きさは外径3cm、内径1cm、高さ
75cmだつた。真円度は16μm、真直度は2.0c
mであった。
The product was translucent, but had a specific gravity of about 2.20.
Had become. The size was 3 cm in outer diameter, 1 cm in inner diameter, and 75 cm in height. Roundness is 16 μm, straightness is 2.0c
m.

【0095】得られた石英ガラス前駆体を鉛直になるよ
うに両端を保持して、黒鉛のリング状ヒーター内を移動
させた。リング状ヒーターは周辺にアルゴンガスを流し
ながら2000℃に保ち、移動は鉛直下方上端を3c
m/minの速度で、下端を4cm/minの速度で行
った。次に電気炉内に入れ、1200℃で1時間保持し
た後100℃/hrの速度で降温し、除歪を行った。
The obtained quartz glass precursor was moved inside a graphite ring-shaped heater while holding both ends of the precursor so as to be vertical. Ring heater maintained at 2000 ° C. under a stream of argon gas around, 3c the upper moving vertically downward
The lower end was performed at a speed of 4 cm / min at a speed of m / min. Next, it was placed in an electric furnace, kept at 1200 ° C. for 1 hour, and then cooled at a rate of 100 ° C./hr to remove strain.

【0096】大きさは外形26cm、内径0.87c
m、長さ1mだった。真円度は16μmで変わらず、真
直度は0.1mmと改善された。
The size is 26 cm outside diameter and 0.87 c inside diameter.
m, 1 m in length. The roundness was unchanged at 16 μm, and the straightness was improved to 0.1 mm.

【0097】波長0.633μmのレーザー光を照射し
たところ、散乱は全く観察されなかった。また、272
μmの吸収により含水率を測定したところ、1ppm以
下であった。
When the film was irradiated with a laser beam having a wavelength of 0.633 μm, no scattering was observed. Also, 272
The water content was measured by absorption at μm and found to be 1 ppm or less.

【0098】エチルシリケート440mlと0.05規
定塩酸水溶液360mlを激しく撹拌し、無色透明の均
一溶液を得た。そこに超微粉末シリカ(Aerosil
OX−50)150gを徐々に添加し、充分に撹拌し
た。このゾルを20℃に保ちながら28kHzの超音波
を2時間照射し、更に1500Gの遠心力を10分間か
けてダマ状物を取り除いた後、1μmのフィルターを通
過させた。
440 ml of ethyl silicate and 360 ml of a 0.05 N hydrochloric acid aqueous solution were vigorously stirred to obtain a colorless and transparent homogeneous solution. There, ultra fine powder silica (Aerosil
(OX- 50) 150 g was gradually added, followed by sufficient stirring. The sol was irradiated with ultrasonic waves of 28 kHz for 2 hours while maintaining the temperature at 20 ° C., and centrifugal force of 1500 G was further removed for 10 minutes to remove lumps, and then passed through a 1 μm filter.

【0099】得られた均質度の高いゾルを、0.1規定
アンモニア水でpH4.2に調整してからポリプロピレ
ン製容器(内径30cm×高さ10cm)に700ml
注入した。
The obtained sol having a high degree of homogeneity was adjusted to pH 4.2 with 0.1 N ammonia water, and then 700 ml was placed in a polypropylene container (inner diameter 30 cm × height 10 cm).
Injected.

【0100】開口率1%のフタをし、60℃で7日間乾
燥させたところ、白色で多孔質のドライゲルが作成でき
た。
When the lid having an opening ratio of 1% was covered and dried at 60 ° C. for 7 days, a white and porous dry gel was produced.

【0101】真空炉内にドライゲルをいれ、60℃/h
rの速度で1000℃まで昇温した。
Dry gel is placed in a vacuum furnace,
The temperature was raised to 1000 ° C. at a rate of r.

【0102】1000℃でロータリーポンプを用いてl
torr以下まで減圧し、以後この真空度を保ちながら
100℃/hrの速度で1300℃まで昇温し、130
0℃で1時間保持した。ガラス化が終了しており、直径
15cm×厚さ0.5cmの大きさだった。
Using a rotary pump at 1000 ° C.
The pressure was reduced to 1300 ° C. or less at a rate of 100 ° C./hr while maintaining this degree of vacuum.
It was kept at 0 ° C. for 1 hour. Vitrification was completed, and the size was 15 cm in diameter × 0.5 cm in thickness.

【0103】曲率半径30cmで凹型に湾曲した黒鉛治具
上に石英ガラス板をのせ、黒鉛発熱炉内にセットした。
窒素ガスで置換した後、2時間で1800℃まで昇温
し、10分間保持した。1200℃まで1000℃/h
rの速度で降温し、それ以後室温まで100℃/hrの
速度で降温した。厚さが0.5cmで均一の、時計皿形
状を有する石英ガラスが製造できた。気泡等は存在せ
ず、極めて高品質だつた。
A quartz glass plate was placed on a concavely curved graphite jig having a radius of curvature of 30 cm and set in a graphite heating furnace.
After purging with nitrogen gas, the temperature was raised to 1800 ° C. in 2 hours and maintained for 10 minutes. 1000 ° C / h up to 1200 ° C
Then, the temperature was lowered at a rate of 100 ° C./hr to room temperature. A quartz glass having a watch glass shape with a uniform thickness of 0.5 cm was produced. There were no bubbles and the quality was extremely high.

【0104】(実施例13)実施例12と同様の方法で
真空焼結した石英ガラス板(直径15cm×厚さ0.5
cm)を、ルツボ形状の鋳型となる黒鉛治具間に置き、
ホットプレス機構を有する黒鉛発熱炉内にセットした。
窒素ガスで置換した後、2時間で1850℃まで昇温
し、5分間保持した。黒鉛治具を介して10kg/cm
2の圧力でプレスした後、1200℃まで1000℃/
hrの速度で降温した。ルツボ形状をした、極めて高品
質な石英ガラスが製造できた。
Example 13 A quartz glass plate (diameter 15 cm × thickness 0.5) vacuum-sintered in the same manner as in Example 12
cm) between the graphite jigs serving as crucible-shaped molds,
It was set in a graphite heating furnace having a hot press mechanism.
After purging with nitrogen gas, the temperature was raised to 1850 ° C. in 2 hours and maintained for 5 minutes. 10kg / cm via graphite jig
After pressing at a pressure of 2 , 1000 ° C /
The temperature dropped at a rate of hr. Very high quality quartz glass with a crucible shape could be manufactured.

【0105】(実施例14)実施例7と同様の方法を用
いて、ヘリウム雰囲気で閉孔化させたガラス体(15.
5cm×15.5cm×0.6cm)を電気炉内にいれ
1600℃で30分間保持した。1200℃まで100
0℃/hrの速度で降温し、それ以後室温まで100℃
/hrの速度で降温した。
Example 14 Using the same method as that of Example 7, a glass body closed in a helium atmosphere (15.
(5 cm × 15.5 cm × 0.6 cm) was placed in an electric furnace and kept at 1600 ° C. for 30 minutes. 100 to 1200 ° C
The temperature is lowered at a rate of 0 ° C./hr, and thereafter the temperature is lowered to room temperature at 100 ° C.
/ Hr.

【0106】6×6×0.12inchに鏡面研磨し、
暗室内で50,000luxの照度になるよう集光ラン
プを当てたところ、うつすらとスポツトが観察できた。
また、面内に数ケ所、小さな光点が肉眼で検出できた。
Mirror polishing to 6 × 6 × 0.12 inch,
When a condensing lamp was applied so that the illuminance was 50,000 lux in a dark room, spots were observable.
In addition, small light spots could be detected with the naked eye at several places in the plane.

【0107】(実施例15)実施例7と同様の方法を用
いて、へリウム雰囲気で閉孔化させたガラス体(15.
5cm×15.5cm×0.6cm)を黒鉛発熱炉内に
セツトした。アルゴンガスで置換した後、2時間で21
00℃まで昇温し、1分間保持した。1200℃まで1
000℃/hrの速度で降温し、それ以後室温まで10
0℃/hrの速度で降温した。
(Example 15) Using the same method as in Example 7, the glass body (15.
(5 cm × 15.5 cm × 0.6 cm) was set in a graphite heating furnace. After replacing with argon gas, 21 hours in 2 hours
The temperature was raised to 00 ° C. and maintained for 1 minute. 1 to 1200 ° C
Temperature at a rate of 000 ° C./hr,
The temperature was lowered at a rate of 0 ° C./hr.

【0108】大きさは14cm×14cm×0.5cm
と減少していた。厚さ2mmに鏡面研磨し、暗室内で5
0,000luxの照度になるよう集光ランプを当てた
が光点は全く検出できなかった。
The size is 14 cm × 14 cm × 0.5 cm
And had decreased. Mirror-polished to a thickness of 2 mm, 5 in a dark room
The condenser lamp was turned on so that the illuminance became 000 lux, but no light spot was detected.

【0109】(比較例l)実施例7と同様の方法を用い
て、へリウム雰囲気で閉孔化させたガラス体(15.5
cm×15.5cm×0.6cm)を電気炉内に入れ、l
450℃で30分間保持した。室温まで冷却したとこ
ろ、石英ガラス表面が結晶化により、白色となつてい
た。
(Comparative Example 1) A glass body (15.5) closed in a helium atmosphere using the same method as in Example 7.
cm × 15.5 cm × 0.6 cm) in an electric furnace.
It was kept at 450 ° C. for 30 minutes. Upon cooling to room temperature, the quartz glass surface turned white due to crystallization.

【0110】6×6×0.12inchに鏡面研磨し、
暗室内で50,000luxの照度になるよう集光ラン
プを当てたところ、スポットが明確に現れた。また、面
内に大小さまざまの光点が多数存在していた。
Mirror polishing to 6 × 6 × 0.12 inch,
When a condensing lamp was applied so as to have an illuminance of 50,000 lux in a dark room, a spot clearly appeared. Also, there were many light spots of various sizes in the plane.

【0111】(比較例2)実施例7と同様の方法を用い
て、へリウム雰囲気で閉孔化させたガラス体(l5.5
cm×15.1cm×0.6cm)を黒鉛発熱炉内にセ
ツトした。アルゴンガスで置換した後、2300℃まで
急激に昇温し、室温まで降温した。炉内にはわずかの量
の石英ガラスが残存しているだけであつた。
Comparative Example 2 Using the same method as in Example 7, a glass body (15.5) closed in a helium atmosphere was used.
cm × 15.1 cm × 0.6 cm) was set in a graphite heating furnace. After purging with argon gas, the temperature was rapidly raised to 2300 ° C. and then lowered to room temperature. Only a small amount of quartz glass remained in the furnace.

【0112】(比較例3) 実施例4と同様の方法で乾燥させた,白色で多孔質のド
ライゲルを大気中で1300℃まで昇温し,ガラス体と
した。大きさは10cm×10cm×0.5cmであ
り,直径10ミクロン程度のインクルージョン及び気泡
が検出された。黒鉛発熱炉内にセットし,窒素ガスで置
換した後,1800℃で10分間保持した。ガラス体は
発泡のため,約3倍の体積にふくれ上がり,外観は白色
であった。
Comparative Example 3 A white, porous dry gel dried in the same manner as in Example 4 was heated to 1300 ° C. in the air to obtain a glass body. The size was 10 cm × 10 cm × 0.5 cm, and inclusions and bubbles with a diameter of about 10 μm were detected. It was set in a graphite heating furnace, replaced with nitrogen gas, and kept at 1800 ° C. for 10 minutes. The glass body was swollen to about three times the volume due to foaming, and the appearance was white.

【0113】[0113]

【発明の効果】以上の述べたように請求項1記載の発明
によれば、ゾル−ゲル法による石英ガラスの製造方法に
おいて、ガラスあるいはガラス前駆体を1500〜22
00℃に加熱する際、加熱手段と前記ガラス体あるいは
ガラス前駆体の間もしくは複数の前記ガラス体あるいは
ガラス前駆体の間に、分離手段を介して静置するので、
例えば試料(ガラスあるいはガラス前駆体)が炉材に融
着して生じる「割れ」や「変形」を防ぐことができる。
請求項3に記載の発明によれば、ゾル−ゲル法による石
英ガラスの製造方法において、ガラスあるいはガラス前
駆体を1500〜2200℃に加熱する際、前記ガラス
体あるいはガラス前駆体に外部より圧力を付加し、所望
の形状に成形するので、平板に限らず、例えばルツボ形
状などの任意の形状が高精度に成形できる。請求項5に
記載の発明によれば、ゾル−ゲル法による石英ガラスの
製造方法において、ガラスあるいはガラス前駆体を15
00〜2200℃に加熱する際、前記ガラス体あるいは
ガラス前駆体を加熱する際、前記ガラス体あるいはガラ
ス前駆体を平面を有する治具上に載置するので、高温に
加熱すると試料(ガラス体あるいはガラス前駆体)は自
重で平面化することとなる。これにより、その後の研削
工程が容易となる。請求項7に記載の発明によれば、1
500〜2200℃に加熱し石英ガラスを形成した後に
急冷し、その後アニール処理を行ってから徐冷するの
で、上記と同様に良好な光学品質の石英ガラスが得られ
る。
As described above, according to the first aspect of the present invention, in a method for producing quartz glass by a sol-gel method, glass or a glass precursor is used in an amount of 1500 to 22%.
When heating to 00 ° C., between the heating means and the glass body or glass precursor or between a plurality of the glass bodies or glass precursors, because it is allowed to stand through the separation means,
For example, it is possible to prevent "cracking" or "deformation" caused by fusion of a sample (glass or glass precursor) to a furnace material.
According to the invention described in claim 3, in the method for producing quartz glass by the sol-gel method, when the glass or the glass precursor is heated to 1500 to 2200 ° C., an external pressure is applied to the glass body or the glass precursor. Since it is additionally formed into a desired shape, not only a flat plate but also an arbitrary shape such as a crucible shape can be formed with high precision. According to the fifth aspect of the present invention, in the method for producing quartz glass by the sol-gel method, the glass or the glass precursor is used for 15 times.
When the glass body or the glass precursor is heated to 00 to 2200 ° C., the glass body or the glass precursor is placed on a jig having a flat surface. The glass precursor) is planarized by its own weight. This facilitates the subsequent grinding process. According to the invention described in claim 7, 1
After heating to 500 to 2200 ° C. to form quartz glass, it is rapidly cooled, then annealed, and then gradually cooled, so that quartz glass of good optical quality can be obtained as described above.

【0114】発泡を防ぐため、へリウム雰囲気あるいは
減圧下での閉孔化が必要となるが、ゾルの調整方法や加
熱方法にはとらわれない。また種々の形状の製品に対応
させることができる。
In order to prevent foaming, it is necessary to close the holes in a helium atmosphere or under reduced pressure, but the method for preparing the sol and the method for heating are not limited. Further, it can correspond to products of various shapes.

【0115】本発明により、ゾルーゲル法による石英ガ
ラスでも、ICマスク用石英基板や光通信ファイバー用
サポートチユーブ、更には光通信フイバー用マザーロツ
ド等への対応が可能となつた。
According to the present invention, quartz glass by the sol-gel method can be applied to a quartz substrate for an IC mask, a support tube for an optical communication fiber, and a mother rod for an optical communication fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 哲彦 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (72)発明者 北林 宏仁 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (56)参考文献 特開 昭62−86563(JP,A) 特開 昭60−239328(JP,A) 特開 昭63−129028(JP,A) 特開 昭57−22137(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuhiko Takeuchi 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (72) Inventor Hirohito Kitabayashi 3-3-5, Yamato, Suwa-shi, Nagano, Say (56) References JP-A-62-86563 (JP, A) JP-A-60-239328 (JP, A) JP-A-63-129028 (JP, A) JP-A-57-22137 ( JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン化合物を含むゾル溶液をゲル化し
た後、乾燥させてドライゲルを作製する工程と、 前記ドライゲルを閉孔化してガラス体あるいはガラス前
駆体を形成する工程と、 前記ガラス体あるいはガラス前駆体を1500〜220
0℃で加熱して一定時間保持し石英ガラスを形成する工
程とを有し、 前記ガラス体あるいはガラス前駆体を加熱する際、加熱
手段と前記ガラス体あるいはガラス前駆体の間もしくは
複数の前記ガラス体あるいはガラス前駆体の間に、分離
手段を介して静置することを特徴とする石英ガラスの製
造方法。
1. A After gelling the sol solution containing a silicon compound, a process of forming a dry gel is dried, forming a glass body or glass precursor and closed porosity of the dry gel, the glass body or 1500-220 glass precursor
A step of heating at 0 ° C. and holding for a certain period of time to form quartz glass, wherein when heating the glass body or the glass precursor, a heating means and the glass body or the glass precursor or a plurality of the glass A method for producing quartz glass, comprising standing still between a body or a glass precursor via a separating means.
【請求項2】 前記石英ガラスを形成する工程のしかる後
に前記石英ガラスを冷却することを特徴とする請求項1
記載の石英ガラスの製造方法。
2. The method according to claim 1 , wherein the quartz glass is cooled after the step of forming the quartz glass.
The method for producing quartz glass described above.
【請求項3】 シリコン化合物を含むゾル溶液をゲル化し
た後、乾燥させてドライゲルを作製する工程と、 前記ドライゲルを閉孔化してガラス体あるいはガラス前
駆体を形成する工程と、 前記ガラス体あるいはガラス前駆体を1500〜220
0℃で加熱して一定時間保持し石英ガラスを形成する工
程とを有し、 前記ガラス体あるいはガラス前駆体を加熱する際、前記
ガラス体あるいはガラス前駆体に外部より圧力を付加
し、所望の形状に成形することを特徴とする石英ガラス
の製造方法。
3. A step of gelling and drying a sol solution containing a silicon compound to produce a dry gel; a step of closing the dry gel to form a glass body or a glass precursor; 1500-220 glass precursor
Heating at 0 ° C. and holding for a certain period of time to form quartz glass; and when heating the glass body or the glass precursor, applying pressure from the outside to the glass body or the glass precursor, A method for producing quartz glass, characterized by being formed into a shape.
【請求項4】 前記石英ガラスを形成する工程のしかる後
に前記石英ガラスを冷却することを特徴とする請求項3
記載の石英ガラスの製造方法。
Claim 3, characterized in that cooling the quartz glass thereafter the step of forming the quartz glass
The method for producing quartz glass described above.
【請求項5】 シリコン化合物を含むゾル溶液をゲル化し
た後、乾燥させてドライゲルを作製する工程と、 前記ドライゲルを閉孔化してガラス体あるいはガラス前
駆体を形成する工程と、 前記ガラス体あるいはガラス前駆体を1500〜220
0℃で加熱して一定時間保持し石英ガラスを形成する工
程と、 前記ガラス体あるいはガラス前駆体を加熱する際、前記
ガラス体あるいはガラス前駆体を平面を有する治具上に
載置することを特徴とする石英ガラスの製造方法。
5. After gelation the sol solution containing a silicon compound, a process of forming a dry gel is dried, forming a glass body or glass precursor and closed porosity of the dry gel, the glass body or 1500-220 glass precursor
A step of heating at 0 ° C. and holding for a predetermined time to form quartz glass; and, when heating the glass body or the glass precursor, placing the glass body or the glass precursor on a jig having a flat surface. Characteristic method for producing quartz glass.
【請求項6】 前記石英ガラスを形成する工程のしかる後
に前記石英ガラスを冷却することを特徴とする請求項5
記載の石英ガラスの製造方法。
6. A claim, characterized in that cooling the quartz glass thereafter the step of forming the silica glass 5
The method for producing quartz glass described above.
【請求項7】 シリコン化合物を含むゾル溶液をゲル化し
た後、乾燥させてドライゲルを作製する工程と、 前記ドライゲルを閉孔化してガラス体あるいはガラス前
駆体を形成する工程と、 前記ガラス体あるいはガラス前駆体を1500〜220
0℃で加熱して一定時間保持し石英ガラスを形成する工
程と、 次いで前記石英ガラスを急冷する工程と、 前記急冷された石英ガラスをアニール処理する工程と、 前記アニール処理の後に徐冷する工程とを有することを
特徴とする石英ガラスの製造方法。
7. A step of gelling a sol solution containing a silicon compound, followed by drying to produce a dry gel; a step of closing the dry gel to form a glass body or a glass precursor; 1500-220 glass precursor
A step of heating at 0 ° C. and holding for a predetermined time to form quartz glass; a step of rapidly cooling the quartz glass; a step of annealing the quartz glass that has been quenched; and a step of gradually cooling after the annealing treatment And a method for producing quartz glass.
JP7083771A 1995-04-10 1995-04-10 Manufacturing method of quartz glass Expired - Fee Related JP2611684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7083771A JP2611684B2 (en) 1995-04-10 1995-04-10 Manufacturing method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7083771A JP2611684B2 (en) 1995-04-10 1995-04-10 Manufacturing method of quartz glass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61101347A Division JPH07121813B2 (en) 1985-07-16 1986-05-01 Method for producing flat quartz glass

Publications (2)

Publication Number Publication Date
JPH08143319A JPH08143319A (en) 1996-06-04
JP2611684B2 true JP2611684B2 (en) 1997-05-21

Family

ID=13811874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7083771A Expired - Fee Related JP2611684B2 (en) 1995-04-10 1995-04-10 Manufacturing method of quartz glass

Country Status (1)

Country Link
JP (1) JP2611684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192225A (en) * 1999-12-28 2001-07-17 Watanabe Shoko:Kk Method for manufacturing quartz glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858292B2 (en) * 1980-01-21 1983-12-24 株式会社日立製作所 Silica glass manufacturing method
JPS5767031A (en) * 1980-10-06 1982-04-23 Shin Etsu Chem Co Ltd Formation of quartz glass
JPS59116134A (en) * 1982-12-23 1984-07-04 Seiko Epson Corp Manufacture of quartz glass
JPH07121813B2 (en) * 1985-07-16 1995-12-25 セイコーエプソン株式会社 Method for producing flat quartz glass

Also Published As

Publication number Publication date
JPH08143319A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US5236483A (en) Method of preparing silica glass
US7589040B2 (en) Doped silica glass articles and methods of forming doped silica glass boules and articles
US4801318A (en) Silica glass formation process
CA1339972C (en) Method for producing ultra-high purity, optical quality, glass articles
KR101313647B1 (en) Silica Vessel and Process for Producing Same
JPH0733258B2 (en) Method for producing article containing high silica glass body
JP4922355B2 (en) Silica container and method for producing the same
JP2008511527A (en) Bonding agent for joining component parts, method for joining component parts made of material having high silicic acid content, and component assembly obtained by the method
US6849114B2 (en) Dispersion comprising silicon/titanium mixed oxide powder, and green bodies and shaped glass articles produced therefrom
JP2004131373A (en) Method of manufacturing silica and titania extreme ultraviolet ray optical element
JPH07121813B2 (en) Method for producing flat quartz glass
KR20090039668A (en) Manufacture of large articles in synthetic vitreous silica
WO1987005286A1 (en) Process for manufacturing glass
JPH04219333A (en) Production of quartz glass
JP2611684B2 (en) Manufacturing method of quartz glass
CN103118995A (en) Process for producing a quartz glass crucible having a transparent inner layer of synthetically produced quartz glass
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JPH0912322A (en) High-purity transparent quartz glass and its production
JPH042625A (en) Production of highly homogeneous silica glass
JP4022678B2 (en) Method for producing high purity transparent silica glass
JPS62167233A (en) Production of quartz glass
JPS6296333A (en) Method of producing quartz glass
JP2000344535A (en) Method for recycling quartz glass molding
KR20190020238A (en) Qurtz glass vaccum melting apparatus and melting method
JPS62119132A (en) Production of base material for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees