JP2611235B2 - Membrane surface structure - Google Patents
Membrane surface structureInfo
- Publication number
- JP2611235B2 JP2611235B2 JP16728687A JP16728687A JP2611235B2 JP 2611235 B2 JP2611235 B2 JP 2611235B2 JP 16728687 A JP16728687 A JP 16728687A JP 16728687 A JP16728687 A JP 16728687A JP 2611235 B2 JP2611235 B2 JP 2611235B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane surface
- membrane
- tension
- surface structure
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜面構造に関し、特に宇宙航行体に搭載され
る展開構造物の張力膜構造方式に用いられる膜面構造に
関する。Description: TECHNICAL FIELD The present invention relates to a membrane surface structure, and more particularly to a membrane surface structure used for a tension membrane structure method of a deployable structure mounted on a spacecraft.
宇宙航行体に搭載される展開構造物は、軽量化,打上
げ時の収納状態でのコンパクトさ,展開状態での高剛性
化及び確実な展開・再収納が要求されることに伴なっ
て、張力膜構造方式で対応されつつある。Deployable structures mounted on space vehicles are required to be lightweight, compact in the retracted state at launch, high rigidity in the deployed state, and required to deploy and re-deploy securely. It is being addressed by the film structure method.
第2図はかかる張力膜構造方式の一例を示す斜視図で
あり、(a)は収納状態、(b)は展開後の状態を示
す。FIG. 2 is a perspective view showing an example of such a tension membrane structure system, in which (a) shows a housed state and (b) shows a state after development.
互いに多段ヒンジで連結された複数の膜面構造14は、
収納状態では宇宙航行体6の外壁に設けた膜面構造収納
ケース7に収納され、収納蓋10で覆われている。展開状
態では、伸展・再収納マスト8および張力負荷機構10に
よって各膜面構造14に張力を負荷することにより、張力
膜構造物全体として剛性が確保される。A plurality of membrane surface structures 14 connected to each other by a multi-stage hinge,
In the housed state, it is housed in a membrane structure housing case 7 provided on the outer wall of the spacecraft 6 and covered with a housing lid 10. In the unfolded state, the tension is applied to each membrane surface structure 14 by the extension / re-storage mast 8 and the tension loading mechanism 10, thereby securing the rigidity of the entire tension membrane structure.
第3図は従来の膜面構造の一例である膜面構造14を示
す図面であり、(a)正面図、(b)は(a)における
B−B線に沿う部分断面図である。FIG. 3 is a drawing showing a film surface structure 14 which is an example of a conventional film surface structure. FIG. 3 (a) is a front view, and FIG. 3 (b) is a partial cross-sectional view along line BB in FIG.
この膜面構造14は、展開・再収納の円滑さ及び確実さ
のために補給フレーム4に膜面5を接着し固定して、膜
面5に面外剛性を持たせていた。In the film surface structure 14, the film surface 5 is adhered and fixed to the replenishment frame 4 for smoothness and reliability of deployment and re-storage, so that the film surface 5 has an out-of-plane rigidity.
上述した従来の膜面構造14では、展開後の張力膜構造
物全体の剛性を確保するために膜面構造14に負荷した張
力が膜面5と補強フレーム4との張力負荷方向の剛性比
によって配分されるため、膜面5に負荷される張力が膜
面構造14に負荷した張力に比べて小さくなり、張力の高
剛性化に対する効果が悪く、高剛性化のために膜面構造
14に更に大きな張力を付加し、ひいては、膜面構造14の
全体を支持する伸展・再収納マスト8のサイズアップ及
び重量増加となる欠点があった。また、膜面構造14の製
造時に膜面5にしわを発生させずに補強フレーム4に膜
面5を接着することは非常に困難であり、しわをもった
膜面構造14の動特性は不確実性をもったものとなる欠点
があった。更に、宇宙環境下での展開後の状態における
膜面構造14の熱変形においても、膜面5と補強フレーム
4とが一体となっている構造は、膜面5と補強フレーム
4との温度差及び各々の材料の熱膨張係数の相違により
バイメタルのように曲げ変形を生じ、構造全体の性能・
機能が損なわれる欠点があった。In the conventional membrane structure 14 described above, the tension applied to the membrane structure 14 in order to secure the rigidity of the entire tension membrane structure after deployment is determined by the rigidity ratio between the membrane surface 5 and the reinforcing frame 4 in the tension load direction. As a result, the tension applied to the membrane surface 5 is smaller than the tension applied to the membrane surface structure 14, and the effect on increasing the rigidity of the tension is poor.
There is a disadvantage in that a larger tension is applied to the mast 14 and, consequently, the size and weight of the extension / re-storage mast 8 that supports the entire membrane structure 14 increases. In addition, it is very difficult to bond the membrane surface 5 to the reinforcing frame 4 without causing wrinkles on the membrane surface 5 during the production of the membrane surface structure 14, and the dynamic characteristics of the wrinkled membrane surface structure 14 are not good. There has been a drawback that has certainty. Further, even when the membrane surface structure 14 is thermally deformed in a state after deployment in a space environment, the structure in which the membrane surface 5 and the reinforcing frame 4 are integrated is a temperature difference between the membrane surface 5 and the reinforcing frame 4. In addition, due to the difference in the coefficient of thermal expansion of each material, bending deformation occurs like bimetal, and the performance of the entire structure
There was a disadvantage that the function was impaired.
本発明の膜面構造は、膜面と、この膜面の面外剛性を
補強すべく形成した補強フレームと、この補強フレーム
および前記膜面の宇宙環境における面内変形に対し前記
補強フレームと前記膜面とが相対的に自由に動き得るだ
けの余裕をもって前記補強フレームの少くとも一部を包
み前記膜面に固着した固定用膜とを備えて構成される。The membrane surface structure of the present invention includes a membrane surface, a reinforcement frame formed to reinforce the out-of-plane rigidity of the membrane surface, and the reinforcement frame and the reinforcement frame against in-plane deformation of the reinforcement frame and the membrane surface in a space environment. A fixing membrane is provided which wraps at least a part of the reinforcing frame and secures the membrane to the membrane surface so that the membrane surface can move relatively freely.
以下、本発明について図面を参照して説明する。 Hereinafter, the present invention will be described with reference to the drawings.
第1図は本発明の膜面構造の一実施例である膜面構造
11を示す図面であり、(a)は正面図、(b)は(a)
におけるA−A線に沿う部分断面図である。FIG. 1 shows a film surface structure according to an embodiment of the present invention.
11 is a drawing showing (11), (a) is a front view, (b) is (a)
3 is a partial cross-sectional view taken along line AA in FIG.
膜面1は各膜面構造11を連結する多段ヒンジ13と一体
で製作され、補強フレーム3は膜面1に固着した固定膜
2に包まれて膜面1に保持されている。The membrane surface 1 is integrally formed with a multi-stage hinge 13 connecting the membrane structures 11, and the reinforcing frame 3 is wrapped by the fixed membrane 2 fixed to the membrane surface 1 and held on the membrane surface 1.
補給フレーム3と膜面1及び固定膜2との間に、第1
図(b)に示すように、膜面1及び補強フレーム3の熱
膨張及び熱収縮を防げないように十分なクリアランスを
確保することにより、宇宙環境において膜面構造11が熱
変形する際にバイメタルのような曲げ変形を回避するこ
とができる。また、膜面構造11に面内方向の張力を負荷
した場合は、膜面1のみに張力が負荷されるため、膜面
構造11の高剛性化に対して張力は効率よく作用する。Between the supply frame 3 and the film surface 1 and the fixed film 2, the first
As shown in FIG. 2B, by securing a sufficient clearance so as not to prevent the thermal expansion and thermal contraction of the membrane surface 1 and the reinforcing frame 3, when the membrane surface structure 11 is thermally deformed in a space environment, Can be avoided. In addition, when a tension in the in-plane direction is applied to the film surface structure 11, the tension is applied only to the film surface 1, so that the tension acts efficiently to increase the rigidity of the film surface structure 11.
以上説明したように本発明は、補強フレームを、膜面
の面内方向に補強フレームが動けるように、固定膜2で
保持することにより、膜面構造に面内張力が負荷された
場合には、製造時に膜面にしわが生じても補強フレーム
の剛性とは無関係に確実に膜面のみに張力が負荷される
ため、膜面のしわが伸ばされて張力膜構造物全体の動特
性が把握しやすくなり、動特性解析のコスト低減のみな
らず、宇宙航行体の姿勢・軌道制御設計時に用いる設計
パラメータとなる張力膜構造物の動特性精度が向上する
ために姿勢・軌道制御精度も向上する効果があり、ま
た、膜面構造の面外変形が少なくなるため、張力膜構造
物全体の形状維持精度が高くなり、その重心変動が少な
くなる効果がある。As described above, the present invention holds the reinforcing frame with the fixed film 2 so that the reinforcing frame can move in the in-plane direction of the membrane surface, so that the in-plane tension is applied to the membrane surface structure. Even if wrinkles occur on the membrane surface during manufacturing, tension is applied to only the membrane surface irrespective of the rigidity of the reinforcing frame, so that the wrinkles on the membrane surface are extended and the dynamic characteristics of the entire tension membrane structure can be grasped. Not only cost reduction of dynamic characteristic analysis but also improvement of attitude / orbit control accuracy by improving dynamic characteristic accuracy of tension membrane structure, which is a design parameter used in attitude / orbit control design of spacecraft In addition, since the out-of-plane deformation of the film surface structure is reduced, the accuracy of maintaining the shape of the tension film structure as a whole is increased, and there is an effect that the change in the center of gravity is reduced.
第1図は本発明の膜面構造の一実施例である膜面構造11
を示す図面であり、(a)は正面図、(b)は(a)に
おけるA−A線に沿う部分断面図、 第2図は張力膜構造方式の一例を示す斜視図であり、
(a)は収納状態、(b)は展開後の状態を示し、 第3図は従来の膜面構造の一例である膜面構造14を示す
図面であり、(a)は正面図、(b)は(a)における
B−B線に沿う部分断面図である。 1……膜面、2……固定膜、3……補強フレーム、11…
…膜面構造、12……多段ヒンジ用軸、13……多段ヒン
ジ。FIG. 1 shows a film surface structure 11 according to an embodiment of the present invention.
(A) is a front view, (b) is a partial cross-sectional view along the line AA in (a), FIG. 2 is a perspective view showing an example of a tension membrane structure system,
(A) shows a stored state, (b) shows a state after expansion, FIG. 3 is a drawing showing a film surface structure 14 which is an example of a conventional film surface structure, (a) is a front view, (b) () Is a partial cross-sectional view along line BB in (a). 1 ... membrane surface, 2 ... fixed membrane, 3 ... reinforcement frame, 11 ...
… Membrane surface structure, 12… shaft for multi-stage hinge, 13 …… multi-stage hinge.
Claims (1)
形成した補強フレームと、この補強フレームおよび前記
膜面の宇宙環境における面内変形に対し前記補強フレー
ムと前記膜面とが相対的に自由に動き得るだけの余裕を
もって前記補強フレームの少くとも一部を包み前記膜面
に固着した固定用膜とを備えたことを特徴とする膜面構
造。1. A membrane surface, a reinforcement frame formed to reinforce the out-of-plane rigidity of the membrane surface, and the reinforcement frame and the membrane surface against in-plane deformation of the reinforcement frame and the membrane surface in a space environment. A fixing membrane that wraps at least a part of the reinforcing frame with a margin enough to relatively freely move and that is fixed to the membrane surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16728687A JP2611235B2 (en) | 1987-07-03 | 1987-07-03 | Membrane surface structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16728687A JP2611235B2 (en) | 1987-07-03 | 1987-07-03 | Membrane surface structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6412999A JPS6412999A (en) | 1989-01-17 |
JP2611235B2 true JP2611235B2 (en) | 1997-05-21 |
Family
ID=15846940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16728687A Expired - Lifetime JP2611235B2 (en) | 1987-07-03 | 1987-07-03 | Membrane surface structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611235B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2917554B2 (en) * | 1991-03-20 | 1999-07-12 | 日本電気株式会社 | Membrane reinforcement structure |
-
1987
- 1987-07-03 JP JP16728687A patent/JP2611235B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6412999A (en) | 1989-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6735920B1 (en) | Deployable space frame and method of deployment therefor | |
US6437232B1 (en) | D-wing deployable solar array | |
EP0534110B1 (en) | Simplified spacecraft antenna reflector for stowage in confined envelopes | |
JP2959696B2 (en) | Satellite torque balancing method and apparatus | |
US9611056B1 (en) | Directionally controlled elastically deployable roll-out solar array | |
US20140326833A1 (en) | Directionally Controlled Elastically Deployable Roll-Out Array | |
US6508036B1 (en) | Method of linear actuation by inflation and apparatus therefor | |
WO2005027186A2 (en) | Expansion-type reflection mirror | |
US11962272B2 (en) | Z-fold solar array with curved substrate panels | |
WO2018116490A1 (en) | Deployable radiator | |
CN113474255B (en) | Off-track sail unfolding method and device | |
JP2611235B2 (en) | Membrane surface structure | |
JPS6239399A (en) | Solar-panel | |
JPH07223597A (en) | Two-dimensional development structure body | |
JP2647040B2 (en) | Sun shield | |
JPS6229206A (en) | Mesh expansion antenna | |
JPH0581480B2 (en) | ||
JP2001106195A (en) | Plane-expansion structure | |
JP2607792B2 (en) | Mirror support device | |
JPS62255299A (en) | Tension device for space missile | |
JP3038765B2 (en) | Deployment structure speed reduction mechanism | |
JP2508066B2 (en) | Mechanism for deploying and storing membrane structures | |
Domingo et al. | Mechanical design and test of rosetta platform louvres | |
JPH10327015A (en) | Mesh mirror surface | |
JPH10145137A (en) | Expansible panel structure |