JP2609194B2 - Desorption method of organic chlorine solvent - Google Patents

Desorption method of organic chlorine solvent

Info

Publication number
JP2609194B2
JP2609194B2 JP4244256A JP24425692A JP2609194B2 JP 2609194 B2 JP2609194 B2 JP 2609194B2 JP 4244256 A JP4244256 A JP 4244256A JP 24425692 A JP24425692 A JP 24425692A JP 2609194 B2 JP2609194 B2 JP 2609194B2
Authority
JP
Japan
Prior art keywords
soil
desorption
heating
minutes
organic chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4244256A
Other languages
Japanese (ja)
Other versions
JPH0666693A (en
Inventor
英俊 杉山
明美 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP4244256A priority Critical patent/JP2609194B2/en
Publication of JPH0666693A publication Critical patent/JPH0666693A/en
Application granted granted Critical
Publication of JP2609194B2 publication Critical patent/JP2609194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は土壌中に含まれる有機塩
素系溶剤の脱離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desorbing an organochlorine solvent contained in soil.

【0002】[0002]

【従来の技術】従来の有機塩素系溶剤の脱離分析方法と
しては、一つにはエチルアルコール、アセトンといった
有機溶媒を用い、土壌と混合し、振とうすることによっ
て微量の有機塩素系溶剤をこれら有機溶媒層中に溶出さ
せる方法がある。この有機溶媒による溶出にも多くの方
法があるが、最良の方法として提案されているものは、
有機溶媒としてエチルアルコールを使用し、長時間振と
うし、水を加え、さらに水に不溶である有機溶媒ヘキサ
ンに転溶し、妨害物質を取り除く操作を行った後、ガス
クロマトグラフにより定量を行う方法である。しかしこ
の方法では、有機塩素系溶剤を土壌から溶出させる時間
が長くかかり、操作がやや複雑で、試験操作中における
目的物質の大気中への飛散、外からの妨害物質の混入等
にも注意しなければならなかった。また、目的物質がす
べて土壌中から溶出したかどうかの判定も難しかった。
2. Description of the Related Art As a conventional method for analyzing the desorption of an organic chlorine-based solvent, one method uses an organic solvent such as ethyl alcohol or acetone, mixes it with soil, and shakes to remove a small amount of the organic chlorine-based solvent. There is a method of elution in these organic solvent layers. There are many methods for elution with this organic solvent, but the one proposed as the best method is
Using ethyl alcohol as an organic solvent, shaking for a long time, adding water, further dissolving in hexane, an organic solvent that is insoluble in water, removing the interfering substances, and quantifying by gas chromatography. It is. However, in this method, it takes a long time to elute the organochlorine solvent from the soil, the operation is somewhat complicated, and attention must be paid to the scattering of the target substance into the air during the test operation and the entry of interfering substances from the outside. I had to. Also, it was difficult to determine whether or not all the target substances had eluted from the soil.

【0003】従来の有機塩素系溶剤の他の脱離分析方法
として、土壌に常温下で又は加熱しながら窒素ガス等を
通し、有機塩素系溶剤を土壌中から追い出す方法があ
り、この方法は有機溶媒による溶出方法に比べて簡便な
脱離分析方法である。
Another conventional method for desorption analysis of an organic chlorine-based solvent is a method in which nitrogen gas or the like is passed through the soil at room temperature or with heating to remove the organic chlorine-based solvent from the soil. This is a simpler desorption analysis method than the elution method using a solvent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、有機塩
素系溶剤を窒素ガス等で土壌中から追い出す従来のこの
種の方法では、常温で行う場合には、目的物質が土壌中
からあまり脱離されないという課題を有していた。一
方、土壌を加熱しながら窒素ガス等を通す方法では、加
熱によって目的物質が分解してしまい正しい測定ができ
ないという課題を有していた。また、何れにしても有機
塩素系溶剤は沸点が低く大気中に飛散し易いので、土壌
を現場で採取し密栓をしても、実験室に持ちかえってく
る間に目的物質が栓の隙間から大気中に飛散してしまう
おそれが非常に高いという課題を有していた。
However, in the conventional method of purging the organic chlorinated solvent from the soil with nitrogen gas or the like, when the method is carried out at room temperature, the target substance is not removed so much from the soil. Had issues. On the other hand, the method of passing nitrogen gas or the like while heating the soil has a problem in that the target substance is decomposed by the heating and correct measurement cannot be performed. In any case, since the organic chlorine-based solvent has a low boiling point and is easily scattered in the atmosphere, even if the soil is collected at the site and sealed, the target substance passes through the gap between the stoppers while returning to the laboratory. There was a problem that the risk of scattering inside was very high.

【0005】そこで本発明は、有機溶媒による溶出方法
に比べて簡便な脱離分析方法である窒素ガスを通して有
機塩素系溶剤を脱離する方法において、有機塩素系溶剤
の正確な分析を行える脱離方法を提供することを目的と
する。具体的には、脱離を行うまでに、目的物質が大気
中に飛散することを防止することを目的とする。また、
脱離時に目的物質が分解するのを防止することを目的と
する。
Accordingly, the present invention provides a method for desorbing an organic chlorine-based solvent through nitrogen gas, which is a simpler desorption analysis method than an elution method using an organic solvent, in which desorption can be carried out for accurate analysis of an organic chlorine-based solvent. The aim is to provide a method. Specifically, an object of the present invention is to prevent a target substance from scattering into the atmosphere before desorption is performed. Also,
The purpose is to prevent the target substance from being decomposed at the time of desorption.

【0006】[0006]

【課題を解決するための手段】そこで本発明の有機塩素
系溶剤の脱離方法は、前記目的を達成するために、土壌
を加熱しながらこれに窒素ガスを通して有機塩素系溶剤
を脱離する有機塩素系溶剤の脱離方法において、サンプ
リングした土壌に蒸留水を添加し、そのまま該土壌を加
熱することを特徴とする。前記蒸留水を添加した土壌
は、加熱前に含まれる蒸留水を利用して超音波処理する
ことが好ましい。また前記有機塩素系溶剤の脱離方法
は、土壌中の目的成分の加熱による分解性に応じ、加熱
条件を選択し、異なる加熱条件下で複数回に分けて加熱
し、脱離することが好ましい。また前記有機塩素系溶剤
の脱離方法は、土壌中の目的成分が、1,1,1−トリ
クロロエタンと、トリクロロエチレンと、テトラクロロ
エチレンである場合、120℃、80分の加熱条件で
1,1,1−トリクロロエタンと、トリクロロエチレン
と、テトラクロロエチレンを脱離するとともに、更に2
00℃、60分の加熱条件でテトラクロロエチレンを脱
離することが好ましい。
In order to achieve the above object, the method for desorbing an organochlorine solvent according to the present invention comprises the steps of: The method for desorbing a chlorine-based solvent is characterized in that distilled water is added to the sampled soil and the soil is directly heated. The soil to which the distilled water has been added is preferably subjected to ultrasonic treatment using distilled water contained before heating. In addition, the method for desorbing the organic chlorine-based solvent, the heating conditions are selected according to the decomposability of the target component in the soil by heating, and it is preferable that the heating is performed in a plurality of times under different heating conditions and the desorption is performed. . The method for desorbing an organic chlorine-based solvent is as follows: when the target components in the soil are 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, heating is performed at 120 ° C. for 80 minutes for 1,1,1. -To remove trichloroethane, trichloroethylene and tetrachloroethylene,
It is preferable to remove tetrachloroethylene under heating conditions of 00 ° C. for 60 minutes.

【0007】[0007]

【作用】本発明の有機塩素系溶剤の脱離方法によれば、
土壌採取後蒸留水を加えることで目的物質が大気中に飛
散することを防ぐことができる。また、蒸留水を加える
ことにより、加熱によって従来分解していた目的物質の
分解を防ぐことができる。また、土壌に加えられた蒸留
水を利用して加熱前に超音波処理すれば、土壌からの目
的物質の回収率をさらに高めることができる。また、加
熱温度、加熱時間を選択し、複数の加熱条件で脱離させ
ることにより、目的物質の分解を防止しつつ、さらに回
収率を高めることができる。
According to the method for desorbing an organic chlorine-based solvent of the present invention,
By adding distilled water after collecting the soil, the target substance can be prevented from scattering into the atmosphere. Further, by adding distilled water, the decomposition of the target substance which has been conventionally decomposed by heating can be prevented. In addition, if ultrasonic treatment is performed before heating using distilled water added to the soil, the recovery rate of the target substance from the soil can be further increased. Further, by selecting a heating temperature and a heating time and desorbing under a plurality of heating conditions, the recovery rate can be further increased while preventing decomposition of the target substance.

【0008】[0008]

【実施例】以下本発明の実施例を図面を用いて説明す
る。図1は本発明サンプリング容器の分解斜視図、図2
はサンプリング容器に連結する脱水管部を示す分解斜視
図、図3は前記サンプリング容器を用いた有機塩素系溶
剤の脱離装置の全体構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of the sampling container of the present invention, and FIG.
FIG. 3 is an exploded perspective view showing a dehydration pipe section connected to the sampling vessel, and FIG. 3 is an overall configuration diagram of an organic chlorine-based solvent desorbing apparatus using the sampling vessel.

【0009】図1に示すように、サンプリング容器は土
壌を入れるためのステンレス管からなる容器本体1を備
え、容器本体1は両端部にねじ部1a,1bが設けられ
ている。2a,2bはそれぞれステンレス製のジョイン
トを示し、容器本体1のねじ部1a,1bと対応するね
じ溝をそれぞれ一端に有し、容器本体1の両端部に取付
けられる。ジョイント2aの他端は窒素ガス導入管3が
連結できるようにねじが切られている。窒素ガス導入管
3は、ステンレス製であり、L字状に曲げられ、上方に
位置する端部を窒素ガス導入部3a、下方に位置する端
部をジョイント2aとの連結部3bとしている。窒素ガ
ス導入部3aは、試料採取時には盲栓(図示しない)
が、また加熱脱離時には図3に示すように窒素ガス注入
口3cが連結できるようになっている。ジョイント2b
の他端はジョイント4が連結できるようにねじが切られ
ている。ジョイント4は、ステンレス製であり、更にス
トップバルブ5を連結可能な構成となっている。ストッ
プバルブ5もステンレス製であり、側方に出口部5a
と、上端部に操作杆5bとを有している。容器本体1と
ジョイント2aとの間には、細孔のあいたステンレス板
6と、このステンレス板6の上にグラスファイバーから
なるフィルター7とが設けてある。また、ステンレス管
1とジョイント2bとの間には、加熱脱離の際に土壌が
飛散しないようにグラスウール8が設けてある。前記実
施例では、窒素ガス導入部3aは窒素ガス導入管3に設
けたが、容器本体1の底部に直接設けるようにしても構
わない。
As shown in FIG. 1, the sampling vessel includes a vessel body 1 made of a stainless steel tube for containing soil, and the vessel body 1 is provided with screw portions 1a and 1b at both ends. Reference numerals 2a and 2b denote stainless steel joints, each having a thread groove at one end corresponding to the threaded portions 1a and 1b of the container body 1, and attached to both ends of the container body 1. The other end of the joint 2a is threaded so that the nitrogen gas introduction pipe 3 can be connected. The nitrogen gas introduction pipe 3 is made of stainless steel and is bent in an L-shape. The upper end is a nitrogen gas introduction part 3a, and the lower end is a connection part 3b with the joint 2a. The nitrogen gas inlet 3a is a blind plug (not shown) at the time of sampling.
However, at the time of thermal desorption, the nitrogen gas inlet 3c can be connected as shown in FIG. Joint 2b
Is threaded so that the joint 4 can be connected. The joint 4 is made of stainless steel and has a configuration to which a stop valve 5 can be connected. The stop valve 5 is also made of stainless steel and has an outlet 5a on the side.
And an operating rod 5b at the upper end. Between the container body 1 and the joint 2a, there is provided a stainless steel plate 6 having pores, and a filter 7 made of glass fiber on the stainless steel plate 6. A glass wool 8 is provided between the stainless steel tube 1 and the joint 2b so that the soil is not scattered during heating desorption. In the above embodiment, the nitrogen gas introduction part 3a is provided in the nitrogen gas introduction pipe 3, but may be provided directly on the bottom of the container body 1.

【0010】前記サンプリング容器と連結する脱水管9
は、底の付いたステンレス管であり上部の開口端側にね
じ部9aを有している。ステンレスキャップ10は、内
周に前記ねじ部9aと対応するねじ溝が設けられてお
り、脱水管9の開口端を封口する。また、ステンレスキ
ャップ10は穴を二箇所有し、この穴にそれぞれガス流
入側の接続管11とガス流出側の接続管12が挿入され
ている。なお、水分が脱水管9から流出しないように、
接続管11の下端より接続管12の下端の方を上方に位
置させている。接続管11,12の上端はそれぞれステ
ンレス管13,14と接続可能な連結部11a,12a
となっている。また、各部品を連結するためのねじの部
分については、密閉をより完全なものとするため、ねじ
込む際にはそれぞれテフロンシールを巻いておくものと
する。
A dehydrating pipe 9 connected to the sampling vessel
Is a stainless steel tube with a bottom, and has a screw portion 9a on the upper open end side. The stainless steel cap 10 is provided with a screw groove corresponding to the screw portion 9 a on the inner periphery, and seals the opening end of the dehydrating tube 9. The stainless steel cap 10 has two holes, into which a connection pipe 11 on the gas inflow side and a connection pipe 12 on the gas outflow side are respectively inserted. In order to prevent water from flowing out of the dehydrating tube 9,
The lower end of the connection pipe 12 is located above the lower end of the connection pipe 11. The upper ends of the connection pipes 11 and 12 are connected to connection sections 11a and 12a connectable to stainless steel pipes 13 and 14, respectively.
It has become. Also, in order to make the sealing of the screw portion for connecting the respective components more complete, a Teflon seal is wound around each screw.

【0011】次に、有機塩素系溶剤の脱離装置の使用方
法について説明する。まず、土壌を現場で採取する方法
について説明する。図1に示すサンプリング容器のう
ち、容器本体1とジョイント2aと窒素ガス導入管3と
をあらかじめ連結しておく。このとき、ステンレス板6
及びフィルター7は、容器本体1とジョイント2aとを
連結するときに装着しておく。また、窒素ガス導入管3
の窒素ガス導入部3aには盲栓をしておく。一方、ジョ
イント2b、ジョイント4及びストップバルブ5もあら
かじめ連結しておく。そして、これらの合計の重量を測
定しておく。現場で採取した土壌は、すみやかに容器本
体1に入れ、あらかじめ用意していた蒸留水10ミリリ
ットルを加え、ジョイント2bを容器本体1に連結す
る。このとき、ストップバルブ5が必ず閉の状態である
ことを確認する。
Next, a method of using an organic chlorine-based solvent desorption apparatus will be described. First, a method of collecting soil on site will be described. In the sampling container shown in FIG. 1, the container body 1, the joint 2a, and the nitrogen gas introducing pipe 3 are connected in advance. At this time, the stainless steel plate 6
The filter 7 is attached when connecting the container body 1 and the joint 2a. In addition, the nitrogen gas introduction pipe 3
The nitrogen gas inlet 3a is plugged in blind. On the other hand, the joint 2b, the joint 4, and the stop valve 5 are also connected in advance. Then, the total weight of these is measured. The soil collected at the site is immediately put into the container body 1, 10 ml of distilled water prepared in advance is added, and the joint 2b is connected to the container body 1. At this time, it is confirmed that the stop valve 5 is always closed.

【0012】次に、サンプリング容器をそのまま実験室
に持ち帰り重量を測定し、あらかじめ測定しておいたサ
ンプリング容器全体の空重量と、蒸留水10ミリリット
ルの重量との差から、採取した土壌の重量を求める。そ
して、このサンプリング容器をそのままの状態で所定時
間超音波処理し、その後温度制御装置に入れる。なお、
本実施例では温度制御装置としてガスクロマトグラフの
オーブンを用いた。
Next, the sampling container is taken back to the laboratory as it is, and the weight is measured. Based on the difference between the previously measured empty weight of the entire sampling container and the weight of 10 ml of distilled water, the weight of the collected soil is determined. Ask. Then, this sampling container is subjected to ultrasonic treatment for a predetermined time in the state as it is, and then put into a temperature control device. In addition,
In this embodiment, a gas chromatograph oven was used as a temperature control device.

【0013】次に、図3に示すように、サンプリング容
器をオーブン16に入れ、ストップバルブ5の出口部5
aにステンレス細管13を接続する。また、窒素ガス導
入管3の窒素ガス導入部3aは、盲栓を外してガスクロ
マトグラフの注入口3cと接続する。ステンレス細管1
3は、一端をストップバルブ5の出口部5aと、他端を
接続管11の連結部11aと連結するが、少なくともオ
ーブン16から出た部分では脱水管9側が下方になるよ
うに連結する。これは、ステンレス細管13はオーブン
16から出たところで常温となるので水分が逆流しない
ようにするためである。ステンレス細管14は、一端を
接続管12の連結部12aと、他端をガス捕集用のテド
ラーバッグ15と連結するが、テドラーバッグ15との
連結部より連結部12aの方が下方になるよう連結す
る。また脱水管9は、水分の除去を完全なものとするた
めに例えば氷水等を入れた冷却容器17に漬ける。以上
のように装置全体を組み立てた後、ストップバルブ5を
開き、窒素ガス注入口3cから窒素ガスを流し、テドラ
ーバッグ15に採取する。
Next, as shown in FIG. 3, the sampling vessel is placed in an oven 16 and an outlet 5 of the stop valve 5 is provided.
The stainless steel tube 13 is connected to a. The nitrogen gas inlet 3a of the nitrogen gas inlet tube 3 is connected to the inlet 3c of the gas chromatograph by removing the blind plug. Stainless steel tube 1
3 has one end connected to the outlet part 5a of the stop valve 5 and the other end connected to the connecting part 11a of the connection pipe 11, but is connected so that the dewatering pipe 9 side is at least at the part coming out of the oven 16. This is because the stainless steel tube 13 is at room temperature when it comes out of the oven 16, so that the water does not flow backward. The stainless steel thin tube 14 has one end connected to the connecting portion 12a of the connecting tube 12 and the other end connected to the tedlar bag 15 for collecting gas, and the connecting portion 12a is connected below the connecting portion with the tedlar bag 15. . The dewatering tube 9 is immersed in a cooling container 17 containing, for example, ice water or the like in order to completely remove water. After assembling the entire apparatus as described above, the stop valve 5 is opened, and nitrogen gas flows from the nitrogen gas inlet 3c, and the nitrogen gas is collected in the Tedlar bag 15.

【0014】次に本発明による有機塩素系溶剤の脱離方
法について説明する。図4に脱離方法の行程図を示した
が、まず採取した土壌に蒸留水を加え、所定時間超音波
処理を行う。その後加熱脱離を行いテドラーバッグに採
取するが、加熱脱離は加熱条件を変えて複数回行う。な
お、窒素ガスは30〜50ミリリットル/分の速度で通
す。
Next, the method for desorbing an organic chlorine-based solvent according to the present invention will be described. FIG. 4 shows a process diagram of the desorption method. First, distilled water is added to the collected soil, and ultrasonic treatment is performed for a predetermined time. Thereafter, the sample is subjected to thermal desorption and collected in a Tedlar bag, and the thermal desorption is performed a plurality of times under different heating conditions. The nitrogen gas is passed at a rate of 30 to 50 ml / min.

【0015】次に、分析方法に関する具体的実験結果を
示す。まず、使用する土壌についての検討結果を示す。
標準ガスとして、1,1,1−トリクロロエタン、トリ
クロロエチレン、テトラクロロエチレン各2500pp
mを真空ビン中で調製した。対象土壌としてはテトラク
ロロエチレンの汚染の著しいC工場の土壌と、トリクロ
ロエチレンの汚染の著しいD工場の土壌の2種類につい
て検討した。これらの土壌に対して標準ガス5ミリリッ
トルを注入するとほとんど全量が土壌に吸着されずに常
温で脱離されてしまうことがわかったので、土壌を試料
採取管に入れ240℃で半日程度窒素ガスで脱離を行
い、含有している水分及び目的物質を完全に除いた土壌
を調製した。この土壌に常温で標準ガスを注入すると、
20分間脱離をしても3物質ともテドラーバッグ中から
は検出されず、完全に土壌中に吸着されているものと思
われた。そこで、正確な評価を行うために分解実験はこ
の土壌を用いて行った。
Next, specific experimental results regarding the analysis method will be shown. First, the results of studies on the soil used will be described.
As standard gas, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene 2500 pp each
m was prepared in a vacuum bottle. As target soils, two types of soil were examined: a plant C soil where contamination of tetrachloroethylene was remarkable, and a soil of plant D where contamination of trichlorethylene was remarkable. It was found that when 5 ml of the standard gas was injected into these soils, almost all of them were not adsorbed on the soil but were desorbed at room temperature. Therefore, the soil was placed in a sampling tube at 240 ° C for about half a day with nitrogen gas. The soil was desorbed to completely remove the water content and the target substance from the soil. When a standard gas is injected into this soil at room temperature,
Even after desorption for 20 minutes, none of the three substances were detected in the Tedlar bag, suggesting that they were completely adsorbed in the soil. Therefore, in order to perform accurate evaluation, a decomposition experiment was performed using this soil.

【0016】次に加熱による分解実験の検討結果を示
す。一定温度で標準ガスを注入後、20分間窒素ガスで
脱離しテドラーバッグに捕集して、テドラーバッグ中の
0.2ミリリットルをガスクロマトグラフ−質量分析計
(GC−MS)に注入し、得られたTICクロマトグラ
ム上のピーク高さで比較を行った。土壌温度を変化させ
たときの3物質の分解産物とその生成割合を表1に示
す。
Next, the examination results of the decomposition experiment by heating are shown. After injecting a standard gas at a constant temperature, desorb with nitrogen gas for 20 minutes, collect in a Tedlar bag, and inject 0.2 ml in the Tedlar bag into a gas chromatograph-mass spectrometer (GC-MS) to obtain a TIC. The comparison was made based on the peak height on the chromatogram. Table 1 shows the decomposition products of the three substances and the production ratio when the soil temperature was changed.

【0017】[0017]

【表1】[Table 1]

【0018】1,1,1−トリクロロエタンについては
40℃から200℃まで測定を行った。40℃で微量の
1,1,1−トリクロロエタンが確認されたが、それ以
外ではすべてジクロロエチレンのみが生成していた。こ
の場合40℃での脱離では、1,1,1−トリクロロエ
タンは土壌に吸着されている量も多いため、注入量の1
0%前後がジクロロエチレンとしてテドラーバッグ中に
捕集された。表1中100%とは、ジクロロエチレンし
かTICクロマトグラム上で認められない状態をさす。
The measurement of 1,1,1-trichloroethane was carried out from 40 ° C. to 200 ° C. At 40 ° C., trace amounts of 1,1,1-trichloroethane were confirmed, but in all other cases, only dichloroethylene was formed. In this case, in the desorption at 40 ° C., the amount of 1,1,1-trichloroethane adsorbed on the soil is large, so
Around 0% was collected in the Tedlar bag as dichloroethylene. 100% in Table 1 refers to a state where only dichloroethylene is found on the TIC chromatogram.

【0019】トリクロロエチレンについては120℃か
ら240℃まで測定を行った。200℃で微量の、また
240℃では5〜6%のジクロロエチレンが認められた
がそれ以下の温度では分解産物は認められなかった。
The measurement of trichlorethylene was carried out from 120 ° C. to 240 ° C. At 200 ° C., trace amounts of dichloroethylene were observed, and at 240 ° C., 5 to 6% of dichloroethylene, but at lower temperatures, no decomposition products were observed.

【0020】テトラクロロエチレンについては200℃
で6〜8%、240℃では11〜13%がトリクロロエ
チレンに分解していた。また、この温度で微量のジクロ
ロエチレンの存在も認められた。しかし、それ以外の温
度では分解産物は認められなかった。
200 ° C. for tetrachloroethylene
6 to 8%, and at 13 ° C., 11 to 13% was decomposed to trichlorethylene. At this temperature, a trace amount of dichloroethylene was also observed. However, no decomposition products were observed at other temperatures.

【0021】次に1,1,1−トリクロロエタンの分解
に及ぼす水分量の影響についての検討結果を示す。前述
のように、1,1,1−トリクロロエタンは40℃にお
いても土壌を経て捕集されてくるほとんどがジクロロエ
チレンに変化していた。そこで、その分解を押さえるた
めに水分量の影響について調べた。
Next, the results of studies on the effect of the amount of water on the decomposition of 1,1,1-trichloroethane will be described. As described above, most of 1,1,1-trichloroethane collected via the soil was converted to dichloroethylene even at 40 ° C. Then, the influence of the amount of water was investigated in order to suppress the decomposition.

【0022】前述の乾燥土壌に対して、常温で1,1,
1−トリクロロエタン標準ガス2500ppmを5ミリ
リットル注入し、さらに注入口から蒸留水を1ミリリッ
トル、3ミリリットル、5ミリリットル、8ミリリット
ル、10ミリリットルと量を変えて注入した。これらの
含水土壌を120℃に昇温し、20分間窒素ガスで脱離
し、テドラーバッグ中に捕集した。テドラーバッグ中の
ガス0.2ミリリットルをGC−MSに注入し、TIC
クロマトグラム上でピークの確認を行った。その結果、
蒸留水1ミリリットルを添加した場合にのみ微量のジク
ロロエチレンの存在が確認されたがその他の水分量のと
きには注入した1,1,1−トリクロロエタンはすべて
テドラーバッグ中に捕集された。
At room temperature, 1,1,
Five milliliters of 2500 ppm of 1-trichloroethane standard gas was injected, and distilled water was further injected from the injection port in different amounts of 1 ml, 3 ml, 5 ml, 8 ml and 10 ml. These wet soils were heated to 120 ° C., desorbed with nitrogen gas for 20 minutes, and collected in a Tedlar bag. 0.2 ml of gas in the Tedlar bag is injected into GC-MS, and TIC
The peak was confirmed on the chromatogram. as a result,
Only when 1 ml of distilled water was added, the presence of a trace amount of dichloroethylene was confirmed, but when the water content was other than that, all the injected 1,1,1-trichloroethane was collected in the Tedlar bag.

【0023】また、この土壌を120℃で更に60分間
脱離した後、200℃で捕集したテドラーバッグ中から
は1,1,1−トリクロロエタン、ジクロロエチレンと
も検出されなかった。これらの結果から、1,1,1−
トリクロロエタンの土壌からの脱離には、水分含有をな
るべく多くとるために蒸留水10ミリリットルを土壌に
加えることとし、トリクロロエチレンの脱離には1,
1,1−トリクロロエタンの脱離とあわせて120℃で
脱離を行えばそれぞれ分解することなく土壌から脱離す
ることがわかった。
After the soil was desorbed at 120 ° C. for further 60 minutes, neither 1,1,1-trichloroethane nor dichloroethylene was detected in the Tedlar bag collected at 200 ° C. From these results, 1,1,1-
To remove trichloroethane from the soil, add 10 ml of distilled water to the soil to obtain as much water content as possible.
It was found that when desorption was performed at 120 ° C. together with the desorption of 1,1-trichloroethane, the desorption was performed from the soil without decomposition.

【0024】次に前処理方法の違いによる脱離量の変化
の検討結果を示す。C工場の土壌を対象とし、この土壌
中に非常に多く含有し、脱離が難しいといわれているテ
トラクロロエチレンについて検討した。実験方法として
土壌に10ミリリットルの蒸留水を加え超音波をかけな
い場合、5分間、10分間、30分間かけた場合につい
ての脱離量の変化を見た。また、蒸留水を添加しない場
合についても行った。
Next, the results of a study of the change in the amount of desorption due to the difference in the pretreatment method will be described. For the soil of Factory C, tetrachloroethylene, which is contained very much in this soil and is considered to be difficult to desorb, was examined. As an experimental method, a change in the amount of desorption was observed when 10 ml of distilled water was added to the soil and no ultrasonic wave was applied, and when the sample was applied for 5 minutes, 10 minutes, and 30 minutes. The test was also performed without adding distilled water.

【0025】脱離温度については、テトラクロロエチレ
ンの土壌からの脱離がほぼ終了するところをみつけるた
めに高い条件を設定した。最初の20分間は加熱温度1
20℃で脱離し、その後240℃に昇温、20分間ずつ
100分間脱離を行った後270℃で20分間脱離を行
った。ただし、加熱温度を240℃にしてもステンレス
管内の水分がなくなるまで60分間ぐらいまでは土壌の
温度はほぼ100℃に保たれているものと思われる。得
られた結果を図5に示す。
With respect to the desorption temperature, high conditions were set in order to find out where the desorption of tetrachloroethylene from the soil was almost completed. Heating temperature 1 for the first 20 minutes
After desorption at 20 ° C., the temperature was raised to 240 ° C., desorption was performed for 20 minutes each for 100 minutes, and then desorption was performed at 270 ° C. for 20 minutes. However, even if the heating temperature is set to 240 ° C., it is considered that the soil temperature is maintained at approximately 100 ° C. for about 60 minutes until the moisture in the stainless steel tube disappears. The results obtained are shown in FIG.

【0026】蒸留水の添加を行わない場合がテトラクロ
ロエチレンの脱離量が一番低かった。また、蒸留水を添
加した場合では、超音波をかけない場合多少低くでた
が、超音波をかけた場合ではほぼ同じ値を示した。しか
し、超音波をかける時間が長いと試料採取管の内部が温
められ、特に低沸点物質の場合ロスの起こる可能性もあ
るため超音波処理の時間は10分間とした。また、今回
の実験方法では240℃から270℃に昇温しても脱離
されるテトラクロロエチレン量は増加せず、240℃よ
り低い温度で土壌からの脱離はほとんど終了するものと
思われた。
The amount of tetrachloroethylene desorbed was lowest when no distilled water was added. In addition, when distilled water was added, the value was slightly lower when no ultrasonic wave was applied, but showed almost the same value when the ultrasonic wave was applied. However, if the time for applying the ultrasonic wave is long, the inside of the sample collection tube is heated, and particularly in the case of a substance having a low boiling point, loss may occur. Further, in the present experimental method, even when the temperature was raised from 240 ° C. to 270 ° C., the amount of tetrachlorethylene desorbed did not increase, and it was considered that the desorption from soil was almost completed at a temperature lower than 240 ° C.

【0027】最後に脱離時間及び脱離温度の違いによる
脱離量の変化についての実験結果を示す。土壌として
は、D工場及びC工場のものを対象とした。D工場の土
壌についてはトリクロロエチレンの含有量が非常に多
く、テトラクロロエチレンの含有量が少ない。したがっ
て前述のように、脱離温度を上げたときのテトラクロロ
エチレンの熱分解によるトリクロロエチレンの生成はほ
とんど無視でき、トリクロロエチレンの土壌含有量の終
点がほぼわかるものと思われた。
Finally, the results of experiments on the change in the amount of desorption due to the difference in desorption time and desorption temperature are shown. As soil, those of the D factory and the C factory were used. The soil of Factory D has a very high content of trichlorethylene and a low content of tetrachloroethylene. Therefore, as described above, the generation of trichlorethylene by the thermal decomposition of tetrachlorethylene when the desorption temperature was increased was almost negligible, and it was thought that the end point of the soil content of trichlorethylene could be almost known.

【0028】C工場の土壌については、テトラクロロエ
チレンの含有量が非常に多く、脱離温度を上げたときの
テトラクロロエチレンの熱分解によるトリクロロエチレ
ンの生成が無視できないため、また、1,1,1−トリ
クロロエタンについては含有量が少量であるためにテト
ラクロロエチレンのみで検討を行った。土壌10グラム
を試料採取管にとり、蒸留水10ミリリットル添加した
ものを超音波で10分間処理した。120℃で20分間
ずつ80分間の捕集を行い、その後200℃に昇温し2
0分間ずつ60分間、ついで240℃に昇温し20分間
ずつ40分間、最後に270℃で20分間の捕集を行っ
た。得られた結果を図6〜図9に示す。
As for the soil of the plant C, the content of tetrachloroethylene is very large, and the production of trichloroethylene by the thermal decomposition of tetrachloroethylene when the desorption temperature is increased cannot be ignored. Was studied only with tetrachloroethylene because of its small content. Ten grams of soil was placed in a sample collection tube and treated with 10 ml of distilled water for 10 minutes with ultrasound. The sample was collected at 120 ° C. for 20 minutes for 80 minutes, and then heated to 200 ° C. for 2 minutes.
The temperature was raised to 240 ° C. for 60 minutes each for 0 minute, then collected for 20 minutes for 40 minutes, and finally collected at 270 ° C. for 20 minutes. The obtained results are shown in FIGS.

【0029】図6から、1,1,1−トリクロロエタン
は水分の存在下、ほぼ全量が120℃で土壌から脱離で
きたことがわかる。また、図7から、トリクロロエチレ
ンについては120℃で80分間脱離することにより土
壌含有量の88〜90%が捕集されたことがわかる。こ
の温度では前述のようにテトラクロロエチレンの熱分解
による影響はないので、トリクロロエチレンの捕集は1
20℃80分間で行うこととした。また、試料採取管の
温度を120℃から200℃に上げるとトリクロロエチ
レンの脱離量は若干上昇したが240℃では脱離量は上
昇せず、270℃では脱離量はほとんどなかった。従っ
て、この段階で土壌中のトリクロロエチレンのほぼ全量
が脱離されたものと考えた。
FIG. 6 shows that almost all of 1,1,1-trichloroethane was desorbed from the soil at 120 ° C. in the presence of moisture. FIG. 7 shows that trichloroethylene was desorbed at 120 ° C. for 80 minutes to collect 88 to 90% of the soil content. At this temperature, there is no influence from the thermal decomposition of tetrachlorethylene as described above,
It was performed at 20 ° C. for 80 minutes. When the temperature of the sample collection tube was increased from 120 ° C. to 200 ° C., the amount of trichlorethylene desorbed slightly increased, but the amount of trichloroethylene desorbed did not increase at 240 ° C., and almost no desorbed at 270 ° C. Therefore, it was considered that almost all of the trichlorethylene in the soil was desorbed at this stage.

【0030】図8、図9からわかるように、テトラクロ
ロエチレンは、120℃80分間の脱離では、D工場の
土壌で76〜77%、C工場の土壌で65〜66%と充
分な脱離が行えなかった。そこで、さらに200℃で6
0分間の脱離を行ったところD工場の土壌で93%、C
工場の土壌は脱離温度を200℃にしてからの分解によ
るロスを考慮しても90%以上が捕集された。従って、
テトラクロロエチレンについては120℃で80分間脱
離した量と200℃で60分間脱離した量の合計で求め
ることとした。また、試料採取管の温度を200℃から
240℃に上げても、脱離されるテトラクロロエチレン
の量は増加せず、270℃までの昇温では脱離量は大幅
に減少していた。従って、この段階で土壌中のテトラク
ロロエチレンのほぼ全量が完全に脱離されたものと考え
た。
As can be seen from FIGS. 8 and 9, tetrachloroethylene desorbed at 120 ° C. for 80 minutes has a sufficient desorption rate of 76 to 77% in the soil of Plant D and 65 to 66% in the soil of Plant C. I couldn't do it. Therefore, at 200 ° C, 6
When desorption was performed for 0 minutes, 93% was obtained in the soil of Plant D, and C
In the factory soil, 90% or more was collected even when considering the loss due to decomposition after the desorption temperature was set to 200 ° C. Therefore,
Tetrachloroethylene was determined by the sum of the amount desorbed at 120 ° C. for 80 minutes and the amount desorbed at 200 ° C. for 60 minutes. Further, even if the temperature of the sampling tube was increased from 200 ° C. to 240 ° C., the amount of tetrachloroethylene to be desorbed did not increase, and the desorption amount was greatly reduced at a temperature rise to 270 ° C. Therefore, it was considered that almost all the tetrachloroethylene in the soil was completely desorbed at this stage.

【0031】[0031]

【発明の効果】以上の説明より明らかなように本発明の
有機塩素系溶剤の脱離方法によれば、土壌採取後蒸留水
を加えることで目的物質が大気中に飛散すること及び加
熱によって従来分解していた目的物質の分解を防ぐこと
ができる。また、加熱前に超音波処理すれば、土壌から
の目的物質の回収率をさらに高めることができる。さら
に、また、複数の加熱条件で脱離させることにより、目
的物質の分解を防止しつつ、さらに回収率を高めること
ができる。
As is apparent from the above description, according to the method for desorbing an organic chlorine-based solvent of the present invention, the target substance is scattered into the atmosphere by adding distilled water after collecting the soil, and the conventional method is achieved by heating. Decomposition of the decomposed target substance can be prevented. If the ultrasonic treatment is performed before the heating, the recovery rate of the target substance from the soil can be further increased. Furthermore, by performing desorption under a plurality of heating conditions, the recovery rate can be further increased while preventing decomposition of the target substance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる脱離装置のサンプリング容器の
分解斜視図
FIG. 1 is an exploded perspective view of a sampling container of a desorption device used in the present invention.

【図2】同装置の脱水管部を示す分解斜視図FIG. 2 is an exploded perspective view showing a dehydrating tube section of the apparatus.

【図3】同装置の全体構成図FIG. 3 is an overall configuration diagram of the apparatus.

【図4】本発明による脱離方法の行程図FIG. 4 is a process diagram of the desorption method according to the present invention.

【図5】前処理条件の違いによるテトラクロロエチレン
の脱離量の変化を示す特性線図
FIG. 5 is a characteristic diagram showing a change in the amount of desorbed tetrachloroethylene due to a difference in pretreatment conditions.

【図6】D工場敷地内土壌における1,1,1−トリク
ロロエタンの脱離量の変化を示す特性線図
FIG. 6 is a characteristic diagram showing a change in the amount of desorbed 1,1,1-trichloroethane in soil at the site of the D factory.

【図7】D工場敷地内土壌におけるトリクロロエチレン
の脱離量の変化を示す特性線図
FIG. 7 is a characteristic diagram showing a change in the amount of desorbed trichlorethylene in the soil at the factory D.

【図8】D工場敷地内土壌におけるテトラクロロエチレ
ンの脱離量の変化を示す特性線図
FIG. 8 is a characteristic diagram showing a change in the amount of desorbed tetrachlorethylene in soil at the site of the D factory.

【図9】C工場敷地内土壌におけるテトラクロロエチレ
ンの脱離量の変化を示す特性線図
FIG. 9 is a characteristic diagram showing a change in the amount of desorbed tetrachloroethylene in soil on the premises of plant C.

【符号の説明】[Explanation of symbols]

1 容器本体 3 窒素ガス導入管 3a 窒素ガス導入部 5 ストップバルブ 9 脱水管 15 テドラーバッグ 16 オーブン 17 冷却容器 DESCRIPTION OF SYMBOLS 1 Container main body 3 Nitrogen gas introduction pipe 3a Nitrogen gas introduction part 5 Stop valve 9 Dehydration pipe 15 Tedlar bag 16 Oven 17 Cooling vessel

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 土壌を加熱しながらこれに窒素ガスを通
して有機塩素系溶剤を脱離する有機塩素系溶剤の脱離方
法において、サンプリングした土壌に蒸留水を添加し、
そのまま該土壌を加熱することを特徴とする有機塩素系
溶剤の脱離方法。
1. A method for desorbing an organic chlorine-based solvent by passing nitrogen gas through the soil while heating the soil, wherein distilled water is added to the sampled soil,
A method for desorbing an organic chlorine-based solvent, wherein the soil is heated as it is.
【請求項2】 加熱前に前記蒸留水を添加した土壌を超
音波処理することを特徴とする請求項1に記載の有機塩
素系溶剤の脱離方法。
2. The method according to claim 1, wherein the soil to which the distilled water is added is subjected to ultrasonic treatment before heating.
【請求項3】 土壌中の目的成分の加熱による分解性に
応じ、加熱条件を選択し、異なる加熱条件下で複数回に
分けて加熱し、脱離することを特徴とする請求項1又は
2に記載の有機塩素系溶剤の脱離方法。
3. The method according to claim 1, wherein a heating condition is selected according to the decomposability of the target component in the soil by heating, and heating and desorption are carried out a plurality of times under different heating conditions. 5. The method for desorbing an organic chlorine-based solvent according to the above.
【請求項4】 土壌中の目的成分が、1,1,1−トリ
クロロエタンと、トリクロロエチレンと、テトラクロロ
エチレンであって、120℃、80分の加熱条件で1,
1,1−トリクロロエタンと、トリクロロエチレンと、
テトラクロロエチレンを脱離するとともに、更に200
℃、60分の加熱条件でテトラクロロエチレンを脱離す
ることを特徴とする請求項1乃至3の何れかに記載の有
機塩素系溶剤の脱離方法。
4. The target components in the soil are 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, which are heated at 120 ° C. for 80 minutes.
1,1-trichloroethane, trichloroethylene,
While removing tetrachloroethylene, another 200
The method for desorbing an organic chlorine-based solvent according to any one of claims 1 to 3, wherein tetrachloroethylene is desorbed under heating conditions of 60 ° C for 60 minutes.
JP4244256A 1992-08-20 1992-08-20 Desorption method of organic chlorine solvent Expired - Lifetime JP2609194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244256A JP2609194B2 (en) 1992-08-20 1992-08-20 Desorption method of organic chlorine solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244256A JP2609194B2 (en) 1992-08-20 1992-08-20 Desorption method of organic chlorine solvent

Publications (2)

Publication Number Publication Date
JPH0666693A JPH0666693A (en) 1994-03-11
JP2609194B2 true JP2609194B2 (en) 1997-05-14

Family

ID=17116052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244256A Expired - Lifetime JP2609194B2 (en) 1992-08-20 1992-08-20 Desorption method of organic chlorine solvent

Country Status (1)

Country Link
JP (1) JP2609194B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197834A (en) * 1989-12-26 1991-08-29 Nec Corp Method for measuring evaporation of organic solvent and pretreating device for measurement of evaporation

Also Published As

Publication number Publication date
JPH0666693A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
CA2493449C (en) Analyte pre-concentrator for gas chromatography
JP6862535B2 (en) Multiple Capillary Column Pre-Concentration System for Increased Sensitivity of Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GCMS)
US6652625B1 (en) Analyte pre-concentrator for gas chromatography
JP7072134B2 (en) Sample pre-concentration system and method for use in gas chromatography
JP2006516717A5 (en)
US10514365B2 (en) Cooling-assisted inside needle capillary adsorption trap device for analyzing complex solid samples using nano-sorbent
EP1935467A2 (en) Method for the analysis of pesticide residues in plant samples
CA2522253C (en) System and method for extracting headspace vapor
JP2021501880A (en) High-speed quasi-ambient temperature multicapillary column preconcentration system for volatile chemical analysis by gas chromatography
Mol et al. Use of an open-tubular trapping column as phase-switching interface in on-line coupled reversed-phase liquid chromatography—capillary gas chromatography
WO1993009429A1 (en) Apparatus and method for simultaneous supercritical fluid extraction and gas chromatography
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
Grüter et al. A new HG/LT-GC/ICP-MS multi-element speciation technique for real samples in different matrices
US20020182746A1 (en) Method and device for sample introduction of volatile analytes
JP2609194B2 (en) Desorption method of organic chlorine solvent
JPH04151536A (en) Gas sampling device
Penton Headspace gas chromatography
JPH03197834A (en) Method for measuring evaporation of organic solvent and pretreating device for measurement of evaporation
Wolska et al. Influence of concentration and sample volume on the recovery of compounds from water following direct sorption on Tenax TA–thermal desorption
Düblin et al. Thermal desorption-capillary gas chromatography for the quantitative analysis of dimethyl sulphate, diethyl sulphate and ethylene oxide in the workplace
Toyoda et al. Cryogen-free automated gas chromatograph system for monitoring of halocarbons in the atmosphere at background concentration levels
Amin et al. Evaluation of passive samplers for analysis of chlorinated solvents
Termonia et al. Dynamic headspace enrichment system for CGC analysis of volatiles released by plants
Eaton A Gradient Heat Desorption Technique of Preconcentrated Tenax-GC Tubes for Use in GC/MS Analysis
CA2614663C (en) Analyte pre-concentrator for gas chromatography

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961022