JP2607681B2 - Composite plating method - Google Patents

Composite plating method

Info

Publication number
JP2607681B2
JP2607681B2 JP12441189A JP12441189A JP2607681B2 JP 2607681 B2 JP2607681 B2 JP 2607681B2 JP 12441189 A JP12441189 A JP 12441189A JP 12441189 A JP12441189 A JP 12441189A JP 2607681 B2 JP2607681 B2 JP 2607681B2
Authority
JP
Japan
Prior art keywords
particles
alumina
surfactant
plating
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12441189A
Other languages
Japanese (ja)
Other versions
JPH02305997A (en
Inventor
隆 上田
雅人 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12441189A priority Critical patent/JP2607681B2/en
Publication of JPH02305997A publication Critical patent/JPH02305997A/en
Application granted granted Critical
Publication of JP2607681B2 publication Critical patent/JP2607681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミナとその他の無機粒子を均一に分散し
たCo被覆母材を製造するための複合メッキ方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a composite plating method for producing a Co-coated base material in which alumina and other inorganic particles are uniformly dispersed.

〔従来の技術〕[Conventional technology]

複合メッキ方法は従来の金属メッキ被覆に分散無機粒
子を均一に含有させることにより、耐摩耗性、自己潤滑
性、耐食性等の新しい機能を付加させることのできる点
で注目されている。分散無機粒子を複数同時に複合させ
る方法は、今後、特殊環境下での材料の製造に不可欠に
なると考えられる。
The composite plating method has attracted attention because it can add new functions such as abrasion resistance, self-lubricating property and corrosion resistance by uniformly dispersing inorganic particles in a conventional metal plating coating. The method of simultaneously combining a plurality of dispersed inorganic particles is considered to be indispensable for the production of a material under a special environment in the future.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来、単一の無機粉末粒子を金属マトリックに分散複
合させる例は特公昭50−21297号、特公昭58−24516号、
特開昭53−142330号等の各公報に数多く見られるが、複
数の無機粉末粒子を同時に複合させた例はほとんどな
い。これは、無機粒子の種類により、メッキ浴中におけ
る表面電気物性が異なるため、粒子が選択的に金属マト
リックスに複合されるためである。
Conventionally, an example of dispersing and compounding a single inorganic powder particle in a metal matrix is disclosed in Japanese Patent Publication No. 50-21297, Japanese Patent Publication No. 58-24516,
Although many are found in each publication such as JP-A-53-142330, there is almost no example in which a plurality of inorganic powder particles are simultaneously compounded. This is because the surface electrical properties in the plating bath vary depending on the type of the inorganic particles, and the particles are selectively composited with the metal matrix.

本発明は上記技術水準に鑑み、マトリックス金属中の
複数の無機粒子を均一に分散した複合メッキを得ること
ができる方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide a method capable of obtaining a composite plating in which a plurality of inorganic particles in a matrix metal are uniformly dispersed.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はCo電気メッキ浴中に、シランカップリングし
たアルミナと、その他の少なくとも一種以上の無機粒子
粉末とを分散させ、カチオン系またはメッキ浴中でカチ
オン性を示す界面活性剤を0.01〜5.0重量%添加してメ
ッキすることを特徴とする複合メッキ方法である。
The present invention, in a Co electroplating bath, dispersed silane-coupled alumina, and at least one or more inorganic particles powder, a cationic or a cationic surfactant in the plating bath 0.01 to 5.0 wt% % Is a composite plating method characterized in that plating is performed by adding%.

本発明の実施に当たっては、上記構成中、その他の無
機粒子として窒化ホウ素を用いることを好ましい態様と
する。
In the embodiment of the present invention, in a preferred embodiment, boron nitride is used as the other inorganic particles in the above configuration.

すなわち、本発明はアルミナと少なくとも一種以上の
無機粒子をコバルト電気メッキ浴中に分散するにあたっ
ては、まず、アルミナをシランカップリング処理する。
シランカップリング剤としては、メトキシ基やエトキシ
基等のアルコキシアルキルシランが挙げられるが、その
他のシランカップリング剤でも構わない。次に、シラン
カップリングしたアルミナとその他の少なくとも一種以
上の無機粒子をコバルト電気メッキ浴中に分散させ、下
記界面活性剤を0.01〜5.0重量%、好ましくは0.1〜1.0
重量%添加し、十分分散させた後、電気メッキを行い、
コバルトメッキ被覆中にアルミナと無機粒子を均一に分
散させる方法である。
That is, in dispersing alumina and at least one or more inorganic particles in a cobalt electroplating bath according to the present invention, first, alumina is subjected to a silane coupling treatment.
Examples of the silane coupling agent include alkoxyalkylsilanes such as a methoxy group and an ethoxy group, but other silane coupling agents may be used. Next, silane-coupled alumina and at least one or more other inorganic particles are dispersed in a cobalt electroplating bath, and the following surfactant is added in an amount of 0.01 to 5.0% by weight, preferably 0.1 to 1.0% by weight.
Weight percent, and after sufficient dispersion, electroplating,
In this method, alumina and inorganic particles are uniformly dispersed in the cobalt plating coating.

界面活性剤の種類としては、まずカチオン系界面活性
剤として(i)脂肪族アミン塩とその第4級アンモニウ
ム塩、例えば炭素数6〜20の1級アミン、2級アミン、
3級アミン、ジアミン、トリアミン、ポリアミンおよび
それらの酢酸塩、オレイン酸塩、塩酸塩などが挙げられ
る。また(ii)ピリジニウム塩などの芳香族第4級アン
モニウム塩、(iii)イミダゾリニウム塩などの複素環
第4級アンモニウム塩も効果がある。
As the type of the surfactant, (i) an aliphatic amine salt and a quaternary ammonium salt thereof, for example, a primary amine having 6 to 20 carbon atoms, a secondary amine,
Examples include tertiary amines, diamines, triamines, polyamines and their acetates, oleates, hydrochlorides, and the like. In addition, (ii) aromatic quaternary ammonium salts such as pyridinium salts, and (iii) heterocyclic quaternary ammonium salts such as imidazolinium salts are also effective.

一方、メッキ浴中でカチオン性、即ち正の帯電を示す
界面活性剤としては(iv)カルボキシベタイン、スルホ
ベタイン等のアルキルベタイン、(v)アミンオキサイ
ド(vi)イミダゾリン誘導体などの両性界面活性剤が挙
げられる。さらに(vii)脂肪族アミンを含むポリアル
キレンオキサイド付加物(viii)エチレンジアミン、テ
トラエチレンジアミン、ポリエチレンイミン等の複数個
の活性水素を有する多価アミンのアルキレンオキサイド
付加物も効果があることがわかった。ここでアルキレン
オキサイドとしては、エチレンオキサイド、プロピレン
オキサイドなどが挙げられる。
On the other hand, surfactants which are cationic in the plating bath, ie, exhibit a positive charge, include (iv) alkyl betaines such as carboxybetaine and sulfobetaine, and (v) amine oxides (vi) amphoteric surfactants such as imidazoline derivatives. No. Furthermore, it was found that (vii) polyalkylene oxide adducts containing aliphatic amines (viii) alkylene oxide adducts of polyvalent amines having a plurality of active hydrogens such as ethylenediamine, tetraethylenediamine, and polyethyleneimine are also effective. Here, examples of the alkylene oxide include ethylene oxide and propylene oxide.

上記界面活性剤は複数種混合して使用しても効果があ
ることがわかった。
It has been found that the above surfactants are effective even if they are used in combination of a plurality thereof.

複数種の無機粒子としては、窒化ホウ素とアルミナ、
二硫化モリブデンとアルミナ、グラファイトとアルミナ
などが挙げられるが2種以上であっても問題はない。
As the plural kinds of inorganic particles, boron nitride and alumina,
Molybdenum disulfide and alumina, graphite and alumina, etc. may be mentioned, but there is no problem even if two or more kinds are used.

〔作用〕[Action]

複合メッキ方法における無機粒子の金属マトリックス
への取り込み機構としてはメッキ浴の機械的な攪拌に
よるメッキ面への粒子の輸送、メッキ面への粒子の吸
着、析出金属による粒子の巻き込みが考えられる。現
実には、が大きな影響を及ぼすことは間違いないが、
が粒子の金属マトリックスへの複合化を左右している
ことは疑いのない事実である。本発明では界面活性剤が
無機粒子表面に吸着することにより、粒子表面が正に帯
電するためコバルトイオンの陰極への泳動とともに粒子
の金属マトリックスへの移動複合化が可能となるわけで
ある。その際、複数種の無機粒子を同程度の表面電位に
するような界面活性剤を選ぶことが重要なポイントであ
る。
As a mechanism of incorporating inorganic particles into the metal matrix in the composite plating method, transport of the particles to the plating surface by mechanical stirring of the plating bath, adsorption of the particles to the plating surface, and entrapment of the particles by the precipitated metal can be considered. In reality, there is no doubt that will have a big impact,
Undoubtedly affects the composite of the particles into the metal matrix. In the present invention, since the surface of the inorganic particles is positively charged by adsorbing the surfactant to the surface of the inorganic particles, it is possible to migrate the cobalt ions to the cathode and to transfer and complex the particles to the metal matrix. At that time, it is important to select a surfactant that makes a plurality of types of inorganic particles have the same surface potential.

しかしながら、粒子の表面電位が著しく異なると界面
活性剤の選定が難しい場合があり、一方の粒子の表面電
位を変化させておく方法が考えられる。本発明では、表
面電位の高いアルミナの表面をシランカップリング処理
することにより、表面電位を下げ、次いで界面活性剤を
添加することにより、複数粒子の表面電位を同程度にす
るものである。
However, if the surface potentials of the particles are significantly different, it may be difficult to select a surfactant, and a method of changing the surface potential of one of the particles may be considered. In the present invention, the surface potential of alumina having a high surface potential is reduced by subjecting the surface of the alumina to a silane coupling treatment, and then the surface potential of a plurality of particles is made substantially the same by adding a surfactant.

以下、本発明を実施例によって、具体的に説明する
が、本発明はこの実施例に限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

〔実施例〕〔Example〕

本発明では以下に示す条件下で実施した。即ち、メッ
キ液を硫酸コバルト500g/l、塩化ナトリウム17g/l、ホ
ウ酸60g/lの標準組成に調製し、攪拌可能なメッキ浴に
粒子及び界面活性剤を仕込み、液pH4〜5、液温度40
℃、電流密度3A/dm2の条件下で電気メッキを行った。使
用した無機粒子の性状を第1表に示す。
The present invention was carried out under the following conditions. That is, the plating solution was prepared to a standard composition of 500 g / l of cobalt sulfate, 17 g / l of sodium chloride, and 60 g / l of boric acid, and particles and a surfactant were charged into a stirable plating bath. 40
° C., was electroplated under the conditions of a current density of 3A / dm 2. Table 1 shows the properties of the inorganic particles used.

本発明で使用したアルミナ粒子は、メッキ浴に添加す
る前にトリメチルメトキシシランと共に加熱処理するこ
とにより、表面をシランカップリング処理した。電気メ
ッキ後の金属マトリックスへの共析量は重量分析及び電
子顕微鏡を使用して求めた。
The surface of the alumina particles used in the present invention was subjected to silane coupling treatment by heat treatment with trimethylmethoxysilane before being added to the plating bath. The amount of eutectoid on the metal matrix after electroplating was determined using gravimetric analysis and an electron microscope.

実施例−1〜19 アルミナ及び窒化ホウ素を対象にして界面活性剤を0.
5wt%添加して実施した。その結果を第2表に示す。
Examples-1 to 19 A surfactant was used for alumina and boron nitride.
5 wt% was added. Table 2 shows the results.

実施例−21〜25 実施例1において、界面活性剤添加量を0.01〜5.0wt
%に変化させて実施した。その結果を第3表に示す。
Examples 21 to 25 In Example 1, the amount of the surfactant added was 0.01 to 5.0 wt.
%. Table 3 shows the results.

なお、実施例−20は界面活性剤を添加しない時のブラ
ンクデータであり、両粒子とも、複合が悪いことがわか
る。
In addition, Example-20 is blank data when no surfactant was added, and it can be seen that both particles had poor composite.

実施例からも明らかなように、本発明で使用した界面
活性剤はいずれも量の多少はあるが、アルミナと窒化ホ
ウ素はコバルト金属マトリックス中に、十分共析してい
ることがわかった。
As is clear from the examples, it was found that alumina and boron nitride were sufficiently eutectoid in the cobalt metal matrix, although the amount of the surfactant used in the present invention was small.

〔発明の効果〕 本発明ではコバルト金属被覆中にシランカップリング
したアルミナとその他の一種以上の無機粒子を共析、複
合化させることにより、従来では得られなかった耐摩耗
性と自己潤滑性の機能を同時に付与することが可能とな
った。
[Effects of the Invention] In the present invention, the silane-coupled alumina and other one or more inorganic particles are eutectoidized and complexed in the cobalt metal coating, so that abrasion resistance and self-lubricating property which were not obtained conventionally can be obtained. It became possible to add functions at the same time.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Co電気メッキ浴中に、シランカップリング
したアルミナと、その他の少なくとも一種以上の無機粒
子粉末とを分散させ、カチオン系またはメッキ浴中でカ
チオン性を示す界面活性剤を0.01〜5.0重量%添加して
メッキすることを特徴とする複合メッキ方法。
In a Co electroplating bath, silane-coupled alumina and at least one or more other inorganic particle powders are dispersed, and a cationic surfactant or a surfactant exhibiting cationicity in the plating bath is used in an amount of 0.01 to 10%. A composite plating method characterized by plating by adding 5.0% by weight.
【請求項2】その他の無機粒子粉末が窒化ホウ素である
特許請求の範囲1項記載の複合メッキ方法。
2. The composite plating method according to claim 1, wherein the other inorganic particle powder is boron nitride.
JP12441189A 1989-05-19 1989-05-19 Composite plating method Expired - Lifetime JP2607681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12441189A JP2607681B2 (en) 1989-05-19 1989-05-19 Composite plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12441189A JP2607681B2 (en) 1989-05-19 1989-05-19 Composite plating method

Publications (2)

Publication Number Publication Date
JPH02305997A JPH02305997A (en) 1990-12-19
JP2607681B2 true JP2607681B2 (en) 1997-05-07

Family

ID=14884806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12441189A Expired - Lifetime JP2607681B2 (en) 1989-05-19 1989-05-19 Composite plating method

Country Status (1)

Country Link
JP (1) JP2607681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945956B2 (en) * 2000-03-06 2007-07-18 独立行政法人科学技術振興機構 Composite plating method
JP2014201779A (en) * 2013-04-02 2014-10-27 古河電気工業株式会社 Composite plated material with dispersed particles, method for manufacturing the same, and plating solution for manufacturing the same

Also Published As

Publication number Publication date
JPH02305997A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US2974104A (en) High-energy magnetic material
EP2031098B1 (en) Composition and corresponding method for the electrodeposition of indium composites
TWI591190B (en) Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
CA1063966A (en) Electroplating method
Feng et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field
TW200925334A (en) Method to electrodeposit metals using ionic liquids in the presence of an additive
JP2607681B2 (en) Composite plating method
WO1988006638A1 (en) Composites of metal with carbon fluoride and method of preparation
CN100567587C (en) Zn-Ni-Al 2O 3Nano-composite plate and preparation method thereof
Shrestha et al. Composite plating of Ni/SiC using a cationic surfactant with an azobenzene group
US20040069650A1 (en) Method for forming electroplated coating on surface of article
CA1079218A (en) Bright low karat silver gold electroplating
EP3167097A1 (en) Composite electroless nickel plating
JP2622283B2 (en) Composite plating method
JP2005126740A (en) Electroplating method
JPS6257720B2 (en)
TW201726279A (en) Sn-coated copper powder, conductive paste using same, and producing method for Sn-coated copper powder
US4043878A (en) Electroplating method
US6190789B1 (en) Slide member
Eroglu et al. Effect of a cationic polymer, polyethyleneimine, on Ni/SiC co-deposition
JPS59193300A (en) Electroplating dispersing and precipitating bath
KR100683963B1 (en) Production method of silver powder by electro-chemical reduction
US7659008B2 (en) Composite material composed of a metal matrix and of talc
JPH0565600B2 (en)
JPH0445600B2 (en)