JP2607640B2 - Magnetometer and magnetic property inspection system - Google Patents

Magnetometer and magnetic property inspection system

Info

Publication number
JP2607640B2
JP2607640B2 JP63228737A JP22873788A JP2607640B2 JP 2607640 B2 JP2607640 B2 JP 2607640B2 JP 63228737 A JP63228737 A JP 63228737A JP 22873788 A JP22873788 A JP 22873788A JP 2607640 B2 JP2607640 B2 JP 2607640B2
Authority
JP
Japan
Prior art keywords
needle
magnetic flux
magnetic
coil
shaped core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63228737A
Other languages
Japanese (ja)
Other versions
JPH0278982A (en
Inventor
敏彦 ▲吉▼村
雄一 石川
翼 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63228737A priority Critical patent/JP2607640B2/en
Publication of JPH0278982A publication Critical patent/JPH0278982A/en
Application granted granted Critical
Publication of JP2607640B2 publication Critical patent/JP2607640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導量子干渉計を用いた磁束センサに係
り、特に化学プラント及び原子力プラント等の高温環境
下で使用される含フエライト系ステンレス鋼等の金属材
料の高温時効脆化損傷の検知に好適なプローブコイル及
びプローブコイル用コアに関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic flux sensor using a superconducting quantum interferometer, and particularly to a ferrite-containing stainless steel used in a high-temperature environment such as a chemical plant and a nuclear power plant. The present invention relates to a probe coil and a probe coil core suitable for detecting high temperature aging embrittlement damage of a metal material.

〔従来の技術〕[Conventional technology]

従来、小型のプローブコイルを具備した超電導量子干
渉素子(以下スキツド;SQUIDという)については1チツ
プ型のSQUIDとして、1988年、インターナシヨナル,ソ
リツドステート サーキツツ コンフアレンス(1988
International Solid−State Circuits Conference
(ISSCC 88))P289〜P291において論じられている。
Conventionally, a superconducting quantum interference device (hereinafter, referred to as a SQUID) equipped with a small probe coil is referred to as a one-chip type SQUID in 1988, International, Solid State Circuits Conference (1988).
International Solid-State Circuits Conference
(ISSCC 88)) discussed on pages 289-291.

一方、含フエライトステンレス鋼実機部材の高温脆化
損傷度の検知方法として、特開昭61−28859号公報に記
載のような方法がある。これは、フエライトスコープを
用いて、実機部材の高温長時間使用後のフエライト量変
化を磁気的に測定することによつて当該部の脆化の進行
度を検知する方法である。
On the other hand, as a method for detecting the degree of high-temperature embrittlement damage of an actual ferrite-containing stainless steel member, there is a method described in JP-A-61-28859. This is a method of detecting the degree of embrittlement of the relevant part by magnetically measuring the change in the amount of ferrite after long-time use at a high temperature of a real machine member using a ferrite scope.

また劣化診断ではないが、超電導発電機用マグネツト
等に使用される高磁界域において高い臨界電流特性を発
揮する超電導シートコイルの製造方法について、特開昭
62−277704号公報に述べられている。
Although it is not a deterioration diagnosis, a method of manufacturing a superconducting sheet coil which exhibits high critical current characteristics in a high magnetic field region used for magnets for a superconducting generator, etc.
62-277704.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は被測定体からの磁束を取り込む検出面
積が大きいために、原子力プラントの実機部材に用いら
れる2相ステンレス鋼のフエライト相中に高温時効によ
り析出するα′相やG相等の極微小析出物の磁気特性を
調べることができず、材料劣化に及ぼす材料の磁気特性
と組織変化の相関を十分に明確にできないという問題が
あつた。
In the above prior art, since the detection area for taking in the magnetic flux from the object to be measured is large, extremely small particles such as α 'phase and G phase precipitated by high-temperature aging in the ferrite phase of the duplex stainless steel used for the actual parts of the nuclear power plant. There was a problem that the magnetic properties of the precipitates could not be investigated, and the correlation between the magnetic properties of the material and the structural change affecting the material degradation could not be clarified sufficiently.

また上記従来技術は、一般に磁気特性の変化を伴なう
材料の内部組織変化を調べる際に、材料全体の磁気特性
を測定することはできたが、磁気特性変化の直接の原因
となる内部組織変化部の磁気特性を計測することができ
ないという問題があつた。
In addition, the above-described prior art was generally able to measure the magnetic properties of the entire material when examining changes in the internal structure of the material accompanied by changes in the magnetic properties. There is a problem that the magnetic properties of the changing part cannot be measured.

さらに上記従来技術は、前記材料の磁気特性変化の直
接の原因となる内部組織変化部の大きさが非常に微小で
ある場合、該内部組織変化部の寸法を磁気特性とは別に
極微量分析装置を用いて調べなければならないという問
題があつた。
Further, in the above prior art, when the size of the internal structure change portion that directly causes a change in the magnetic characteristics of the material is extremely small, the size of the internal structure change portion is determined separately from the magnetic characteristics by a micro-analysis device. There was a problem that it had to be checked using.

本発明の目的は、原子力プラント等の実機部材に用い
られる2相ステンレス鋼の材料変化に及ぼす材料の磁気
特性の変化と組織変化との相関を明確にし、劣化診断の
信頼性を高めることであり、Åオーダの位置分解能で磁
気特性を測定することができ非常に高い磁気信号感度を
有する磁束計を提供することにある。
An object of the present invention is to clarify the correlation between the change in the magnetic properties of a material and the change in the structure that affect the change in the material of a duplex stainless steel used in a real machine member of a nuclear power plant or the like, and to enhance the reliability of deterioration diagnosis. It is an object of the present invention to provide a magnetometer capable of measuring magnetic characteristics with a positional resolution of the order of Å, and having extremely high magnetic signal sensitivity.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、SQUIDとSQUIDに磁束を取
り込むための磁束伝達回路を具備する磁束計において、
磁束伝達回路に備わり被測定試料に面するプローブコイ
ルを先端の曲率半径を小さくした針状コアの先端に形成
させたものである。
In order to achieve the above object, in a magnetometer having a SQUID and a magnetic flux transmission circuit for taking in magnetic flux into the SQUID,
A probe coil provided in a magnetic flux transmission circuit and facing a sample to be measured is formed at the tip of a needle-shaped core having a small radius of curvature at the tip.

また、前記針状コアの先端の曲率半径を小さくするた
めに、コア用材料を棒状に切り出し棒状材料の端を電解
研摩又は科学研摩したものである。
Further, in order to reduce the radius of curvature of the tip of the needle-shaped core, the core material is cut into a rod shape, and the end of the rod-shaped material is subjected to electrolytic polishing or scientific polishing.

また、SQUIDへ取り込む磁束信号の感度を高めるため
に、前記針状コアを高透磁率をもつ軟磁性材で作製した
ものである。
Further, in order to increase the sensitivity of the magnetic flux signal taken into the SQUID, the needle core is made of a soft magnetic material having a high magnetic permeability.

Åオーダの位置分解能で磁気特性を測定する目的を達
成するために、前記プローブコイルと針状コアとの間に
挿入する絶縁薄膜を針状コアのプローブコイルリング内
側には形成させず、針状コアの先端と被測定試料との間
のトンネル電流が一定になるように針状コアをエピゾ素
子で三次元方向に駆動させる。
達成 In order to achieve the purpose of measuring magnetic properties with a positional resolution of the order, an insulating thin film inserted between the probe coil and the needle core is not formed inside the probe coil ring of the needle core, The needle core is driven in a three-dimensional direction by an epizo element so that a tunnel current between the tip of the core and the sample to be measured is constant.

〔作用〕[Action]

軟磁性材の長さ15mm0.25mm角の角材に切り出し、角材
の一方の端を塩酸や硝酸等の電解液に浸漬し、2〜3Vの
交流電圧をかけて上下すると、先端の曲率半径が500Å
程度の針状コアができ上がる。この針状コアの直上を残
して表面全体に絶縁薄膜を真空蒸着等によつて形成さ
せ、その上に超電導薄膜のプローブコイルを装着するの
で、例えば絶縁膜の厚さを300Åとするとプローブコイ
ルの直径は160Å程度となり、極微小の磁束検出面積を
有するプローブコイルとなる。
Cut a piece of soft magnetic material into a square piece with a length of 15 mm 0.25 mm square, immerse one end of the square piece in an electrolytic solution such as hydrochloric acid or nitric acid, and apply an AC voltage of 2 to 3 V to raise and lower it.
A needle-like core of a degree is completed. An insulating thin film is formed by vacuum evaporation or the like on the entire surface except directly above the needle-shaped core, and a superconducting thin film probe coil is mounted thereon. The probe coil has a diameter of about 160 ° and a very small magnetic flux detection area.

針上コアの先端と被測定試料との間のトンネル電流を
一定に保持するように針状コアをピエゾ素子で駆動させ
るので、両者間の距離を10Å以下まで近づけることがで
きる。これにより、プローブコイルへの漏洩磁束が減少
し取り込む磁束が増加するとともに信号感度は高まる。
また針状コアが軟磁性材料であることも漏洩磁束の減少
と感度の向上につながる。針状コアの軸方向に垂直な平
面内をピエゾ素子に印加する電圧を調整しながら二次元
方向に制御すると、被測定試料の表面をÅオーダの位置
分解能で移動し磁気特性の変化を調べることができる。
また、針状コアの位置制御をパルスモータ駆動で行う
と、ピエゾ素子駆動に比べてさらに粗い走査をすること
もできる。
Since the needle-shaped core is driven by the piezo element so as to keep the tunnel current between the tip of the needle-shaped core and the sample to be measured constant, the distance between the two can be reduced to 10 ° or less. As a result, the magnetic flux leakage to the probe coil decreases, the magnetic flux taken in increases, and the signal sensitivity increases.
Further, the fact that the needle-shaped core is made of a soft magnetic material also leads to a reduction in leakage magnetic flux and an improvement in sensitivity. By controlling the voltage applied to the piezo element in a two-dimensional direction while adjusting the voltage applied to the piezo element in a plane perpendicular to the axial direction of the needle core, the surface of the sample to be measured is moved with a positional resolution of the order of Å, and the change in magnetic properties is examined Can be.
Further, when the position control of the needle-shaped core is performed by driving a pulse motor, a coarser scan can be performed as compared with driving the piezoelectric element.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1〜14図を用いて説明す
る。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

第1図は本発明の一実施例であるマイクロプローブコ
イルの概観図である。先端の曲率半径の小さい針状コア
1の先端に、超電導膜のリングからなるプローブコイル
2を形成させ、プローブコイル2からリード線3を導出
したものである。第2図に示すように、2本のリード線
3を絶縁薄膜3−aを介して交差させるとプローブコイ
ルの感度は一段と向上する。針状コアの代わりに第3図
のように棒状コア3−bを用い、棒状コア3−bの先端
にプローブコイル2を装着することも可能である。
FIG. 1 is a schematic view of a microprobe coil according to one embodiment of the present invention. A probe coil 2 made of a ring of a superconducting film is formed at the tip of a needle-shaped core 1 having a small radius of curvature at the tip, and a lead wire 3 is derived from the probe coil 2. As shown in FIG. 2, when the two lead wires 3 intersect via the insulating thin film 3-a, the sensitivity of the probe coil is further improved. It is also possible to use the rod-shaped core 3-b as shown in FIG. 3 instead of the needle-shaped core, and to mount the probe coil 2 on the tip of the rod-shaped core 3-b.

以上記述したようなプローブコイルを具備したSQUID
磁束計を用いると、材料の非常に微細な領域の磁気特性
値を検出することができるようになる。例えば、次に記
述するようなシステムにおいて威力を発揮する。原子力
プラントにおける原子炉の炉壁や一次系配管には2相ス
テンレス鋼が用いられているが、原子炉の稼動時間が増
加するに従つて高温時効脆化により2相スレンレス鋼の
フエライト相中の微小な析出相が発生し、前記実機部材
は劣化する。このフエライト相中に生ずる析出相のため
に2相ステンレス鋼の磁気特性が微妙に変化するので、
その磁気特性を高感度のGQUIDとGQUIDへ磁束を取り込む
ためのプローブコイルを用いて測定することにより実機
部材の劣化度を評価することができる。被測定試料近傍
に励磁装置を配置し被測定試料に起磁力を与えると第4
図,第5図に示すように、起磁力の変化に対応して磁気
ヒステリシスループ4を描く。第4図は2相ステンレス
鋼の受け入れ材の磁気特性を示す図であり、第5図は2
相ステンレス鋼の475℃の高温時効を施した劣化材の磁
気特性を示す図である。受け入れ材と劣化材の磁気特性
を比較すると、磁気ヒステリシス面積5や磁気ヒステリ
シス形態5−a,最大磁束密度6,残留磁束密度7,保持力8
等の特性値が変化していることがわかる。
SQUID with probe coil as described above
The use of a magnetometer makes it possible to detect magnetic property values in very fine regions of the material. For example, it is effective in the system described below. Duplex stainless steel is used for the reactor walls and primary piping in nuclear plants, but as the operating time of the reactor increases, high-temperature aging embrittlement causes the phase in the ferrite phase of duplex stainless steel to decrease. A minute precipitation phase is generated, and the actual machine member is deteriorated. Because the magnetic properties of the duplex stainless steel change slightly due to the precipitation phase generated in the ferrite phase,
By measuring the magnetic properties using a highly sensitive GQUID and a probe coil for capturing magnetic flux into the GQUID, it is possible to evaluate the degree of deterioration of the members of the actual machine. When an exciting device is arranged near the sample to be measured and a magnetomotive force is applied to the sample to be measured, the fourth
As shown in FIG. 5 and FIG. 5, a magnetic hysteresis loop 4 is drawn corresponding to the change of the magnetomotive force. FIG. 4 is a diagram showing the magnetic properties of the duplex stainless steel receiving material, and FIG.
It is a figure which shows the magnetic characteristic of the deterioration material which performed the high temperature aging of 475 degreeC of the duplex stainless steel. When the magnetic properties of the receiving material and the deteriorated material are compared, the magnetic hysteresis area 5, the magnetic hysteresis form 5-a, the maximum magnetic flux density 6, the residual magnetic flux density 7, the coercive force 8
It can be seen that the characteristic values such as.

実際に原子炉の実機部材の劣化度を評価するには、予
め2相ステンレス鋼について時効時間と時効温度に対す
る磁気特性の変化と強度変化と内部組織変化についての
データの蓄積と各特性値の対応づけが必要とされる。し
かしながら、磁気特性と内部組織変化との相関を求める
際に、従来のプローブコイルを用いたSQUID磁束計では
磁束検出面積が大きいため、前記微小析出相による磁気
特性の変化を直接求めることができなかつた。
In order to actually evaluate the degree of deterioration of actual reactor components, it is necessary to accumulate data on magnetic property changes, strength changes, and internal structure changes with respect to the aging time and aging temperature of duplex stainless steel, and to correlate each characteristic value. Is required. However, when determining the correlation between magnetic characteristics and changes in internal structure, the conventional SQUID magnetometer using a probe coil has a large magnetic flux detection area, and thus cannot directly determine changes in magnetic characteristics due to the minute precipitate phase. Was.

第6図はSQUIDを具備した磁束測定部の構成図であ
る。被測定部から測定される磁束は磁伝伝達回路9のプ
ローブコイル2に入り、コイルS9−aに伝達される。コ
イルS9−aとrfSQUID10は相互インダクタンス で結合されている。ここでLsとLはそれぞれコイルS9−
aとrfSQUID10の自己インダクタンスである。プローブ
コイル2の巻数をnP、1巻あたりの自己インダクタンス
をLPO,コイルS9−aの巻数をnS,1巻あたりの自己インダ
クタンスをLSOとすると、SQUIDの感度はε= で与えられる。上式において感度εが最大となるのはLP
=LSを満足する時である。つまり、プローブコイルとコ
イルSの自己インダクタンスを等しくしなければならな
い。一般にコイルの自己インダクタンスはコイルの線の
断面積Aに比例し、1巻あたりのコイルの長さに反比例
する。本発明の針状コア先端に形成させたプローブコイ
ル2は、1巻あたりのコイルの長さlPは非常に小さい
が、断面積APも十分に小さくできるので、LP=LSを充た
すようなコイルS9−aを作製することが可能である。さ
らにrfSQUID10の磁束信号はLC共振回路11で電気信号に
変換され、SQUIDの制御回路へ伝送される。
FIG. 6 is a configuration diagram of a magnetic flux measurement unit having a SQUID. The magnetic flux measured from the part to be measured enters the probe coil 2 of the magnetic transmission circuit 9 and is transmitted to the coil S9-a. Coils S9-a and rfSQUID10 have mutual inductance Are joined by Here, Ls and L are the coils S9−
a and the self-inductance of rfSQUID10. Assuming that the number of turns of the probe coil 2 is n P , the self-inductance per turn is L PO , the number of turns of the coil S9-a is n S , and the self-inductance per turn is L SO , the sensitivity of the SQUID is ε = Given by In the above equation, the maximum sensitivity ε is L P
= L S is satisfied. That is, the self inductance of the probe coil and the coil S must be equal. Generally, the self-inductance of a coil is proportional to the cross-sectional area A of the coil wire and inversely proportional to the length of the coil per turn. In the probe coil 2 formed at the tip of the needle-shaped core of the present invention, the length l P of the coil per turn is very small, but the cross-sectional area A P can be made sufficiently small, so that L P = L S is satisfied. Such a coil S9-a can be manufactured. Further, the magnetic flux signal of the rf SQUID 10 is converted into an electric signal by the LC resonance circuit 11 and transmitted to the control circuit of the SQUID.

第7図は本発明の一実施例である多巻型プローブコイ
ルの概観図である。針状コア1の先端に多巻プローブコ
イル12を形成し、リード(1)13とリード線(2)14を
先端から導出し、さらにリード線(2)14と多巻プロー
ブコイル12との間に絶縁材15を介在させた構造となつて
いる。
FIG. 7 is a schematic view of a multi-turn probe coil according to an embodiment of the present invention. A multi-turn probe coil 12 is formed at the tip of the needle-shaped core 1, a lead (1) 13 and a lead wire (2) 14 are led out from the tip, and furthermore, between the lead (2) 14 and the multi-turn probe coil 12. And an insulating material 15 interposed therebetween.

第8図は絶縁薄膜と軟磁性材料からなる針状コアと1
巻のマイクロプローブコイルの断面図、第9図は絶縁材
料からなる針状コアと1巻のマイクロプローブコイルの
断面図である。第8図のように、高透磁率を有するパー
マロイ(PC)や高硬度パーマロイ(HPC)等の鉄−ニツ
ケル合金等の軟磁性材の針状コア16上に等磁率が1程度
のポリエチレンやテフロン等の有機絶縁材料や無機絶縁
材料等の絶縁薄膜17を被覆し、その上に1巻プローブコ
イル18を形成させると、透磁率の低い材料を鉄状コアに
用いた場合と比較して、漏洩磁束が減少し取り込む磁束
が増加しSQUIDの感度が向上するという効果がある。第
9図のごとく、絶縁材料に直接機械加工や化学研摩等を
施して絶縁材の針状コア19を作製し、その上に1巻プロ
ーブコイル18を形成させると、第8図の場合に比べて漏
洩磁束の減少はそれ程望まないが、プローブコイルの作
製工程が簡略化されるという効果がある。
FIG. 8 shows an acicular core made of an insulating thin film and a soft magnetic material,
FIG. 9 is a sectional view of a wound microprobe coil, and FIG. 9 is a sectional view of a needle-shaped core made of an insulating material and a single wound microprobe coil. As shown in FIG. 8, polyethylene or Teflon having a uniform magnetic permeability of about 1 is placed on a needle-shaped core 16 of a soft magnetic material such as an iron-nickel alloy such as permalloy (PC) or high-hardness permalloy (HPC) having a high magnetic permeability. When a one-turn probe coil 18 is formed by coating an insulating thin film 17 such as an organic insulating material such as an inorganic insulating material or the like, and a single-turn probe coil 18 is formed on the insulating thin film 17, leakage is reduced as compared with a case where a material having a low magnetic permeability is used for an iron core. There is an effect that the magnetic flux decreases, the magnetic flux taken in increases, and the sensitivity of the SQUID improves. As shown in FIG. 9, when the insulating material is directly machined or chemically polished to form an insulating needle-like core 19, and a one-turn probe coil 18 is formed thereon, the result is as compared with the case of FIG. Although it is not so desired to reduce the leakage magnetic flux, there is an effect that the process of manufacturing the probe coil is simplified.

第10図は絶縁膜と軟磁性材からなる針状コアと1巻マ
イクロプローブコイルの作製手順の一実施例である。軟
磁性材料を長さ15mm,断面0.5mm角のロツドに切り出し、
塩酸や硝酸等の電解液中に浸漬し数ボルトの交流又は直
流で電解研摩すると、先端の曲率半径がR=500Å程度
の鋭い針状コア16ができる。また、この針状コア16を超
高真空中へ導入し、数キロボルトの正の高電圧を印加す
ると、針状コア先端の表面原子が高電界によつて電界蒸
発を理想的な半球面に近い先端形状が得られる。次に針
状コア16を真空中で軸方向に自転させながら絶縁材の蒸
着を行ない、表面に均一な膜を有する絶縁薄膜17を形成
する。続いて前記絶縁薄膜17の上に第10図に示すように
レジスト20を塗付し、再び真空中で超電導材を蒸着し超
電導膜21を全体に形成させる。最後にレジスト20を除去
すると、直径約1000Åの極微小1巻プローブコイルが完
成する。
FIG. 10 shows an embodiment of a procedure for manufacturing a needle-shaped core made of an insulating film and a soft magnetic material and a one-turn microprobe coil. Cut a soft magnetic material into rods with a length of 15 mm and a cross section of 0.5 mm square.
When immersed in an electrolytic solution such as hydrochloric acid or nitric acid and subjected to electrolytic polishing with alternating or direct current of several volts, a sharp needle core 16 having a tip with a radius of curvature of about R = 500 ° is formed. When this needle-shaped core 16 is introduced into an ultra-high vacuum and a positive high voltage of several kilovolts is applied, the surface atoms at the tip of the needle-shaped core are subjected to a high electric field to make the field evaporation close to an ideal hemisphere. A tip shape is obtained. Next, the insulating material is deposited while rotating the needle core 16 in the axial direction in a vacuum to form an insulating thin film 17 having a uniform film on the surface. Subsequently, a resist 20 is applied on the insulating thin film 17 as shown in FIG. 10, and a superconducting material is deposited again in a vacuum to form a superconducting film 21 as a whole. Finally, when the resist 20 is removed, a very small one-turn probe coil having a diameter of about 1000 ° is completed.

第11図は2相ステンレス鋼の劣化材を1チツプ型プロ
ーブコイルを用いて磁束を測定した場合の模式図と対応
する残留密束密度を示す図である。前述したごとく、被
測定試料である2相ステンレス鋼22のフエライト相22−
a中には、時効時間の増加に伴つてα′相23やG相24と
いう微小析出相が発生する。それらの析出相の大きさは
数百Åとも言われる程の微小なもので、2mm×3mmの1チ
ツプ型SQUIDに搭載された積層型のプローブコイル25で
は、被測定試料である2相ステンレス鋼22に積層型のプ
ローブコイル25を十分近づけることができず、漏洩磁束
が多く取り込む磁束が少なかつた。また、受け入れ材と
劣化材の磁気特性の相違は測定できても、第11図のごと
くα′相23やG相24による残留磁束密度プロフアイル26
の変化を検出できる程の感度がなかつた。
FIG. 11 is a schematic diagram when a magnetic flux of a deteriorated material of duplex stainless steel is measured using a one-chip type probe coil, and a diagram showing the corresponding residual tight bundle density. As described above, the ferrite phase 22- of the duplex stainless steel 22, which is the sample to be measured,
In a, microprecipitated phases such as α 'phase 23 and G phase 24 are generated as the aging time increases. The size of these precipitated phases is as small as several hundred square meters. In the case of a laminated probe coil 25 mounted on a 2 mm x 3 mm 1-chip type SQUID, the sample to be measured is a duplex stainless steel. The laminated probe coil 25 could not be brought sufficiently close to the 22, and the leakage magnetic flux was large and the magnetic flux taken in was small. Further, even if the difference in the magnetic properties between the receiving material and the deteriorated material can be measured, as shown in FIG.
Is not sensitive enough to detect changes in

一方、第12図のごとく本発明のマイクロプローブコイ
ル26−aを具備したSQUIDを用いて2相ステンレス鋼22
の劣化材を測定すると、半径500Åという非常に微少な
検出面積のために、プローブの中心位置に対する残留磁
束密度プロフアイル26はα′相23やG相24の変化を直接
反映した形状をとるようになる。また軟磁性材の針状コ
アを具備しているので、漏洩磁束が減少し取り込む磁束
が増加する。さらに、マイクロプローブコイル26−aの
中心にセンターホール27を開けて走査トンネル顕微鏡
(STM)のプローブとして取り扱うと、トンネル電流を
測定することのできる距離である数Åの位置までセンタ
ーホール27を2相ステンレス鋼22に近づけることが可能
となり、SQUIDの感度は一段と高まるという効果があ
る。
On the other hand, as shown in FIG. 12, a duplex stainless steel 22 was manufactured using a SQUID having the microprobe coil 26-a of the present invention.
When the deteriorated material is measured, the residual magnetic flux density profile 26 with respect to the center position of the probe has a shape that directly reflects the change of the α 'phase 23 and the G phase 24 because of the extremely small detection area of 500 mm in radius. become. Further, since the needle-shaped core of the soft magnetic material is provided, the leakage magnetic flux is reduced and the magnetic flux taken in is increased. Further, if a center hole 27 is opened at the center of the microprobe coil 26-a and handled as a probe of a scanning tunneling microscope (STM), the center hole 27 is moved to a position of several mm which is a distance at which a tunnel current can be measured. Thus, the SQUID can be brought closer to the stainless steel 22, and the sensitivity of the SQUID is further enhanced.

第13図はマイクロプローブコイル26−aを具備したSQ
UID磁束計に走査トンネル顕微鏡(STM)の駆動機構を適
用したSTM−SQUIDの概略図である。マイクロプローブコ
イル26−aを具備した針状コア1とα′相23やG相24を
有するフエライト相22−aとの間にトンネル電流を流
し、その距離をÅ程度で一定に保つようにZ軸ピエゾ
28をPI制御回路29で制御し、これと独立にX軸ピエゾ30
とY軸ピエゾ31で走査することにより、コンピユータ
(1)32を通してモニター(1)33上で試料表面の構造
が原子レベルで観察できる。また本発明によればこれら
の走査と平行して針状コア1を極低温冷凍機34で針状コ
ア1を真空中で11Kまで冷却し、マイクロプローブコイ
ル26−aで測定される磁束信号を、リード線3,コイルS9
−a,rfSQUID10,LC共振回路11を通じてSQUID制御回路35
に伝送し、コンピユーター(2)36によりモニター
(2)37上に残留磁束密度プロフアイル38等の各磁気特
性の分子寸法の面分布を観察することが可能となる。ま
たここで、冷凍機によりプローブコイルや磁束伝達回路
やSQUID等の超電導材を容易に遷移温度以下に下げるこ
とができるという効果がある。
FIG. 13 shows an SQ having a microprobe coil 26-a.
FIG. 2 is a schematic diagram of an STM-SQUID in which a driving mechanism of a scanning tunneling microscope (STM) is applied to a UID magnetometer. A tunnel current is caused to flow between the needle-shaped core 1 having the microprobe coil 26-a and the ferrite phase 22-a having the α 'phase 23 and the G phase 24, and the distance Z is kept constant at about Z. Axial piezo
28 is controlled by the PI control circuit 29, and the X-axis piezo 30
And the Y-axis piezo 31, the structure of the sample surface can be observed at the atomic level on the monitor (1) 33 through the computer (1) 32. According to the present invention, the needle core 1 is cooled to 11 K in a vacuum by the cryogenic refrigerator 34 in parallel with these scans, and the magnetic flux signal measured by the microprobe coil 26-a is output. , Lead wire 3, coil S9
−a, rf SQUID10, SQUID control circuit 35 through LC resonance circuit 11
The computer (2) 36 makes it possible to observe the surface distribution of the molecular size of each magnetic property such as the residual magnetic flux density profile 38 on the monitor (2) 37 by the computer (2) 36. Here, there is an effect that the superconducting material such as the probe coil, the magnetic flux transmission circuit, and the SQUID can be easily lowered to the transition temperature or lower by the refrigerator.

第14図は多針状に配したコアとマイクロプローブコイ
ルの概略図である。
FIG. 14 is a schematic view of a core and a microprobe coil arranged in a multi-needle shape.

第14図のごとく多数のマイクロプローブコイル26−a
と針状コア1をコアステージ39上に一定間隔で配置し、
各マイクロプローブコイル26−aからの磁束信号を連続
的に処理すると、STMの駆動機構を用いずに2相ステン
レス鋼22表面の各磁気特性の面分布を離散的に測定でき
るという効果もある。
As shown in FIG. 14, a large number of microprobe coils 26-a
And the needle-shaped core 1 are arranged at regular intervals on the core stage 39,
If the magnetic flux signal from each microprobe coil 26-a is continuously processed, there is also an effect that the surface distribution of each magnetic property on the surface of the duplex stainless steel 22 can be discretely measured without using the STM driving mechanism.

また本発明のマイクロプローブコイルを具備したSQUI
D磁束計を用いると、磁気デイスクや磁気ヘツドの磁区
や、初期構造欠陥さらに経年劣化による構造欠陥の測定
も可能となるという効果がある。
Also, the SQUI equipped with the microprobe coil of the present invention
The use of the D magnetometer has the effect that the magnetic domain of a magnetic disk or a magnetic head, an initial structural defect, and a structural defect due to aging can be measured.

〔発明の効果〕 本発明によれば、針状コアの先端に非常に微少な磁束
検出面積を備えたプローブコイルを備えたSQUIDを作製
できるので、2相ステンレス鋼のフエライト相中に析出
するα′相やG相ごとく材料内部の微細な組織変化に伴
なう磁気特性の変化をその組織変化の位置に追従して測
定することができるという効果がある。また予めα′相
やG相のごとく微細な組織変化に対応する磁気特性を調
べておけば、前記プローブコイルを用いて同一材料の磁
束測定をすることにより、その材料の組織を逆に調べる
ことができるという効果もある。
[Effects of the Invention] According to the present invention, it is possible to produce a SQUID having a probe coil having a very small magnetic flux detection area at the tip of a needle-shaped core, so that α precipitates in the ferrite phase of a duplex stainless steel. As in the 'phase and the G phase, there is an effect that a change in magnetic properties due to a minute structural change inside the material can be measured following the position of the structural change. If the magnetic properties corresponding to minute structural changes such as α 'phase and G phase have been checked in advance, the magnetic flux of the same material can be measured using the probe coil to check the structure of the material in reverse. There is also an effect that can be done.

また本発明によれば、プローブコイルを先端に形成さ
せたプローブコイルを剥ぎ取ることなくその金属をコア
として利用できるという効果がある。
Further, according to the present invention, there is an effect that the metal can be used as a core without peeling off the probe coil having the probe coil formed at the tip.

さらに、STMの駆動機構を併用できるので、プローブ
コイルを被測定試料の極近傍まで近づけることができる
のでSQUIDの感度が向上するのみならず、Åオーダの位
置の分解能で磁気特性を調べることができるという効果
がある。
Furthermore, since the drive mechanism of the STM can be used together, the probe coil can be brought as close as possible to the sample to be measured, so not only the sensitivity of the SQUID is improved, but also the magnetic characteristics can be investigated with a resolution of the order of the order. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例であるマイクロプローブコイ
ルの概観を示す部分斜視図、第2図はリード線を交差さ
せたマイクロプローブコイルの概観を示す部分斜視図、
第3図は棒状コアの先端部に形成させたマイクロプロー
ブコイルの概観を示す部分斜視図、第4図は2相ステン
レス鋼の受け入れ材の磁気特性図、第5図は2相ステン
レス鋼に475℃の高温時効を施した劣化材の磁気特性
図、第6図はSQUIDを具備した磁束測定部の回路図、第
7図は本発明の一実施例である多巻型プローブコイルの
概観を示す部分斜視図、第8図は絶縁薄膜と軟磁性材か
らなる針状コアと1巻のマイクロプローブコイルの断面
図、第9図は絶縁材からなる針状コアと1巻のマイクロ
プローブコイルの断面図、第10図は絶縁膜と軟磁性材か
らなる針状コアと1巻マイクロプローブコイルの作製手
順を示す工程図、第11図は2相ステンレス鋼の劣化材を
1チツプ型プローブコイルを用いて磁束測定した場合の
模式図と対応する残留磁束密度を示す特性図、第12図は
2相ステンレス鋼の劣化材を本発明のマイクロプローブ
コイルを用いて磁束測定した場合の模式図と対応する残
留磁束密度を示す特性図、第13図はマイクロプローブコ
イルを具備したSQUID磁束計に走査トンネル顕微鏡(ST
M)の駆動機構を適用したSTM−SQUIDの概略回路図、第1
4図は多針状に配したコアとマイクロプローブコイルの
概観を示す斜視図である。 1……針状コア、2……プローブコイル、3……リード
線、3−a……絶縁薄膜、3−b……棒状コア、4……
磁気ヒステリシスループ、5……磁気ヒステリシス面
積、5−a……磁気ヒステリシス形態、6……最大磁束
密度、7……残留磁束密度、8……保磁力、9……磁束
伝達回路、9−a……rfSQUID、10……rfSQUID、11……
LC共振回路、12……多巻プローブコイル、13……リード
線(1)、14……リード線(2)、15……絶縁材、16…
…軟磁性材の針状コア、17……絶縁薄膜、18……1巻プ
ローブコイル、19……絶縁材の針状コア、20……レジス
ト、21……超電導薄膜、22……2相ステンレス鋼、22−
a……フエライト相、23……α′相、24……G相、25…
…積層型のプローブコイル、26……残留磁束密度プロフ
アイル、26−a……マイクロプローブコイル、27……セ
ンターホール、28……Zピエゾ、29……PI制御回路、30
……X−ピエゾ、31……Y−ピエゾ、32……コンピユー
ター(1)、33……モニター(1)、34……極低温冷凍
機、35……SQUID制御回路、36……コンピユーター
(2)、37……モニター(2)、38……残留磁束密度分
布、39……コアステージ。
FIG. 1 is a partial perspective view showing an overview of a microprobe coil according to an embodiment of the present invention, FIG. 2 is a partial perspective view showing an overview of a microprobe coil having crossed lead wires,
FIG. 3 is a partial perspective view showing an overview of a microprobe coil formed at the tip of a rod-shaped core, FIG. 4 is a magnetic characteristic diagram of a duplex stainless steel receiving material, and FIG. FIG. 6 is a circuit diagram of a magnetic flux measuring unit equipped with a SQUID, and FIG. 7 is a schematic view of a multi-turn probe coil according to an embodiment of the present invention. FIG. 8 is a cross-sectional view of a needle-shaped core made of an insulating thin film and a soft magnetic material and one turn of a microprobe coil. FIG. 9 is a cross-sectional view of a needle-shaped core made of an insulating material and one turn of a microprobe coil. Fig. 10 is a process diagram showing a procedure for manufacturing a needle-shaped core made of an insulating film and a soft magnetic material and a one-turn microprobe coil. Fig. 11 shows a one-chip probe coil made of a deteriorated material of duplex stainless steel. Schematic diagram and corresponding residual magnetic flux FIG. 12 is a schematic diagram showing the magnetic flux measurement of the deteriorated material of the duplex stainless steel using the microprobe coil of the present invention, and FIG. 13 is a characteristic diagram showing the residual magnetic flux density, and FIG. Scanning tunneling microscope (ST) with SQUID magnetometer equipped with probe coil
M) Schematic circuit diagram of STM-SQUID to which drive mechanism is applied,
FIG. 4 is a perspective view showing an overview of a core and micro probe coils arranged in a multi-needle shape. 1 ... needle-shaped core, 2 ... probe coil, 3 ... lead wire, 3-a ... insulating thin film, 3-b ... rod-shaped core, 4 ...
Magnetic hysteresis loop, 5 ... magnetic hysteresis area, 5-a ... magnetic hysteresis form, 6 ... maximum magnetic flux density, 7 ... residual magnetic flux density, 8 ... coercive force, 9 ... magnetic flux transmission circuit, 9-a …… rfSQUID, 10 …… rfSQUID, 11 ……
LC resonance circuit, 12 multi-turn probe coil, 13 lead wire (1), 14 lead wire (2), 15 insulating material, 16
... soft magnetic material needle core, 17 ... insulating thin film, 18 ... one-turn probe coil, 19 ... insulating material needle core, 20 ... resist, 21 ... superconducting thin film, 22 ... duplex stainless steel Steel, 22-
a: Ferrite phase, 23: α 'phase, 24: G phase, 25:
... Laminated type probe coil, 26 ... Residual magnetic flux density profile, 26-a ... Micro probe coil, 27 ... Center hole, 28 ... Z piezo, 29 ... PI control circuit, 30
... X-piezo, 31 ... Y-piezo, 32 ... Computer (1), 33 ... Monitor (1), 34 ... Cryogenic refrigerator, 35 ... SQUID control circuit, 36 ... Computer (2 ), 37: Monitor (2), 38: Residual magnetic flux density distribution, 39: Core stage.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−28859(JP,A) 特開 平1−124781(JP,A) 特開 平2−66478(JP,A) 実開 昭63−27880(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-28859 (JP, A) JP-A-1-1244781 (JP, A) JP-A-2-66478 (JP, A) 27880 (JP, U)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プローブコイルが被測定物に面するよう配
置された磁束伝達回路と、該回路から発生する磁束の届
く範囲内に設けた超電導量子干渉素子と、針状のコアを
備え、該針状のコアの先端に前記プローブコイルを設け
たことを特徴とする磁束計。
A magnetic flux transmission circuit arranged so that a probe coil faces an object to be measured, a superconducting quantum interference element provided within a range where a magnetic flux generated from the circuit reaches, and a needle-shaped core. A magnetometer, wherein the probe coil is provided at the tip of a needle-shaped core.
【請求項2】ピックアップコイルが被測定物に面するよ
う配置された磁束トランスと、該トランスから発生する
磁束の届く範囲内に設けた超電導量子干渉素子と、針状
のコアを備え、該針状のコアの先端に前記ピックアップ
コイルを設けたことを特徴とする磁束計。
2. A stylus comprising a magnetic flux transformer in which a pickup coil is arranged to face an object to be measured, a superconducting quantum interference device provided in a range where a magnetic flux generated from the transformer reaches, and a needle-shaped core. A magnetometer, wherein the pickup coil is provided at the tip of a core having a shape of a circle.
【請求項3】前記針状のコアが軟磁性材料で構成されて
いることを特徴とする請求項1または2のいずれか1項
記載の磁束計。
3. The magnetometer according to claim 1, wherein the needle-shaped core is made of a soft magnetic material.
【請求項4】前記針状のコアをピエゾ素子駆動で三次元
方向に位置決めすることを特徴とする請求項1乃至3の
いずれか1項記載の磁束計。
4. The magnetometer according to claim 1, wherein the needle-shaped core is positioned in a three-dimensional direction by driving a piezo element.
【請求項5】前記針状のコアをパルスモータ駆動で三次
元方向に位置決めすることを特徴とする請求項1乃至3
のいずれか1項記載の磁束計。
5. The positioning of the needle-shaped core in a three-dimensional direction by driving a pulse motor.
The magnetometer according to any one of claims 1 to 4.
【請求項6】請求項1乃至5のいずれか1項記載の磁束
計を備え、前記磁束計から出力される磁束信号を信号処
理回路を介してモニター上に磁気特性の面分布として表
示することを特徴とする磁気特性検査システム。
6. A magnetometer according to claim 1, wherein a magnetic flux signal output from said magnetometer is displayed as a surface distribution of magnetic characteristics on a monitor via a signal processing circuit. A magnetic property inspection system characterized by the following.
JP63228737A 1988-09-14 1988-09-14 Magnetometer and magnetic property inspection system Expired - Lifetime JP2607640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228737A JP2607640B2 (en) 1988-09-14 1988-09-14 Magnetometer and magnetic property inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228737A JP2607640B2 (en) 1988-09-14 1988-09-14 Magnetometer and magnetic property inspection system

Publications (2)

Publication Number Publication Date
JPH0278982A JPH0278982A (en) 1990-03-19
JP2607640B2 true JP2607640B2 (en) 1997-05-07

Family

ID=16881030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228737A Expired - Lifetime JP2607640B2 (en) 1988-09-14 1988-09-14 Magnetometer and magnetic property inspection system

Country Status (1)

Country Link
JP (1) JP2607640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257589A (en) * 2004-03-15 2005-09-22 Japan Atom Energy Res Inst Method for evaluating soundness in stainless steel for nuclear reactor
JP4660751B2 (en) * 2005-03-02 2011-03-30 国立大学法人三重大学 Method and apparatus for inspecting material containing magnetic material
JP5190016B2 (en) * 2009-03-26 2013-04-24 本田技研工業株式会社 Work hardness measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327880U (en) * 1986-08-07 1988-02-24
JPH01124781A (en) * 1987-11-10 1989-05-17 Matsushita Electric Ind Co Ltd Skid magnetometer
JPH0266478A (en) * 1988-08-31 1990-03-06 Shimadzu Corp Magnetic field detecting device

Also Published As

Publication number Publication date
JPH0278982A (en) 1990-03-19

Similar Documents

Publication Publication Date Title
US6150809A (en) Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
EP0882240B1 (en) Microscopic imaging of properties of room-temperature objects
EP0308888B1 (en) Method and apparatus for detecting embrittlement of a measuring object
Xin et al. Nondestructive inspection using rotating magnetic field eddy-current probe
US5537037A (en) Apparatus with cancel coil assembly for cancelling a field parallel to an axial direction to the plural coils and to a squid pick up coil
Koyama et al. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures
US7405555B2 (en) Systems and methods for measuring local magnetic susceptibility including one or more balancing elements with a magnetic core and a coil
JPH06324021A (en) Non-destructive inspection device
Den Haan et al. Spin-mediated dissipation and frequency shifts of a cantilever at milliKelvin temperatures
JP2607640B2 (en) Magnetometer and magnetic property inspection system
CN100385579C (en) Superconducting coil testing
Liu et al. Stress measurement of ferromagnetic materials using hybrid magnetic sensing
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
Evanson et al. A comparison of the performance of planar and conventional second-order gradiometers coupled to a SQUID for the NDT of steel plates
Faley et al. Nondestructive evaluation using a high-T c SQUID microscope
JPS63246688A (en) Magnetic flux detector
US6980004B2 (en) Apparatus and method for detection of magnetic resonance by a magneto-resistive sensor
JP2938950B2 (en) Deterioration damage detection device for metal materials
US5264794A (en) Method of measuring magnetic fields on magnetically recorded media using a scanning tunneling microscope and magnetic probe
EP3496167B1 (en) Charged particle beam current measurement apparatus
US20220384715A1 (en) Magnetoresistive stack without radiated field, sensor and magnetic mapping system comprising such a stack
Sakai et al. Compact rotating-sample magnetometer for relaxation phenomenon measurement using HTS-SQUID
Joisten et al. Microfluxgate performance improvement in microtechnology
Szielasko et al. Barkhausen noise and eddy current microscopy: a new scanning probe technique for microscale characterization of materials
Uesaka et al. Flaw reconstruction by micro ECT probe