JP2605371B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine

Info

Publication number
JP2605371B2
JP2605371B2 JP19843888A JP19843888A JP2605371B2 JP 2605371 B2 JP2605371 B2 JP 2605371B2 JP 19843888 A JP19843888 A JP 19843888A JP 19843888 A JP19843888 A JP 19843888A JP 2605371 B2 JP2605371 B2 JP 2605371B2
Authority
JP
Japan
Prior art keywords
ignition timing
air amount
engine
amount
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19843888A
Other languages
Japanese (ja)
Other versions
JPH0249954A (en
Inventor
康仁 高須
実 堀田
博志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19843888A priority Critical patent/JP2605371B2/en
Publication of JPH0249954A publication Critical patent/JPH0249954A/en
Application granted granted Critical
Publication of JP2605371B2 publication Critical patent/JP2605371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主に内燃機関のアイドリング条件下の機関回
転数を精度よく安定させるための内燃機関用制御装置に
関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a control device for an internal combustion engine for stabilizing the engine speed accurately under idling conditions of the internal combustion engine.

〔従来の技術〕[Conventional technology]

従来のこの種のものは、アイドリング条件下の機関回
転数が目標回転数と一致するように内燃機関(エンジ
ン)の吸入空気量と点火時期とを同時に制御するように
してある。
In this type of the related art, the intake air amount and the ignition timing of the internal combustion engine (engine) are simultaneously controlled such that the engine speed under idling conditions matches the target speed.

ところが、このようなものでは、例えば、第5図にお
いて、目標回転数が650rpmから750rpmに急変した場合、
点火時期制御が空気流量制御に対して応答性が十分速い
ため、点火時期がAからBへと実用点火時期範囲の上限
値まで直ちに補正され、その後、空気量がBからCへと
補正されるので、点火時期の補正値がいち速く限界値に
達してしまい、その後の回転数変動に対して点火時期制
御の効果を十分に引き出すことができないという問題が
ある。
However, in such a case, for example, in FIG. 5, when the target rotational speed suddenly changes from 650 rpm to 750 rpm,
Since the ignition timing control has a sufficiently fast response to the air flow rate control, the ignition timing is immediately corrected from A to B to the upper limit value of the practical ignition timing range, and thereafter, the air amount is corrected from B to C. Therefore, there is a problem that the correction value of the ignition timing quickly reaches the limit value, and the effect of the ignition timing control cannot be sufficiently obtained with respect to the subsequent rotation speed fluctuation.

また、従来、この問題を解決するため、目標回転数に
接近するまでは、吸入空気量のみを補正制御し、目標回
転数に接近した時点から点火時期を補正制御するものも
考えられている(例えば、特開昭61-87976号公報)。
Conventionally, in order to solve this problem, there has been proposed an apparatus in which only the intake air amount is corrected and controlled until the target rotation speed is approached, and the ignition timing is corrected and controlled from the time when the target rotation speed is approached ( For example, JP-A-61-87976).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、このものでは、目標回転数に近接するまで
点火時期の補正制御がなされないので、応答性が悪いと
いう問題がある。
However, in this case, since the ignition timing correction control is not performed until the rotation speed approaches the target rotation speed, there is a problem that the response is poor.

そこで本発明は、通常の応答性を損なうことなく、目
標回転数が急変した場合にも機関回転数を目標回転数に
精度よく安定させることを目的とする。
Therefore, an object of the present invention is to stabilize the engine speed to the target speed accurately even when the target speed rapidly changes, without impairing the normal responsiveness.

〔課題を解決するための手段〕[Means for solving the problem]

そのため本発明は第1図に示すごとく、内燃機関の特
定の運転条件で機関回転数を一定値に保ために内燃機関
に吸入される空気量と点火時期とを制御する内燃機関用
制御装置において、機関回転数を検出する機関回転数検
出手段と、この機関回転数検出手段により検出した機関
回転数と目標回転数との偏差を少なくするように上記空
気量を制御する空気量制御手段と、前記機関回転数検出
手段により検出した機関回転数と目標回転数との偏差を
少なくするように上記点火時期を所定の補正範囲内で制
御する点火時期制御手段と、前記機関回転数が目標回転
数に達した後も前記点火時期の補正量を減少させる方向
に前記空気量を調整する補助的空気量制御手段とを備
え、 前記点火時期制御手段は前回の点火時期補正量に目標
回転数と検出回転数との偏差に応じた所定値を加算して
今回の点火時期補正量を演算する積分項算出手段を含
み、前記補助的空気量制御手段は前記積分項算出手段に
より算出された点火時期補正量が前記所定の補正範囲よ
り狭い制御範囲外で、前記点火時期補正量が正の時、前
記空気量を増加し、前記点火時期補正量が負の時、前記
空気量を減少する空気量増減手段よりなる内燃機関用制
御装置を提供するものである。
Therefore, as shown in FIG. 1, the present invention relates to a control device for an internal combustion engine that controls the amount of air drawn into the internal combustion engine and the ignition timing in order to maintain the engine speed at a constant value under specific operating conditions of the internal combustion engine. An engine speed detecting means for detecting the engine speed, and an air amount control means for controlling the air amount so as to reduce a deviation between the engine speed and the target speed detected by the engine speed detecting means, Ignition timing control means for controlling the ignition timing within a predetermined correction range so as to reduce the deviation between the engine speed detected by the engine speed detection means and the target engine speed, and Auxiliary air amount control means for adjusting the air amount in a direction to reduce the correction amount of the ignition timing even after the ignition timing has reached, and the ignition timing control means detects the target rotation speed and the target rotation speed in the previous ignition timing correction amount. Speed And an integral term calculating means for calculating a current ignition timing correction amount by adding a predetermined value according to the deviation from the auxiliary air amount control means. Outside the control range narrower than the predetermined correction range, when the ignition timing correction amount is positive, the air amount is increased, and when the ignition timing correction amount is negative, the air amount increasing / decreasing means decreases the air amount. And a control device for an internal combustion engine.

〔作用〕[Action]

これにより、機関回転数検出手段により検出した機関
回転数と目標回転数との偏差を少なくするように空気量
制御手段により吸入空気量を制御するとともに、機関回
転数検出手段により検出した機関回転数と目標回転数と
の偏差を少なくするように点火時期制御手段によって点
火時期を所定の補正範囲内で制御する。また、これらの
制御によって機関回転数が目標回転数に達した後も補助
的空気量制御手段によって空気量を調節して点火時期制
御手段による点火時期の補正量が減少する。
Thus, the intake air amount is controlled by the air amount control means so as to reduce the deviation between the engine speed detected by the engine speed detection means and the target speed, and the engine speed detected by the engine speed detection means is reduced. The ignition timing is controlled within a predetermined correction range by ignition timing control means so as to reduce the deviation between the ignition timing and the target rotation speed. Further, even after the engine speed reaches the target speed by these controls, the air amount is adjusted by the auxiliary air amount control means, and the amount of correction of the ignition timing by the ignition timing control means is reduced.

また、点火時期制御手段を積分項補正手段を含んで構
成して、前回の点火時期補正量に目標回転数と検出回転
数との偏差に応じた所定値を加算して今回の点火時期補
正量を演算するようにし、さらに、補助的空気量制御手
段を空気量増減手段により構成して、積分項算出手段に
より算出された点火時期補正量が前記所定の補正範囲よ
り狭い制御範囲外で、点火時期補正量が正のとき、空気
量を増加し、点火時期補正量が負のとき、空気量を減少
させる。
Further, the ignition timing control means is configured to include integral term correction means, and a predetermined value corresponding to the deviation between the target rotation speed and the detected rotation speed is added to the previous ignition timing correction amount to obtain the current ignition timing correction amount. Further, the auxiliary air amount control means is constituted by an air amount increasing / decreasing means, and the ignition timing correction amount calculated by the integral term calculating means is outside the control range narrower than the predetermined correction range. When the timing correction amount is positive, the air amount is increased, and when the ignition timing correction amount is negative, the air amount is decreased.

〔実施例〕〔Example〕

以下本発明を図に示す実施例について説明する。第2
図に本発明の基本構成を示す。クランクアングルセンサ
1はエンジンの回転速度に比例した周波数のパルス信号
をエンジン制御装置(以下ECUと略す)2に送る。ECU2
はマイクロプロセッサを含んでおり、エンジンの運転状
態に応じて、燃料噴射量、点火時期、アイドル時のバイ
パス空気量等を演算し、各々の出力装置に信号を供給す
る。(第2図ではアイドル制御に関するもののみ示して
ある。)点火時期信号はイグナイタ3に出力されて、点
火コイル4で高電圧を発生し、それをディストリビュー
タ5で各気筒の点火プラグ6に分配させる。又、バイパ
ス空気量はISC Idle Speed Control)バルブの開度を制
御することで調節する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Second
The figure shows the basic configuration of the present invention. The crank angle sensor 1 sends a pulse signal having a frequency proportional to the rotation speed of the engine to an engine control device (hereinafter abbreviated as ECU) 2. ECU2
Includes a microprocessor, calculates a fuel injection amount, an ignition timing, an amount of bypass air at the time of idling, and the like according to an operation state of the engine, and supplies a signal to each output device. (Only the one related to idle control is shown in FIG. 2.) The ignition timing signal is output to the igniter 3 to generate a high voltage in the ignition coil 4 and distribute it to the ignition plug 6 of each cylinder by the distributor 5. . Further, the bypass air quantity is adjusted by controlling the opening degree of the ISC I dle S peed C ontrol) valve.

第3図および第4図にその制御内容をフローチャート
にて示す。まず最初に点火時期θigの基本演算式を次に
示す。
FIGS. 3 and 4 show the control contents in the form of flowcharts. First, the basic arithmetic expression of the ignition timing θ ig is shown below.

θig=θBASE+θisc……(1) ここで、θBASEは基本進角、θiscはアイドル補正進
角である。(1)式において、実用上の点火時期補正範
囲として、 −θL<θisc+θL……(2) のガード値が設けてある。ここで、θLは10°程度が
好ましい。さらにアイドル補正進角は3つの要素(比例
項θp(isc),積分項θi(isc),微分項θD(isc))から構
成される。
θ ig = θ BASE + θ isc (1) where θ BASE is a basic advance angle and θ isc is an idle correction advance angle. In the equation (1), a guard value of −θ Lisc + θ L (2) is provided as a practical ignition timing correction range. Here, θ L is preferably about 10 °. Further, the idle correction advance angle is composed of three elements (proportional term θ p (isc) , integral term θ i (isc) , and derivative term θ D (isc) ).

θisc=θp(isc)+θi(isc)+θD(isc)……(3) また補正進角の適切な制御範囲として −θCT<θi(isc)<θCT……(4) を設ける。ここで、θCTはθLより小さな値、例えば
3°程度が好ましい。次に、第3図および第4図のフロ
ーチャートに基づいて以下説明する。第3図において、
θiscの制御をまず説明する。回転角度割込みにて回転
数、空気流量、各種センサ信号等に基づいて基本進角値
θBASEを演算する(ステップS1)。次に、アイドルのフ
ィードバック条件が成立しているかを判断し(ステップ
S2)、成立しているときには目標回転数Neoと、実測回
転数Neとの偏差ΔNeを計算し(ステップS3)、その値
より比例項補正分(ΔNeに応じた比例補正θp(isc)
p・ΔNe)、積分項補正分(ΔNeの過去から今まで
の積算値に応じた積分補正θi(isc)=前回のθi(isc)
i・ΔNe)と微分項補正分(ΔNeの変化分に応じた
微分補正θD(isc)=KD(前回のΔNe−今回のΔ
e))をそれぞれ演算する(ステップS4〜S6)。そし
て、ステップS7で各項の総和をθisc=θp(isc)+θ
i(isc)+θD(isc)により算出する。ステップS8〜S11で
は、点火時期θiscが過度に進角、もしくは遅角しない
ためのガードの役目をしている。また、ステップS2でフ
ィードバック条件が成立していないと判断したときには
ステップS12へ進んでθiscを0とする。最終ステップS1
3では以上で求めたθBASEとθiscとを加算して最終点火
時期θigを求める。
θ isc = θ p (isc) + θ i (isc) + θ D (isc) ...... (3) As appropriate control range of the compensation advance -θ CT <θ i (isc) <θ CT ...... (4) Is provided. Here, θ CT is preferably smaller than θ L , for example, about 3 °. Next, a description will be given below based on the flowcharts of FIGS. In FIG.
First, the control of θ isc will be described. The basic advance value θ BASE is calculated based on the rotation speed, the air flow rate, various sensor signals, and the like by the rotation angle interruption (step S1). Next, it is determined whether the idle feedback condition is satisfied (step
S2), the target rotation speed N eo when you are satisfied, the deviation .DELTA.N e between the measured speed N e calculated (step S3), and proportional correction theta p corresponding to the proportional term correction amount than the value (.DELTA.N e (isc) =
K p · ΔN e), (integration correction corresponding to the integrated value up to now from the past ΔN e θ i (isc) integration term correction component = previous θ i (isc) +
K i · ΔN e ) and the differential term correction (the differential correction θ D (isc) according to the change in ΔN e = K D (previous ΔN e −current Δ
N e)) to be respectively calculated (step S4 to S6). Then, in step S7, the sum of each term is calculated as θ isc = θ p (isc) + θ
It is calculated by i (isc) + θ D (isc) . In steps S8 to S11, the ignition timing θ isc serves as a guard to prevent the ignition timing from being excessively advanced or retarded. When it is determined in step S2 that the feedback condition is not satisfied, the process proceeds to step S12, and θisc is set to 0. Final step S1
3, by adding the theta and BASE and theta isc obtained above finding a final ignition timing theta ig.

次に、第4図にてISCバルブ7の制御を説明する(本
実施例ではISCバルブ7の通電時間のデューティを制御
することにより、バルブ開度をコントロールするものを
例にとって以下に説明する)。ステップ21においてアイ
ドル条件が成立している場合、ステップS22,S23へ進ん
で実回転数Neと目標回転数Neoとの差ΔNeに応じてIS
Cバルブ7の基本デューティ比(Do)を演算する。次
に、ステップS24で前回のθi(isc)(積分補正量)が所
定値範囲(±θCT)内にあるか否かを判定する。範囲外
の場合はステップS25〜S27へ進んでその値の正負に応じ
て補正項DcにΔDもしくは−ΔDをストアする。ま
た、ステップ24でθi(isc)が所定値範囲内にあるときに
はステップS28に進んでDcを0とする。また、ステップ
S29では前回の累積補正項D′cにDcを加算して今回の
累積補正項D′cを求める。そして、最終ステップS30で
はDoとD′cを加算して最終的なISCバルブ7のデュー
ティ比(D)を得る。なお、ステップS21でアイドルフ
ィードバック条件が成立していない場合には、なにもし
ないで終了する。
Next, control of the ISC valve 7 will be described with reference to FIG. 4 (this embodiment will be described below with an example in which the valve opening is controlled by controlling the duty of the energization time of the ISC valve 7). . If in step 21 the idle condition is established, in accordance with the difference .DELTA.N e in step S22, the program proceeds to S23 actual speed N e and the target rotational speed N eo IS
Calculating the basic duty ratio of the C valve 7 (D o). Next, in step S24, it is determined whether or not the previous θ i (isc) (integration correction amount) is within a predetermined value range (± θ CT ). If out of range storing ΔD or -ΔD correction term D c in accordance with the sign of the value the program proceeds to step S25 to S27. Further, in step 24 θ i (isc) is when the is within a predetermined value range is 0 to D c proceeds to step S28. Also step
In S29 the cumulative correction term D of the previous 'to c by adding D c current cumulative correction term D' seek or c. The final step S30 in by adding the D o and D 'c obtained duty ratio of the final ISC valve 7 (D). If the idle feedback condition is not satisfied in step S21, the process ends without doing anything.

ここで、目標回転数Neoはエアコン等の電気負荷のオ
ン、オフや機関冷却水温に応じて変化するものであるこ
とは勿論である。
Here, it goes without saying that the target rotation speed Neo changes in accordance with ON / OFF of an electric load such as an air conditioner and the temperature of the engine cooling water.

また、本実施例における点火時期と空気量との変化状
態を第5図において説明する。目標回転数が650rpmから
750rpmに急変した場合、点火時期制御が空気流量制御に
対して応答性が十分速いため、点火時期がAからBへと
実用点火時期範囲の上限値まで直ちに補正され、その
後、空気量がBからCへと補正されるが、機関回転数Ne
が目標回転数である750rpmに達した後も、点火時期の積
分項θi(isc)が制御値範囲内になるまで、第4図の
ステップS24〜S29により空気量を所定量ずつ増大し、こ
の空気量の増大に伴って、第3図のフローチャートによ
り点火時期が次第に遅角側に制御されて基本進角θBASE
に近づくことによって、最終的にはDまで移行する。
Further, a change state of the ignition timing and the air amount in this embodiment will be described with reference to FIG. Target rotation speed from 650 rpm
In the case of a sudden change to 750 rpm, since the ignition timing control has a sufficiently high response to the air flow rate control, the ignition timing is immediately corrected from A to B to the upper limit of the practical ignition timing range, and thereafter, the air amount is changed from B to B. C, but the engine speed Ne
Even after reaching the target rotation speed of 750 rpm, the air amount is increased by a predetermined amount in steps S24 to S29 in FIG. 4 until the integral term θi (isc) of the ignition timing falls within the control value range. with increasing air volume, the ignition timing by the flowchart of FIG. 3 is controlled to gradually retard side basic advance angle theta bASE
, And finally moves to D.

これによって、点火時期をその制御範囲の中心付近に
到らしめることができ、その後の点火時期制御の効果を
十分に引き出すことができる。
Thus, the ignition timing can be set near the center of the control range, and the effect of the subsequent ignition timing control can be sufficiently obtained.

〔発明の効果〕〔The invention's effect〕

以上述べたように本願発明においては、機関回転数の
目標値制御の達成を、吸入空気量と点火時期との適切な
組み合わせで良好に実現することができるという優れた
効果がある。
As described above, the present invention has an excellent effect that achievement of the target value control of the engine speed can be satisfactorily realized by an appropriate combination of the intake air amount and the ignition timing.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の特許請求の範囲対応図、第2図は本発
明装置の一実施例を示すブロック図、第3図及び第4図
は第2図図示装置の作動説明に供するフローチャート、
第5図は第2図図示装置における空気量−点火時期特性
図である。 1……クランクアングルセンサ、2……エンジン制御装
置、3……イグナイタ、7……ISCバルブ。
1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a block diagram showing an embodiment of the apparatus of the present invention, FIGS. 3 and 4 are flowcharts for explaining the operation of the apparatus shown in FIG.
FIG. 5 is an air amount-ignition timing characteristic diagram in the apparatus shown in FIG. 1 ... crank angle sensor, 2 ... engine control device, 3 ... igniter, 7 ... ISC valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の特定の運転条件で機関回転数を
一定値に保つために内燃機関に吸入される空気量と点火
時期とを制御する内燃機関用制御装置において、機関回
転数を検出する機関回転数検出手段と、この機関回転数
検出手段により検出した機関回転数と目標回転数との偏
差を少なくするように上記空気量を制御する空気量制御
手段と、前記機関回転数検出手段により検出した機関回
転数と目標回転数との偏差を少なくするように上記点火
時期を所定の補正範囲内で制御する点火時期制御手段
と、前記機関回転数が目標回転数に達した後も前記点火
時期の補正量の絶対値を減少させる方向に前記空気量を
調整する補助的空気量制御手段とを備え、 前記点火時期制御手段は前回の点火時期補正量に目標回
転数と検出回転数との偏差に応じた所定値を加算して今
回の点火時期補正量を演算する積分項算出手段を含み、
前記補助的空気量制御手段は前記積分項算出手段により
算出された点火時期補正量が前記所定の補正範囲より狭
い制御範囲外で、前記点火時期補正量が正の時、前記空
気量を増加し、前記点火時期補正量が負の時、前記空気
量を減少する空気量増減手段よりなる内燃機関用制御装
置。
An internal combustion engine control device for controlling the amount of air taken into the internal combustion engine and the ignition timing to maintain the engine speed at a constant value under specific operating conditions of the internal combustion engine. Engine speed detecting means, air amount control means for controlling the air amount so as to reduce the deviation between the engine speed detected by the engine speed detecting means and the target speed, and the engine speed detecting means Ignition timing control means for controlling the ignition timing within a predetermined correction range so as to reduce the deviation between the engine rotation speed and the target rotation speed detected by the above, and even after the engine rotation speed reaches the target rotation speed, Auxiliary air amount control means for adjusting the air amount in a direction to decrease the absolute value of the correction amount of the ignition timing, wherein the ignition timing control means adjusts the target rotation speed and the detected rotation speed to the previous ignition timing correction amount. According to the deviation of An integral term calculating means for calculating the current ignition timing correction amount by adding the predetermined value.
The auxiliary air amount control means increases the air amount when the ignition timing correction amount calculated by the integration term calculation means is outside a control range narrower than the predetermined correction range and the ignition timing correction amount is positive. A control device for an internal combustion engine comprising an air amount increasing / decreasing means for decreasing the air amount when the ignition timing correction amount is negative.
JP19843888A 1988-08-09 1988-08-09 Control device for internal combustion engine Expired - Lifetime JP2605371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19843888A JP2605371B2 (en) 1988-08-09 1988-08-09 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19843888A JP2605371B2 (en) 1988-08-09 1988-08-09 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0249954A JPH0249954A (en) 1990-02-20
JP2605371B2 true JP2605371B2 (en) 1997-04-30

Family

ID=16391085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19843888A Expired - Lifetime JP2605371B2 (en) 1988-08-09 1988-08-09 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2605371B2 (en)

Also Published As

Publication number Publication date
JPH0249954A (en) 1990-02-20

Similar Documents

Publication Publication Date Title
US5740045A (en) Predictive spark controller
US5495835A (en) Idling speed control method and apparatus for an internal combustion engine
US5081973A (en) Idling speed control system for engine
JPH11148402A (en) Deceleration timing control device for internal combustion engine
JPH0751926B2 (en) Ignition timing control device for internal combustion engine
JP2605371B2 (en) Control device for internal combustion engine
JPH0599045A (en) Rotational frequency controller for internal combustion engine
JP3855557B2 (en) Control device for internal combustion engine
JP2515494B2 (en) Internal combustion engine speed control method
JP2504020B2 (en) Ignition timing control method immediately after starting of internal combustion engine
JP2832264B2 (en) Engine ignition timing control device
JPS61169642A (en) Control device for number of idle revolutions of engine
JPH0629597B2 (en) Electric governor for internal combustion engine
JPH01190945A (en) Idle revolution speed controller for engine
JP3044408B2 (en) Engine control device
JP2660622B2 (en) Idle speed control device for internal combustion engine
JPH02259279A (en) Idle speed control device for engine
JPH0734195Y2 (en) Deceleration control device for internal combustion engine
JP2561832B2 (en) Engine idle speed controller
JP2730120B2 (en) Idle adjustment method for internal combustion engine
JPS63255568A (en) Idle revolution speed controller for engine
JPH0751927B2 (en) Ignition timing control device for internal combustion engine
JPH01187342A (en) Idling speed controller
JPH0751929B2 (en) Ignition timing control device for internal combustion engine
JPH10339200A (en) Idling speed controller of internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090213

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12