JP2601607B2 - 3D surface data input system - Google Patents

3D surface data input system

Info

Publication number
JP2601607B2
JP2601607B2 JP33937292A JP33937292A JP2601607B2 JP 2601607 B2 JP2601607 B2 JP 2601607B2 JP 33937292 A JP33937292 A JP 33937292A JP 33937292 A JP33937292 A JP 33937292A JP 2601607 B2 JP2601607 B2 JP 2601607B2
Authority
JP
Japan
Prior art keywords
boundary
shape
irradiation position
laser
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33937292A
Other languages
Japanese (ja)
Other versions
JPH06185993A (en
Inventor
保日児 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33937292A priority Critical patent/JP2601607B2/en
Publication of JPH06185993A publication Critical patent/JPH06185993A/en
Application granted granted Critical
Publication of JP2601607B2 publication Critical patent/JP2601607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、物体表面の形状を非接
触で計測する三次元表面データ入力システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional surface data input system for measuring the shape of the surface of an object in a non-contact manner.

【0002】[0002]

【従来の技術】従来のこの種のシステムは、物体表面の
形状計測をレーザ光などを計測物体表面に照射し、その
レーザ光の照射位置をとらえることで行うよう構成され
ていた。すなわち、非接触で物体表面の形状を計測する
には、通常、レーザ光や白色光など、様々な波長をもつ
光(もっぱら可視光)を使用し、これらの人工もしくは
自然の光を物体表面にあて、その反射を光センサによっ
て検出し、それから物体表面の形状を算出している。
2. Description of the Related Art Conventionally, this type of system is configured to measure the shape of an object surface by irradiating a laser beam or the like to the surface of the object to be measured and capturing the irradiation position of the laser beam. That is, in order to measure the shape of the surface of an object without contact, light having various wavelengths (exclusively visible light) such as laser light or white light is usually used, and these artificial or natural light is applied to the surface of the object. The reflection is detected by an optical sensor, and the shape of the object surface is calculated from the reflection.

【0003】このような従来の計測システムの例として
は、形状計測用の赤色レーザ光源およびTVカメラを備
えた回転式スキャナ(参考文献:末永、渡部「3D形状
と輝度(色)の同時計測が可能なスキャナとその顔面像
計測への応用」情報処理学会コンピュータビジョン研究
会資料、67−5、1990年7月19日)がある。こ
のシステムは、形状とカラーを同時に計測する能力を有
している。
As an example of such a conventional measuring system, a rotary scanner equipped with a red laser light source for shape measurement and a TV camera (reference: Suenaga, Watanabe, "Simultaneous measurement of 3D shape and luminance (color) Possible Scanner and Its Application to Facial Image Measurement ", Information Processing Society of Japan, Computer Vision Workshop, 67-5, July 19, 1990). This system has the ability to measure shape and color simultaneously.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の技術による三次元形状計測システムでは、レーザ光
等を計測物体表面に照射し、そのレーザ光等の照射位置
をとらえることで行うよう構成されているため、計測物
体の反射特性によってはレーザ光の位置をとらえること
ができず、形状計測データが求められないという欠点が
あった。上記参考文献のシステムについて述べれば、形
状計測ユニットで赤色レーザ光の反射位置をとらえる際
に、計測物体が黒い場合やレーザ光が乱反射されるよう
な領域では、形状計測データを求めることができない。
以下に、この点についてもう少し詳しく説明する。
However, the three-dimensional shape measuring system according to the above-mentioned conventional technique is configured to irradiate a laser beam or the like to the surface of a measurement object and to capture an irradiation position of the laser beam or the like. Therefore, there is a drawback that the position of the laser beam cannot be detected depending on the reflection characteristics of the measurement object, and the shape measurement data cannot be obtained. According to the system of the above-mentioned reference, when measuring the reflection position of the red laser light by the shape measurement unit, shape measurement data cannot be obtained in a case where the measurement object is black or in a region where the laser light is irregularly reflected.
Hereinafter, this point will be described in more detail.

【0005】本来、三次元形状計測は、物体の表面形状
を計測するが、使用する可視光が物体表面にあてられた
場合には、その表面の反射特性に従って、拡散反射、鏡
面反射または透過するので、その可視光の照射位置をT
Vカメラにてとらえることができない場合があり、物体
の本来の表面形状を正確に計測することは困難である。
このように、従来方式では、現実に存在するような様々
な反射特性をもつ物体の表面形状を正確に計測すること
はきわめて困難であった。
Originally, three-dimensional shape measurement measures the surface shape of an object, but when visible light to be used is applied to the surface of the object, diffuse reflection, specular reflection or transmission is performed according to the reflection characteristics of the surface. Therefore, the irradiation position of the visible light is T
In some cases, it cannot be detected by the V camera, and it is difficult to accurately measure the original surface shape of the object.
As described above, in the conventional method, it is extremely difficult to accurately measure the surface shape of an object having various reflection characteristics as actually exist.

【0006】例えば、上記参考文献のシステムを使用し
て人間の頭部を計測する場合、顔(例えば、額、目、
鼻、口、頬や耳のような皮膚)の領域はほぼ適切な三次
元形状が計測できるが、頭髪(とくに黒髪)のように、
可視光の反射が小さく、しかも拡散反射してしまう領域
では、レーザ光の照射位置をTVカメラがとらえること
ができず、正しい三次元形状計測ができないという欠点
があった。
For example, when measuring the head of a human using the system of the above reference, the face (eg, forehead, eyes,
The area of the nose, mouth, skin such as cheeks and ears) can measure almost appropriate three-dimensional shape, but like the hair (especially black hair),
In an area where the visible light is small and diffusely reflected, the TV camera cannot detect the irradiation position of the laser light, and there is a drawback that accurate three-dimensional shape measurement cannot be performed.

【0007】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、計測物体の様々な反射
特性に影響されることなく、光源と撮像手段を用いて非
接触でその計測物体の三次元形状を正しく計測できるよ
うにする三次元表面データ入力システムを提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to use a light source and imaging means in a non-contact manner without being affected by various reflection characteristics of a measurement object. An object of the present invention is to provide a three-dimensional surface data input system capable of correctly measuring a three-dimensional shape of a measurement object.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、物体表面の形状を計測するために光源
およびその光源の光の照射位置をとらえる撮像手段を備
えた三次元表面データ入力システムにおいて、光源から
物体に光を照射し、その照射位置を撮像手段によりとら
えて該物体の表面を計測して該物体表面の形状データを
求める第1の計測手段と、前記物体全体の映像を撮像手
段によりとらえて、該物体と背景の境界位置からも該物
体の形状データを求めるとともに、その境界位置の輝度
を記録する第2の計測手段と、前記記録された境界位置
の輝度の大きな領域では、光の照射位置から計測できる
前記第1の計測手段の形状データを選択し、該記録され
た境界位置の輝度の小さな領域では、該境界位置から計
測できる前記第2の計測手段の形状データを選択する選
択手段と、を具備する構成としている。
In order to achieve the above object, the present invention provides a three-dimensional surface data comprising a light source for measuring the shape of the surface of an object and an imaging means for capturing a light irradiation position of the light source. An input system for irradiating an object with light from a light source, capturing an irradiation position of the object by an imaging unit, measuring a surface of the object to obtain shape data of the surface of the object, and an image of the entire object. Is captured by the imaging means, the shape data of the object is obtained from the boundary position between the object and the background, and the second measuring means for recording the luminance of the boundary position is provided. In the area, the shape data of the first measuring means that can be measured from the light irradiation position is selected, and in the area where the recorded boundary position has low brightness, the second data that can be measured from the boundary position is selected. It has a configuration comprising a selection means for selecting the shape data of the measuring means.

【0009】[0009]

【作用】本発明の三次元表面データ入力システムでは、
計測する物体への光の照射位置を撮像手段によりとらえ
て三次元形状計測を行うほかに、計測する物体と背景の
境界を撮像手段によってとらえることで三次元形状計測
を行いつつ、その境界の輝度を記録し、その境界の輝度
によって光の照射位置により計測した形状データと境界
により計測した形状データの選択を行い、その境界の輝
度が小さいため光の照射位置による計測ができないよう
な反射特性の領域では、境界により計測した形状データ
を使用することで、光源と撮像手段を用いても、計測物
体の表面の反射特性によらずに、物体の形状を正確に計
測できるようにする。
According to the three-dimensional surface data input system of the present invention,
In addition to performing three-dimensional shape measurement by capturing the light irradiation position on the object to be measured by the imaging means, and performing three-dimensional shape measurement by capturing the boundary between the object to be measured and the background by the imaging means, the brightness of the boundary Is recorded, and the shape data measured by the light irradiation position and the shape data measured by the boundary are selected based on the brightness of the boundary, and the reflection characteristics that the measurement by the light irradiation position cannot be performed because the brightness of the boundary is small. In the region, the shape data measured by the boundary is used, so that the shape of the object can be accurately measured regardless of the reflection characteristics of the surface of the measurement object even when the light source and the imaging unit are used.

【0010】[0010]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の一実施例を示す構成図であ
る。図において、99は計測物体設置台、100は計測
物体、101は光源の例としてのレーザ光源、102は
レーザ分散レンズ、103は撮像手段の例としてのTV
カメラ、104はレーザ照射位置、105は計測物体と
背景の境界、106は境界検出画像、107はレーザ照
射位置検出画像、108は境界検出ユニット、108′
は境界検出画像106における計測物体と背景の境界、
109はレーザ照射位置検出ユニット、109′はレー
ザ照射位置検出画像107におけるレーザの照射位置、
110は境界三次元形状メモリ、111は表面輝度メモ
リ、112はレーザ三次元形状メモリ、113は形状デ
ータ選択ユニットを示している。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, reference numeral 99 denotes a measurement object mounting table, 100 denotes a measurement object, 101 denotes a laser light source as an example of a light source, 102 denotes a laser dispersion lens, and 103 denotes a TV as an example of an imaging unit.
104, a laser irradiation position; 105, a boundary between the measurement object and the background; 106, a boundary detection image; 107, a laser irradiation position detection image; 108, a boundary detection unit;
Is the boundary between the measurement object and the background in the boundary detection image 106,
109 is a laser irradiation position detection unit, 109 ′ is a laser irradiation position in the laser irradiation position detection image 107,
Reference numeral 110 denotes a boundary three-dimensional shape memory, 111 denotes a surface luminance memory, 112 denotes a laser three-dimensional shape memory, and 113 denotes a shape data selection unit.

【0012】本実施例では、計測物体100を設置台9
9に設置して、この設置台99を回転させることにより
三次元形状を計測する場合を例とする。このように設置
台99の上で回転される計測物体100に対し、レーザ
光源101からレーザ分散レンズ102を介してレーザ
光が照射され、レーザ照射位置104で例示されている
ようにレーザ光がその表面にあてられる。ここで、計測
物体100は、上半分がほとんどレーザ光を反射しない
様な表面特性を持ち、下半分がレーザ光の照射された位
置がわかる表面特性を持つものとする。TVカメラ10
3は、レーザ照射位置104を含む計測物体100の表
面映像をとらえる位置に配置されているものとする。
In the present embodiment, the measuring object 100 is
9 as an example, and a case in which a three-dimensional shape is measured by rotating the installation table 99. The measurement object 100 rotated on the mounting table 99 is irradiated with laser light from the laser light source 101 via the laser dispersion lens 102, and the laser light is irradiated as illustrated at the laser irradiation position 104. It is applied to the surface. Here, it is assumed that the measurement object 100 has surface characteristics such that the upper half hardly reflects laser light, and the lower half has surface characteristics that indicate the position irradiated with the laser light. TV camera 10
Numeral 3 is located at a position that captures a surface image of the measurement object 100 including the laser irradiation position 104.

【0013】TVカメラ103からの映像信号は、一方
では境界検出ユニット108に入力され、他方ではレー
ザ照射位置検出ユニット109に入力される。図では説
明のために、それぞれのユニット108,109が対象
としている検出領域を、境界検出画像106、レーザ照
射位置検出画像107として示している。境界検出画像
106では、108′のように計測物体と背景の境界の
画像中での位置が検出でき、物体の三次元形状を計測す
るために境界検出ユニット108にて使用される。この
境界検出ユニット108は、境界108′から検出され
た三次元形状を境界三次元形状メモリ110に蓄積し、
その境界108′での計測物体の輝度を表面輝度メモリ
111に蓄積する。レーザ照射位置検出画像107で
は、109′のように計測物体上のレーザの照射位置の
画像中での位置が検出でき、計測物体の三次元形状を計
測するためにレーザ照射位置検出ユニット109にて使
用される。このレーザ照射位置検出ユニット109は、
レーザ照射位置109′から検出された三次元形状をレ
ーザ三次元形状メモリ112に蓄積する。形状データ選
択ユニット113は、以上の各メモリ110,111,
112を参照可能に接続され、まず、表面輝度メモリ1
11を参照して境界位置の輝度の大小に基づいて、境界
三次元形状メモリ110の形状データとレーザ三次元形
状メモリ112の形状データのいずれかを選択し、計測
データとして出力する。
A video signal from the TV camera 103 is input to a boundary detection unit 108 on the one hand, and to a laser irradiation position detection unit 109 on the other hand. In the drawing, for the sake of explanation, the detection areas targeted by the respective units 108 and 109 are shown as a boundary detection image 106 and a laser irradiation position detection image 107. In the boundary detection image 106, the position in the image of the boundary between the measurement object and the background can be detected as indicated by 108 ', and is used by the boundary detection unit 108 to measure the three-dimensional shape of the object. The boundary detection unit 108 stores the three-dimensional shape detected from the boundary 108 'in the boundary three-dimensional shape memory 110,
The luminance of the measurement object at the boundary 108 'is stored in the surface luminance memory 111. In the laser irradiation position detection image 107, the position of the laser irradiation position on the measurement object in the image can be detected as indicated by 109 ', and the laser irradiation position detection unit 109 measures the three-dimensional shape of the measurement object. used. This laser irradiation position detection unit 109
The three-dimensional shape detected from the laser irradiation position 109 'is stored in the laser three-dimensional shape memory 112. The shape data selection unit 113 includes the above memories 110, 111,
112 so that the surface luminance memory 1
11, one of the shape data in the boundary three-dimensional shape memory 110 and the shape data in the laser three-dimensional shape memory 112 is selected based on the magnitude of the luminance at the boundary position, and output as measurement data.

【0014】以上のように構成した実施例の動作および
作用を次に述べる。
The operation and operation of the embodiment configured as described above will be described below.

【0015】計測物体設置台99の回転によって、計測
物体100の表面の三次元形状が、境界検出ユニット1
08とレーザ照射位置検出ユニット109のそれぞれで
並行して計測されて、各三次元形状データが境界三次元
形状メモリ110、レーザ三次元形状メモリ112に蓄
積されるとともに、表面の輝度が表面輝度メモリ111
に蓄積される。ここで、境界検出ユニット108にて検
出する三次元形状とレーザ照射位置検出ユニット109
にて検出する三次元形状の位置合わせは、レーザ光源1
01とTVカメラ103の設置位置により算出されて行
われる。形状データ選択ユニット113は、表面輝度メ
モリ111の内容に基づき、形状データを境界三次元形
状メモリ110から用いるべきか、レーザ三次元形状メ
モリ112から用いるべきか選択する。具体的には、境
界位置の輝度の大きな領域ではレーザ光の照射位置から
計測できるレーザ三次元形状メモリ112の形状データ
を用い、境界位置の輝度の小さな領域では、境界位置か
ら計測できる境界三次元形状メモリ110の形状データ
を用いる。即ち、形状データ選択ユニット113の出力
からは、計測物体100がレーザの照射位置をとらえら
れないような反射特性を持つ場合でも、計測物体100
の三次元表面データが得られることになる。
The three-dimensional shape of the surface of the measurement object 100 is changed by the rotation of the measurement object mounting table 99 so that the boundary detection unit 1
08 and the laser irradiation position detection unit 109 are measured in parallel, the respective three-dimensional shape data are stored in the boundary three-dimensional shape memory 110 and the laser three-dimensional shape memory 112, and the surface brightness is stored in the surface brightness memory. 111
Is accumulated in Here, the three-dimensional shape detected by the boundary detection unit 108 and the laser irradiation position detection unit 109
The alignment of the three-dimensional shape detected by the laser light source 1
01 and the installation position of the TV camera 103. The shape data selection unit 113 selects, based on the contents of the surface luminance memory 111, whether to use the shape data from the boundary three-dimensional shape memory 110 or the laser three-dimensional shape memory 112. More specifically, in the area where the luminance at the boundary position is large, the shape data of the laser three-dimensional shape memory 112 that can be measured from the irradiation position of the laser beam is used. The shape data of the shape memory 110 is used. That is, from the output of the shape data selection unit 113, even if the measurement object 100 has a reflection characteristic so that the laser irradiation position cannot be detected, the measurement object 100
Will be obtained.

【0016】以上によって、レーザの照射位置をとらえ
られないような反射特性をもつ物体の三次元表面データ
を正確に計測することができる。例えば、人物の頭髪の
ような場合、すなわち形状計測ユニット内のTVカメラ
によって、レーザ光の照射位置を検出できないような場
合にも、境界領域から求められた形状データにおいて、
その輝度が小さいことからその境界領域から求められた
形状を用いることで、形状を正確に計測することができ
る。また、物体の表面が全く反射しない場合や、物体上
に鏡面反射面が存在する場合にも同様に、表面カラーを
正確に計測することができる。
As described above, it is possible to accurately measure three-dimensional surface data of an object having reflection characteristics such that the irradiation position of the laser cannot be detected. For example, in the case of a person's hair, that is, when the irradiation position of the laser beam cannot be detected by the TV camera in the shape measurement unit, the shape data obtained from the boundary region is
Since the brightness is small, the shape can be accurately measured by using the shape obtained from the boundary region. Similarly, when the surface of the object does not reflect at all or when there is a specular reflection surface on the object, the surface color can be accurately measured.

【0017】なお、上記の実施例では設置台99を回転
させて三次元形状を測定する例を示したが、設置台99
が回転するのではなく、レーザ光源101、レーザ分散
レンズ102、TVカメラ103が回転して計測物体1
00のまわりを回転したり移動したりすることで三次元
形状を計測する場合にも適用できることは当然である。
このように本発明は、その主旨に沿って種々に応用さ
れ、種々の実施態様を取り得るものである。
In the above embodiment, an example in which the mounting table 99 is rotated to measure the three-dimensional shape is shown.
Does not rotate, the laser light source 101, the laser dispersion lens 102, and the TV camera 103 rotate to measure the object 1
Naturally, the present invention can also be applied to a case where a three-dimensional shape is measured by rotating or moving around 00.
As described above, the present invention can be variously applied according to the gist and can take various embodiments.

【0018】[0018]

【発明の効果】以上説明したように、本発明の三次元表
面データ入力システムによれば、光源から光を照射し、
その照射位置を撮像手段によりとらえて物体の表面を計
測することによって物体表面の形状データを求める際
に、光の照射位置のみならず、物体全体の映像を撮像手
段によってとらえて、物体と背景の境界の位置からも物
体の形状データを求めつつ、その境界位置の輝度を記録
し、境界位置の輝度の大きな領域では光の照射位置から
計測できる形状データを用い、境界位置の輝度の小さい
領域では、境界位置から計測できる形状データを用いる
ことで、光の照射位置をとらえられないような反射特性
をもつ物体の三次元表面データを正確に計測することが
できる。
As described above, according to the three-dimensional surface data input system of the present invention, light is emitted from a light source,
When obtaining the shape data of the object surface by measuring the surface of the object by capturing the irradiation position by the imaging means, not only the irradiation position of the light but also the image of the entire object is captured by the imaging means, and the image of the object and the background are captured. The brightness of the boundary position is recorded while obtaining the shape data of the object also from the boundary position, and in the region where the brightness of the boundary position is large, the shape data that can be measured from the light irradiation position is used, and in the region where the brightness of the boundary position is small, the brightness is used. By using shape data that can be measured from the boundary position, it is possible to accurately measure three-dimensional surface data of an object having a reflection characteristic that makes it impossible to capture the light irradiation position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

99…計測物体設置台 100…計測物体 101…レーザ光源 102…レーザ分散レンズ 103…TVカメラ 104…レーザ照射位置 105…計測物体と背景の境界 106…境界検出画像 107…レーザ照射位置検出画像 108…境界検出ユニット 108′…境界検出画像における計測物体と背景の境界 109…レーザ照射位置検出ユニット 109′…レーザ照射位置検出画像におけるレーザの照
射位置 110…境界三次元形状メモリ 111…表面輝度メモリ 112…レーザ三次元形状メモリ 113…形状データ選択ユニット
99 ... Measurement object setting table 100 ... Measurement object 101 ... Laser light source 102 ... Laser dispersion lens 103 ... TV camera 104 ... Laser irradiation position 105 ... Boundary between measurement object and background 106 ... Boundary detection image 107 ... Laser irradiation position detection image 108 ... Boundary detection unit 108 'Boundary between measurement object and background in boundary detection image 109 Laser irradiation position detection unit 109' Laser irradiation position in laser irradiation position detection image 110 Boundary three-dimensional shape memory 111 Surface luminance memory 112 Laser three-dimensional shape memory 113 ... shape data selection unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体表面の形状を計測するために光源お
よびその光源の光の照射位置をとらえる撮像手段を備え
た三次元表面データ入力システムにおいて、 光源から物体に光を照射し、その照射位置を撮像手段に
よりとらえて該物体の表面を計測して該物体表面の形状
データを求める第1の計測手段と、 前記物体全体の映像を撮像手段によりとらえて、該物体
と背景の境界位置からも該物体の形状データを求めると
ともに、その境界位置の輝度を記録する第2の計測手段
と、 前記記録された境界位置の輝度の大きな領域では、光の
照射位置から計測できる前記第1の計測手段の形状デー
タを選択し、該記録された境界位置の輝度の小さな領域
では、該境界位置から計測できる前記第2の計測手段の
形状データを選択する選択手段と、を具備することを特
徴とする三次元表面データ入力システム。
1. A three-dimensional surface data input system comprising a light source for measuring a shape of a surface of an object and an image pickup means for capturing an irradiation position of the light from the light source. Measuring the surface of the object by measuring the surface of the object to obtain shape data of the surface of the object, and capturing an image of the entire object by the imaging unit, and calculating the shape data of the object from the boundary position between the object and the background. A second measuring means for obtaining shape data of the object and recording the luminance at the boundary position; and a first measuring means capable of measuring from a light irradiation position in a region where the luminance at the recorded boundary position is large. And selecting means for selecting the shape data of the second measuring means which can be measured from the boundary position in an area where the luminance at the recorded boundary position is small. A three-dimensional surface data input system characterized in that:
JP33937292A 1992-12-21 1992-12-21 3D surface data input system Expired - Fee Related JP2601607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33937292A JP2601607B2 (en) 1992-12-21 1992-12-21 3D surface data input system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33937292A JP2601607B2 (en) 1992-12-21 1992-12-21 3D surface data input system

Publications (2)

Publication Number Publication Date
JPH06185993A JPH06185993A (en) 1994-07-08
JP2601607B2 true JP2601607B2 (en) 1997-04-16

Family

ID=18326842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33937292A Expired - Fee Related JP2601607B2 (en) 1992-12-21 1992-12-21 3D surface data input system

Country Status (1)

Country Link
JP (1) JP2601607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937235B2 (en) 2001-08-09 2005-08-30 Minolta Co., Ltd. Three-dimensional object surface shape modeling apparatus, method and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293687A (en) 1999-02-02 2000-10-20 Minolta Co Ltd Three-dimensional shape data processor and three- dimensional shape data processing method
JP2001183108A (en) 1999-12-27 2001-07-06 Minolta Co Ltd Distance measuring apparatus
JP4395689B2 (en) 2001-02-09 2010-01-13 コニカミノルタホールディングス株式会社 Image data processing method and modeling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937235B2 (en) 2001-08-09 2005-08-30 Minolta Co., Ltd. Three-dimensional object surface shape modeling apparatus, method and program

Also Published As

Publication number Publication date
JPH06185993A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP2881594B2 (en) Electro-optical imaging system and method for acquiring data for imaging of palms and heels of a person in an electro-optical imaging system
JP3954533B2 (en) Skin observation device
US5621529A (en) Apparatus and method for projecting laser pattern with reduced speckle noise
US7916910B2 (en) Image processing method and apparatus
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US6292576B1 (en) Method and apparatus for distinguishing a human finger from a reproduction of a fingerprint
JP5733032B2 (en) Image processing apparatus and method, image processing system, program, and recording medium
WO2014125831A1 (en) Electronic mirror device
CN107451561A (en) Iris recognition light compensation method and device
JP2002078683A (en) Device and method for inspecting surface
JPH11242745A (en) Method for measuring and processing facial image
JP2001523827A (en) Three-dimensional imaging by triangulation using dual-wavelength light
US11080511B2 (en) Contactless rolled fingerprints
JP2008167853A (en) Test sheet, object diagnostic apparatus and method, and program
JP2601607B2 (en) 3D surface data input system
TW499811B (en) Method and system for calibrating a look-down linear array scanner utilizing a folded optical path
JP6898150B2 (en) Pore detection method and pore detection device
JPH05322526A (en) Three dimensional form measuring apparatus
JP3612983B2 (en) Three-dimensional shape measuring apparatus and image reading apparatus
JP2733170B2 (en) 3D shape measuring device
WO2001065466A2 (en) Method and apparatus for detecting a color change of a live finger
JP3013690B2 (en) Method and apparatus for measuring three-dimensional curved surface shape
JPH11148806A (en) Reader for three-dimensional body and its susrface image
JPH11125508A (en) Measuring method for cross-sectional shape
JPS61241612A (en) Three-dimensional form measuring system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees