JP2600847B2 - Analysis of elements in resin - Google Patents

Analysis of elements in resin

Info

Publication number
JP2600847B2
JP2600847B2 JP63238387A JP23838788A JP2600847B2 JP 2600847 B2 JP2600847 B2 JP 2600847B2 JP 63238387 A JP63238387 A JP 63238387A JP 23838788 A JP23838788 A JP 23838788A JP 2600847 B2 JP2600847 B2 JP 2600847B2
Authority
JP
Japan
Prior art keywords
resin
water
present
elements
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63238387A
Other languages
Japanese (ja)
Other versions
JPH0287062A (en
Inventor
雅之 西村
正道 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63238387A priority Critical patent/JP2600847B2/en
Publication of JPH0287062A publication Critical patent/JPH0287062A/en
Application granted granted Critical
Publication of JP2600847B2 publication Critical patent/JP2600847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、樹脂中の元素の分析法に関する。さらに
詳しくは、樹脂中に存在しうる非C.H.O系の元素を感度
良く検出でき、ことに微量元素の定量に適した分析法に
関する。
The present invention relates to a method for analyzing elements in a resin. More specifically, the present invention relates to an analytical method that can detect non-CHO-based elements that can be present in a resin with high sensitivity, and is particularly suitable for quantitative determination of trace elements.

(ロ)従来の技術 各種合成樹脂中には、その合成過程において塩素、臭
素、ヨウ素等のハロゲン元素が不可避的に混入する場合
が多い。例えば、エポキシ樹脂中には、その原料たる未
反応エピクロルヒドリン由来の塩素が含有され易くその
量はエポキシ樹脂の品質に悪影響を妨ぼす。また、これ
以外にも、合成過程で用いられるもしくは混在するイオ
ウ化合物や窒素化合物が最終製品たる樹脂中に混入して
その品質を低下させる場合もある。
(B) Conventional technology In many synthetic resins, halogen elements such as chlorine, bromine and iodine are inevitably mixed during the synthesis process. For example, the epoxy resin tends to contain chlorine derived from unreacted epichlorohydrin as a raw material, and the amount thereof adversely affects the quality of the epoxy resin. In addition, in some cases, sulfur compounds or nitrogen compounds used or mixed in the synthesis process may be mixed into the resin as the final product to lower the quality.

一方、スルホネート基やアンモニウム基を化学修飾基
(例えば、イオン交換基)として含有する合成樹脂にお
いては、その化学修飾基の量はその樹脂の機能、能力に
大きく影響する。
On the other hand, in a synthetic resin containing a sulfonate group or an ammonium group as a chemically modifying group (for example, an ion exchange group), the amount of the chemically modifying group greatly affects the function and performance of the resin.

従って、各種合成樹脂中に存在するハロゲン、イオ
ウ、窒素等の非炭素、非水素、非酸素元素(以下、非C.
H.O系元素)の分析は、合成樹脂製品やその樹脂原料の
品質管理上重要である。
Therefore, non-carbon, non-hydrogen, non-oxygen elements such as halogen, sulfur, and nitrogen present in various synthetic resins (hereinafter, non-C.
Analysis of HO-based elements) is important for quality control of synthetic resin products and their resin raw materials.

この点に関し、従来から合成樹脂中の非C.H.O系元素
を定量する試みがなされており、その一つとして樹脂試
料をアルカリ分解(例えば、1N KOHのエタノール/ジオ
キサン中で107℃下30分還流)し、次いで硝酸銀滴定に
よって、塩素を定量する方法(アルカリ分解法)が知ら
れている。
In this regard, attempts have been made to quantify non-CHO-based elements in synthetic resins. One example is alkali decomposition of a resin sample (for example, refluxing in 1N KOH ethanol / dioxane at 107 ° C. for 30 minutes). Then, a method for determining chlorine by silver nitrate titration (alkali decomposition method) is known.

一方、従来から各種有機化合物中のハロゲンやイオウ
を定性、定量分析する方法として、白金コイルと白金バ
スケットを内蔵したフラスコを用い、この白金バスケッ
ト内に濾紙(着火材)で包んだ有機物試料を入れた状態
で、フラスコ内に酸素ガスを供給し白金コイルに通電し
て試料を濾紙と共に燃焼させ(酸素フラスコ燃焼法)、
次いでフラスコ内に水を散布して燃焼生成物を吸収さ
せ、この吸収水を用いて滴定法によりハロゲンやイオウ
を分析する方法が知られている。
On the other hand, conventionally, as a method of qualitatively and quantitatively analyzing halogen and sulfur in various organic compounds, a flask containing a platinum coil and a platinum basket is used, and an organic material sample wrapped with filter paper (ignition material) is placed in the platinum basket. In this state, oxygen gas is supplied into the flask, and a current is supplied to the platinum coil to burn the sample together with the filter paper (oxygen flask combustion method).
Next, a method is known in which water is sprayed into a flask to absorb combustion products, and halogen and sulfur are analyzed by titration using the absorbed water.

(ハ)発明が解決しようとする課題 しかしながら、前者のアルカリ分解法においては、分
析操作が煩雑で長時間を要し、しかも検出感度が低く微
量の含有塩素を定量する方法として適するものではなか
った。
(C) Problems to be Solved by the Invention However, in the former alkali decomposition method, the analysis operation is complicated and requires a long time, and the detection sensitivity is low and it is not suitable as a method for quantifying a small amount of contained chlorine. .

一方、後者の酸素フラスコ燃焼法を利用した方法にお
いては、比較的短時間で分析を行えるが、分離分析では
ないためにその定量感度に限界があり、微量定量が困難
であると共に、非C.H.O系元素の同時多種分析ができな
い不都合があった。
On the other hand, in the latter method using the oxygen flask combustion method, analysis can be performed in a relatively short time, but since it is not a separation analysis, its quantitative sensitivity is limited, and it is difficult to quantify trace amounts, and it is also difficult to use non-CHO system. There was an inconvenience that simultaneous multi-species analysis of elements was not possible.

この発明は、かかる状況下なされたものであり、こと
に、樹脂中の非C.H.O系元素を高感度かつ迅速に検出定
量ができる分析法を提供しようとするものである。
The present invention has been made under such circumstances, and it is an object of the present invention to provide an analysis method capable of detecting and quantifying non-CHO elements in a resin with high sensitivity and speed.

上記観点から、本発明者らは、上記酸素フラスコ燃焼
法で得られる吸収水をいわゆるイオンクロマトグラフィ
で分離する方法について検討を行った。イオンクロマト
グラフィには種々の方式があり、その代表的な方式とし
て塩基性移動相とサプレッサを用いて電気伝導度検出器
で検出を行ういわゆるサプレッサ型イオンクロマトグラ
フィがある。しかし、上記酸素フラスコ燃焼法からの吸
収水をサプレッサ型イオンクロマトグラフィに付した場
合には、試料や着火材中の炭素分の燃焼に伴って生じて
吸収水中に存在する炭酸イオン(CO3 2-)の妨害によ
り、目的の非C.H.O系元素を高感度に定性、定量するこ
とが困難であった。
In view of the above, the present inventors have studied a method for separating absorbed water obtained by the oxygen flask combustion method by so-called ion chromatography. There are various types of ion chromatography, and a typical one is a so-called suppressor-type ion chromatography in which detection is performed by an electric conductivity detector using a basic mobile phase and a suppressor. However, when the absorbed water from the above oxygen flask combustion method is subjected to suppressor-type ion chromatography, carbonate ions (CO 3 2- ), It was difficult to qualitatively and quantitatively determine the target non-CHO element with high sensitivity.

本発明者らはさらに研究、検討を加えた結果、pH5.5
以下の酸性移動相を用いるノンサプレッサ型のイオンク
ロマトグラフィを利用することにより、非C.H.O系の元
素を高感度に定量分析できる事実を見出し、この発明に
到達した。
The present inventors have further studied and studied and found that pH 5.5.
The present inventors have found that non-CHO-based elements can be quantitatively analyzed with high sensitivity by using non-suppressor type ion chromatography using the following acidic mobile phase, and have reached the present invention.

(ニ)課題を解決するための手段 かくしてこの発明によれば、樹脂試料を酸素フラスコ
燃焼法に付して燃焼させ、この燃焼生成物を水又は酸化
剤含有水に吸収させた後、この吸収水を、pH5.5以下の
酸性移動相を用いかつ検出器として電気伝導度検出器を
用いたイオンクロマトグラフィに付し、検出される無機
アニオンピークに基づいて上記樹脂試料中に存在しうる
非C.H.O系元素を分析することを特徴とする樹脂中の元
素の分析法が提供される。
(D) Means for Solving the Problems Thus, according to the present invention, the resin sample is subjected to the oxygen flask combustion method and burned, and the combustion product is absorbed in water or water containing an oxidizing agent. Water is subjected to ion chromatography using an acidic mobile phase having a pH of 5.5 or less and an electric conductivity detector as a detector, and non-CHO that may be present in the resin sample based on the detected inorganic anion peak. A method for analyzing an element in a resin, characterized by analyzing a system element, is provided.

この発明の対象となる樹脂試料としては、各種合成樹
脂、天然樹脂が挙げられ、合成樹脂としては熱可塑性、
熱硬化性樹脂を問わない。また、いわゆるプレポリマ
ー、オリゴマー等の樹脂中間体も適用可能である。とく
に最近注目を集めているIC成形用樹脂材料や電子機器の
キャパシタ用樹脂材料中の不純物元素の分析にも好適に
適用できる。
Various synthetic resins and natural resins may be mentioned as the resin samples that are the object of the present invention.
The thermosetting resin does not matter. Further, resin intermediates such as so-called prepolymers and oligomers are also applicable. In particular, the present invention can be suitably applied to the analysis of impurity elements in a resin material for IC molding and a resin material for a capacitor of electronic equipment, which have recently attracted attention.

この発明においては、まず樹脂試料が酸素フラスコ燃
焼法で燃焼される。酸素フラスコ燃焼法は、前述のごと
く、酸素ガス供給下のフラスコ等の容器内で、濾紙と共
に試料を白金バスケット内で迅速に燃焼させる方法であ
る。ここで燃焼させる樹脂試料の量は、とくに限定され
ないが、迅速な分析及び精度の点で通常0.01〜0.1g程度
とするのが適している。
In the present invention, first, a resin sample is burned by an oxygen flask combustion method. As described above, the oxygen flask combustion method is a method of rapidly burning a sample together with filter paper in a platinum basket in a container such as a flask supplied with oxygen gas. Here, the amount of the resin sample to be burned is not particularly limited, but it is usually suitable to be about 0.01 to 0.1 g in terms of quick analysis and accuracy.

上記燃焼の後、容器内に水又は酸化剤含有水が散布さ
れ燃焼生成物の吸収水が得られる。ここで、樹脂中に存
在しうるハロゲンはそのままイオンとして、イオウや窒
素は対応する酸素酸の形態で吸収される。通常、酸化剤
含有水を用いるのが、上記酸素酸をより安定な形態、す
なわちSO4 2-やNO3 -として確実に吸収できる点で好まし
い。この酸化剤としては、後段のクロマトグラフィにお
いて妨害成分とならないものが適しており、過酸化水素
を用いるのが好ましい。
After the above-mentioned combustion, water or oxidizing agent-containing water is sprayed into the container to obtain water absorbed by the combustion products. Here, halogen which may be present in the resin is absorbed as it is as ions, and sulfur and nitrogen are absorbed in the form of the corresponding oxyacid. Usually, to use an oxidizing agent containing water, a more stable form of the oxygen acid, namely SO 4 2-or NO 3 - preferable in that it can reliably absorbed as. As the oxidizing agent, a material which does not become a hindrance component in the subsequent chromatography is suitable, and it is preferable to use hydrogen peroxide.

次いで上記吸収水はイオンクロマトグラフィに付され
る。このイオンクロマトグラフィとしては、電気伝導度
検出器を用いたノンプレッサ型のイオンクロマトグラフ
ィが適用され、その移動相としては、pH5.5以下の酸性
水が用いられる。ここでpH5.5を越える移動相を用いる
と、吸収水中のCO3 2-イオンによる検出妨害が生じるた
め適さない。通常、検出感度の点で、pH3〜5.5の酸性水
を用いるのが好ましい。かかる酸性水としては、さら
に、ベースラインとして適する電気伝導度を有しかつ無
機イオンを含有しないものを用いるのが適している。か
かる酸性水としては、カルボン酸類、例えばフタル酸、
トリメリット酸のような芳香族カルボン酸類の水溶液を
用いるのが好ましく、pHの調整はアミン類を用いるのが
好ましい。また、クロマトグラフィ用のカラムとして
は、陰イオン交換樹脂カラムが用いられ、この陰イオン
交換樹脂としては、アンモニウム基を有する水不溶性樹
脂が好ましく、その一例として、第4級アンモニウム基
を結合したポリアクリル酸エステル系樹脂やポリスチレ
ン−ジビニルベンゼン共重合体樹脂等が挙げられる。
The absorbed water is then subjected to ion chromatography. As this ion chromatography, non-pressor type ion chromatography using an electric conductivity detector is applied, and as a mobile phase, acidic water having a pH of 5.5 or less is used. The use of a mobile phase having a pH of more than 5.5 is not suitable because CO 3 2- ions in the absorption water interfere with detection. Usually, it is preferable to use acidic water having a pH of 3 to 5.5 in terms of detection sensitivity. As such acidic water, it is further suitable to use water having electric conductivity suitable for a baseline and containing no inorganic ions. Examples of such acidic water include carboxylic acids such as phthalic acid,
It is preferable to use an aqueous solution of an aromatic carboxylic acid such as trimellitic acid, and it is preferable to use an amine to adjust the pH. An anion exchange resin column is used as a column for chromatography. As the anion exchange resin, a water-insoluble resin having an ammonium group is preferable. Acid ester resins and polystyrene-divinylbenzene copolymer resins are exemplified.

(ホ)作用 酸素フラスコ燃焼法による燃焼により、樹脂中に存在
する構成元素は、原子化又は酸化され、それにより樹脂
中のハロゲンはイオンとして、イオウや窒素は対応する
酸素酸イオンとして吸収水中に吸収される。次いでこの
吸収水を前記イオンクロマトグラフィに付すことにより
電気伝導度検出基によって上記ハロゲンイオンや酸素酸
イオンに対応する無機アニオンピークが検出される。そ
して、上記イオンクロマトグラフィの条件においては吸
収水中に多量に存在しうる溶解炭酸ガスのイオン化に起
因する上記無機イオンピークの検出の妨害が著しく抑制
される。
(E) Action By combustion by the oxygen flask combustion method, the constituent elements present in the resin are atomized or oxidized, whereby the halogen in the resin is converted into ions, and the sulfur and nitrogen are converted into the corresponding oxyacid ions in the absorbed water. Absorbed. Then, the absorbed water is subjected to the ion chromatography to detect an inorganic anion peak corresponding to the halogen ion or the oxyacid ion by an electric conductivity detecting group. Then, under the conditions of the ion chromatography, the interference with the detection of the inorganic ion peak due to the ionization of dissolved carbon dioxide gas which may be present in a large amount in the absorption water is significantly suppressed.

従って、上記無機イオンピークが明確に検出でき、こ
の保持時間やピーク強度に基づいて上記樹脂試料中に存
在する非C.H.O系元素の定性や定量を正確かつ高感度
に、しかも迅速に行うことが可能となる。
Therefore, the above-mentioned inorganic ion peak can be clearly detected, and the qualitative and quantitative determination of non-CHO-based elements present in the above-mentioned resin sample can be performed accurately, with high sensitivity, and quickly based on the retention time and the peak intensity. Becomes

(ヘ)実施例 市販の未硬化エポキシ樹脂(油化シエルエポキシ
(株)製;商品名 エピコート;ビスフェノールA型エ
ポキシ樹脂)を樹脂試料として用い、この樹脂試料中の
含有塩素の分析を行った。
(F) Example A commercially available uncured epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd .; trade name: Epicoat; bisphenol A type epoxy resin) was used as a resin sample, and the chlorine content in this resin sample was analyzed.

(酸素フラスコ燃焼法) 上記未硬化エポキシ樹脂を、直径20mm(直火用片付)
ろ紙上に10mg精秤し、次いでろ紙を折曲して試料を包み
込んだ。一方、燃焼法フラスコとして、内部に白金バス
ケット、白金導線及び加熱用白金コイルを有し、酸素ガ
ス導入管(バルブ付)及び過酸化水素水(H2O20.05%)
供給用メスシリンダ(20ml;活栓付)を付設してなるFHO
燃焼フラスコ(I−A型;(株)第一理工から入手;内
容量300ml)を用意し、このフラスコ内の白金バスケッ
ト内に前記試料包含ろ紙をセットしその着火用片を白金
コイルに挿入した。この状態で、酸素ガス導入管を通じ
て酸素ガスボンベから酸素を供給してフラスコ内部を酸
素置換した。次いで白金導線を通じて白金コイルに通電
(ON)することによりろ紙に直火させ試料をろ紙と共に
完全燃焼させた。次いでメスシリンダの活栓を開けるこ
とによって、過酸化水素水をフラスコ内の陰圧利用して
散布させることにより、フラスコ内の燃焼生成物を吸収
させた。これにより、約40mlの吸収水が得られた。
(Oxygen flask combustion method) The above uncured epoxy resin is 20mm in diameter (with open flame)
10 mg was precisely weighed on a filter paper, and then the filter paper was folded to wrap the sample. On the other hand, as a combustion flask, there is a platinum basket, platinum conductor and platinum coil for heating inside, an oxygen gas inlet tube (with valve) and hydrogen peroxide solution (H 2 O 2 0.05%)
FHO equipped with a supply measuring cylinder (20 ml; with stopcock)
A combustion flask (Type IA; obtained from Daiichi Riko Co., Ltd .; content: 300 ml) was prepared, the sample-containing filter paper was set in a platinum basket in the flask, and the ignition piece was inserted into a platinum coil. . In this state, oxygen was supplied from an oxygen gas cylinder through an oxygen gas introduction pipe to replace the inside of the flask with oxygen. Then, the platinum coil was energized (ON) through a platinum wire to directly fire the filter paper, and the sample was completely burned together with the filter paper. Next, by opening the stopcock of the measuring cylinder, the hydrogen peroxide solution was sprayed using the negative pressure in the flask to absorb the combustion products in the flask. This resulted in about 40 ml of absorbed water.

なお、上記工程の所要時間は約5分であった。 The time required for the above process was about 5 minutes.

(イオンクロマトグラフィ) 上記で得られた吸収水を用い、高速液体クロマトグラ
フ装置を用いて下記の条件でイオンクロマトグラフィを
行った。
(Ion chromatography) Using the absorbed water obtained above, ion chromatography was performed using a high performance liquid chromatograph under the following conditions.

カラム:Shim−pack IC−AI(第4級アンモニウム基含有
ポリアクリレート充填)((株)島津製作所製,内径4.
6mm,長さ10cm) 移動相:(pH及びイオン強度調整) 2.5mM フタル酸 2.4mM トリス(ヒドロキシメチル)アミノメタン pH4.0 カラム温度:40℃ 流 量:1.5ml/min 検出器:CDD−6A(電気伝導度検出器;(株)島津製作所
製) ポラリティ:+ レスポンス:標準 感 度:3.2μS/cm 試料注入量:20μ この結果を第1図に示す。図中は塩素イオンピーク、
2はウォータディップ、3はカチオンに由来するピーク
を各々示すものである。
Column: Shim-pack IC-AI (filled with quaternary ammonium group-containing polyacrylate) (manufactured by Shimadzu Corporation, inner diameter 4.
Mobile phase: (pH and ionic strength adjustment) 2.5 mM Phthalic acid 2.4 mM Tris (hydroxymethyl) aminomethane pH 4.0 Column temperature: 40 ° C Flow rate: 1.5 ml / min Detector: CDD-6A (Electrical conductivity detector; manufactured by Shimadzu Corporation) Polarity: + Response: Standard Sensitivity: 3.2 μS / cm Sample injection volume: 20 μ The results are shown in FIG. In the figure, the chlorine ion peak,
2 indicates a water dip, and 3 indicates a peak derived from a cation.

このように、塩素イオンについての明確なピークが認
められ、このピークのプロフィールから、未反応エピク
ロルヒドリン由来の樹脂中の含有塩素が他の成分による
妨害を受けることなく高感度に検出されることが判明し
た。
In this way, a clear peak for chloride ions was observed, and the profile of this peak revealed that chlorine contained in the resin derived from unreacted epichlorohydrin was detected with high sensitivity without being disturbed by other components. did.

なお、種々の濃度の塩化ナトリウム水溶液を標準液と
して上記イオンクロマトグラフィに付して塩素イオンの
検量線を作成し、この検量線に基づいて上記エポキシ樹
脂試料中の塩素イオン量を定量したところ、0.470重量
%であることが判明した。そしてピーク強度から、塩素
含有0.005重量%程度もしくはそれ以下の定量が可能で
あることも判明した。
A calibration curve of chloride ions was prepared by performing the above-described ion chromatography using sodium chloride aqueous solutions of various concentrations as standard solutions, and the amount of chloride ions in the epoxy resin sample was quantified based on this calibration curve. % By weight. From the peak intensity, it was also found that the determination of about 0.005% by weight or less of chlorine content was possible.

なお、上記と同様な条件下で樹脂中のイオウ及び窒素
も対応するSO4 2-イオン及びNO3 -イオンのピークに基づ
いて検出、定量することができる。従って、例えばエポ
キシ樹脂においては使用するアミン系硬化剤例えば、ジ
エチレントリアミン等の樹脂中の含有量や残存量の分析
を効率良く行うことができる。
The above and SO 4 2-ions and NO 3 also the corresponding sulfur and nitrogen in the resin under similar conditions - detection based on the peak of the ion can be quantitated. Therefore, for example, in the case of an epoxy resin, the content of the amine-based curing agent used, for example, diethylenetriamine and the like, and the residual amount in the resin can be efficiently analyzed.

(ト)発明の効果 この発明の分析法によれば、樹脂中に存在するC.H.O
系元素を、従来法に比して高感度かつ迅速に検出するこ
とができる。そして燃焼法を利用した方法であるため、
分析対象の樹脂の物理的形態、化学的性質を問わず、画
一的な分析を行うことができる。従って、種々の合成樹
脂中に存在する非C.H.O系元素を、その存在形態を問わ
ず高精度に定性、定量することができ、各種樹脂製品や
その原料の品質管理上、その有用性は極めて大なるもの
である。
(G) Effects of the Invention According to the analysis method of the present invention, the CHO present in the resin
The system element can be detected with higher sensitivity and faster than the conventional method. And because it is a method that uses the combustion method,
Uniform analysis can be performed regardless of the physical form and chemical properties of the resin to be analyzed. Therefore, non-CHO elements present in various synthetic resins can be qualitatively and quantitatively determined with high accuracy regardless of their form, and their usefulness in the quality control of various resin products and their raw materials is extremely large. It becomes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の方法によって得られたイオンクロ
マトグラムを示すグラフ図である。
FIG. 1 is a graph showing an ion chromatogram obtained by the method of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】樹脂試料を酸素フラスコ燃焼法に付して燃
焼させ、この燃焼生成物を水又は酸化剤含有水に吸収さ
せた後、この吸収水を、pH5.5以下の酸性移動相を用い
かつ検出器として電気伝導度検出器を用いたイオンクロ
マトグラフィに付し、検出される無機アニオンピークに
基づいて上記樹脂試料中に存在しうる非C.H.O系元素を
分析することを特徴とする樹脂中の元素の分析法。
Claims: 1. A resin sample is burned by an oxygen flask combustion method, and the combustion product is absorbed in water or water containing an oxidizing agent. Used and subjected to ion chromatography using an electric conductivity detector as a detector, and analyzing non-CHO-based elements that may be present in the resin sample based on the detected inorganic anion peak. Element analysis method.
JP63238387A 1988-09-22 1988-09-22 Analysis of elements in resin Expired - Lifetime JP2600847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238387A JP2600847B2 (en) 1988-09-22 1988-09-22 Analysis of elements in resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238387A JP2600847B2 (en) 1988-09-22 1988-09-22 Analysis of elements in resin

Publications (2)

Publication Number Publication Date
JPH0287062A JPH0287062A (en) 1990-03-27
JP2600847B2 true JP2600847B2 (en) 1997-04-16

Family

ID=17029439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238387A Expired - Lifetime JP2600847B2 (en) 1988-09-22 1988-09-22 Analysis of elements in resin

Country Status (1)

Country Link
JP (1) JP2600847B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752187B2 (en) * 1989-06-08 1995-06-05 栗田工業株式会社 Organic substance analyzer
JPH06308111A (en) * 1993-04-27 1994-11-04 Shimadzu Corp Meter for total organic halogen
US5477697A (en) * 1994-09-02 1995-12-26 Forma Scientific, Inc. Apparatus for limiting compressor discharge temperatures
JP5169006B2 (en) * 2007-04-25 2013-03-27 株式会社三菱化学アナリテック Analysis equipment

Also Published As

Publication number Publication date
JPH0287062A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
Okada et al. Nonsuppressor ion chromatography of inorganic and organic anions with potassium hydroxide as eluent
Duan et al. Rapid determination of nine haloacetic acids in water using ultra-performance liquid chromatography-tandem mass spectrometry in multiple reactions monitoring mode
Ohzeki et al. Enrichment of trace amounts of copper as chelate compounds using a finely divided ion-exchange resin
Abdolmohammad-Zadeh et al. Sol–gel processed pyridinium ionic liquid-modified silica as a new sorbent for separation and quantification of iron in water samples
Pockard et al. The determination of traces of formaldehyde
JP2600847B2 (en) Analysis of elements in resin
Wada et al. A study of a reaction system for organic acid analysis using a pH indicator as post-column reagent
Manzoori∗ et al. Preconcentration and spectrophotometric determination of chromium (VI) and total chromium in drinking water by the sorption of chromium diphenylcarbazone with surfactant coated alumina
de Peña et al. Flame atomic absorption spectrometric determination of cadmium in biological samples using a preconcentration flow system with an activated carbon column and dithizone as a chelating agent
CN108845063B (en) Detection reagent combination and detection method of aquatic product additive
Tokahoglu et al. Determination of some trace elements in high-purity aluminium, zinc and commercial steel by AAS after preconcentration on amberlite XAD-1180 resin
Huclová et al. Determination of salbutamol using on-line solid-phase extraction and sequential injection analysis. Comparison of chemiluminescence and fluorescence detection
Rokushika et al. Anion chromatography of carboxylic acids and keto acids using a hollow-fibre suppressor
Alonso et al. Automatic on-line column preconcentration system for determination of cadmium by electrothermal atomic absorption spectrometryElectronic Supplementary Information available. See http://www. rsc. org/suppdata/ja/b0/b008677k
Kartsova et al. Determination of catecholamines by capillary electrophoresis and reversed-phase high-performance liquid chromatography
AU2021105035A4 (en) High performance liquid chromatography tandem mass spectrometry method for determining quaternary ammonium salt in food packaging paper on the basis of dispersive solid phase extraction
Tengku Azmi et al. Determination of vanadium (IV) and vanadium (V) in Benfield samples by IEC with conductivity detection
Isozaki et al. A sensitive atomic absorption spectrometric method for copper employing the direct introduction of chelating resin into a carbon tube atomizer.
Larsson et al. Determination of C 1− C 4 fatty acids as p-bromophenacyl esters using glass-capillary gas chromatography and electron-capture detection
Zhou et al. Direct evaluation of unsymmetrical dimethylhydrazine with wide concentration range in wastewater by ion chromatography
Yang et al. Determination of total chromium in seawater with isotope dilution sector field ICP-MS following on-line matrix separation
De Peña et al. Flow injection system for cadmium preconcentration on poly (octadecyl diitaconate)(PDI-18) and atomic absorption spectrometry detection
RU2395806C2 (en) Method for simultaneous determination of content of fluorine, chlorine, bromine, iodine, sulphur and phosphorus in organic compounds
Cai et al. Bromate assay in water by inductively coupled plasma mass spectrometry combined with solid-phase extraction cartridges
Sun et al. On‐line solid‐phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of trace tributyltin and triphenyltin in water samples