JP2600602B2 - Wireless communication device - Google Patents
Wireless communication deviceInfo
- Publication number
- JP2600602B2 JP2600602B2 JP6985594A JP6985594A JP2600602B2 JP 2600602 B2 JP2600602 B2 JP 2600602B2 JP 6985594 A JP6985594 A JP 6985594A JP 6985594 A JP6985594 A JP 6985594A JP 2600602 B2 JP2600602 B2 JP 2600602B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- transmission
- frequency
- circuit
- local oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Transceivers (AREA)
- Small-Scale Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は無線通信装置に関し、特
にCSMA(Carrier SenseMultip
le Access)方式によるワイアレスLAN(L
ocalArea Network)に用いる双方向の
無線通信装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio communication apparatus, and more particularly to a CSMA (Carrier Sense Multipipe).
le Access) wireless LAN (L
OcalArea Network).
【0002】[0002]
【従来の技術】最近の無線通信技術の発達は目覚まし
く、従来、伝送媒体として専らケーブルを用いて行われ
ていた高速データ通信のような分野においても、ワイア
レスLANのようにマイクロ波帯などの高い周波数帯を
利用することにより無線化が進みつつある。2. Description of the Related Art The recent development of wireless communication technology has been remarkable, and even in fields such as high-speed data communication, which has conventionally been performed exclusively using a cable as a transmission medium, a high-frequency band such as a wireless LAN has a high frequency band such as a wireless LAN. The use of frequency bands is making wireless.
【0003】LANとは、複数の独立したコンピュータ
を含む装置を相互に接続するネットワークであり、一つ
のビル内や構内など利用者みずからが管轄する限られた
地域に閉じて存在する。このLANの一例としては、
「サーバ」となる比較的高性能のコンピュータと「クラ
イアント」となる複数のパーソナルコンピュータをデー
タ通信回線で結び、データベースの共有化や各パーソナ
ルコンピュータ間のデーターの授受を行うものがある。
この種のLANはパーソナルコンピュータの高性能化に
促されて普及しつつあり、「コンピュータのダウンサイ
ジング化」という言葉によってもよく知られている。[0003] A LAN is a network that connects devices including a plurality of independent computers to each other, and exists in a limited area such as a building or a premises which is controlled by the user. As an example of this LAN,
There is a computer in which a relatively high-performance computer serving as a "server" and a plurality of personal computers serving as a "client" are connected by a data communication line to share a database and exchange data between the personal computers.
This type of LAN is becoming widespread due to the enhancement of the performance of personal computers, and is well known by the term "downsizing of computers".
【0004】ワイヤレスLANとは、このLANにおけ
るデータ通信を無線によって行うものであり、データ伝
送用のケーブル設置が不用であるため、導入時の工事が
簡単であり、また導入後の増設やレイアウト変更が極め
て容易であるという利点がある。[0004] A wireless LAN is used for wirelessly performing data communication in this LAN, and does not require installation of a cable for data transmission. Therefore, construction at the time of introduction is simple, and expansion or layout change after introduction is performed. Is very easy.
【0005】また端末となるパーソナルコンピュータの
小型化が進展すれば、移動しながらでもデータベースの
共有化やデータ処理が可能となり、今後の発展が大いに
期待されている。そのためには、コンピュータの小型化
と共に、データ通信用の無線送受信機の小型化と低価格
化が必要なのはいうまでもない。[0005] Further, as personal computers, which are terminals, become smaller, it becomes possible to share databases and process data while moving, and future development is greatly expected. To this end, it goes without saying that the size of the wireless transceiver for data communication and the price thereof need to be reduced as well as the size of the computer.
【0006】このワイアレスLANの無線データ通信の
方式には幾種類かの方式が提案されているが、その中で
は2〜3GHz帯などのマイクロ波帯を用い、スペクト
ラム拡散技術、特に周波数ホッピング方式を利用する方
式が有望視されている。Several types of wireless LAN wireless data communication systems have been proposed. Among them, a microwave band such as a 2-3 GHz band is used, and a spread spectrum technology, particularly a frequency hopping system, is used. The method used is promising.
【0007】従来のこの種の無線通信装置の例として
は、米国のIEEE802.11委員会で方式規格を検
討中の、2.4〜2.5GHz帯の100MHzの帯域
において帯域1MHzの100チャネルが設定され、周
波数ホッピング方式を用い、データをFSK変調して送
受信を行う伝送レート1Mbps程度のシステムがあ
る。[0007] As an example of this type of conventional radio communication apparatus, 100 channels of 1 MHz in the 2.4 MHz to 2.5 GHz band of 100 MHz, which is being studied by the IEEE 802.11 committee in the United States, are being studied. There is a system with a transmission rate of about 1 Mbps, which is set, performs FSK modulation of data using a frequency hopping method, and transmits and receives data.
【0008】通信多重化方式はCSMA方式を用いる。
このCSMA方式は、サーバ/クライアントとなる各々
の端末局は送信開始に先立ち、受信状態で使用しようと
する周波数チャネルの電波すなわちキャリアの他の端末
局からの発射の有無を調べるキャリアセンス動作を行
い、上記キャリア発射が無いことの確認後直ちにその周
波数チャネルで送信を開始することにより、複数の端末
局同志の送信の衝突を防止する方式である。The communication multiplexing system uses the CSMA system.
In this CSMA system, each terminal station serving as a server / client performs a carrier sense operation prior to the start of transmission to check the presence / absence of radio waves of a frequency channel to be used in a reception state, that is, whether or not a carrier is emitted from another terminal station. This is a method for preventing transmission collision between a plurality of terminal stations by starting transmission on the frequency channel immediately after confirming that there is no carrier emission.
【0009】この種のワイヤレスLANシステムの端末
局に用いる従来の無線通信装置をブロックで示す図2を
参照すると、この従来の無線通信装置は、送受信に共用
するアンテナや基準発信源などを含む共用部分である送
受信共用部100と、供給を受けた受信信号の増幅復調
を行い受信データDRを出力する受信部200と、送信
データDTの供給を受け変調・周波数変換・増幅を行い
所定の送信周波数の送信信号を出力する送信部300と
を備える。Referring to FIG. 2 which shows a block diagram of a conventional wireless communication device used for a terminal station of this kind of wireless LAN system, the conventional wireless communication device includes a shared antenna including an antenna shared for transmission and reception and a reference transmission source. A transmission / reception sharing unit 100, a receiving unit 200 that amplifies and demodulates the supplied reception signal and outputs reception data DR, and receives a supply of transmission data DT to perform modulation, frequency conversion, amplification, and a predetermined transmission frequency. And a transmission unit 300 that outputs the transmission signal of
【0010】送受信共用部100は、送受信用に共用す
るアンテナ1と、アンテナ1に接続され送受信チャネル
対応の所定の周波数帯域2.4〜2.5GHzの信号の
み通過させるバンドパスフィルタ(BPF)2と、この
BPF2をキャリアセンス時および受信時には受信部2
00に送信時には送信部300にそれぞれ接続するアン
テナ切換回路(ASW)3と、受信部200および送信
部300のそれぞれの局部発振用のシンセサイザ30,
29,33に基準周波数信号FRを供給する温度補償型
の水晶発振回路を含む発振回路31と、第1局部発振信
号LO1を供給する電圧制御発振回路(VCO)28
と、基準信号FRの供給を受けVCO21を制御するシ
ンセサイザ30とを備える。The transmission / reception sharing unit 100 includes an antenna 1 shared for transmission / reception, and a band pass filter (BPF) 2 connected to the antenna 1 and passing only signals in a predetermined frequency band of 2.4 to 2.5 GHz corresponding to transmission / reception channels. And the receiving unit 2 at the time of carrier sense and reception.
At the time of transmission at 00, the antenna switching circuit (ASW) 3 connected to the transmission unit 300 and the local oscillation synthesizers 30 of the reception unit 200 and the transmission unit 300, respectively.
An oscillation circuit 31 including a temperature-compensated crystal oscillation circuit for supplying a reference frequency signal FR to 29 and 33, and a voltage controlled oscillation circuit (VCO) 28 for supplying a first local oscillation signal LO1
And a synthesizer 30 that receives the supply of the reference signal FR and controls the VCO 21.
【0011】受信部200はダブルスーパヘテロダイン
方式であり、ASW3から供給された受信信号Rを低雑
音増幅するRFアンプ4と、第1局部発振信号LO1の
供給を受けRFアンプ4の出力信号を第1IF信号に変
換するミキサ5と、第1IF信号を増幅するIFアンプ
7,9と、所定の帯域特性を有しイメージ信号などのス
プリアス信号を除去するバンドパスフィルタであるSA
Wフィルタ8と、第2局部発振信号LO2の供給を受け
IFアンプ9の出力信号を第2IF信号に変換するミキ
サ11と、第2IF信号を増幅するIFアンプ13,1
6と、所定の帯域特性を有しイメージ信号などのスプリ
アス信号を除去する第2IF用のバンドパスフィルタで
あるSAWフィルタ14と、IFアンプ16の出力信号
の振幅制限を行うリミッタ17と、リミッタ17の出力
信号を復調し復調信号を出力する復調回路18と、復調
信号の波形整形を行い受信データDRを出力するコンパ
レータ19と、IFアンプ16の出力Sの供給を受けこ
の出力Sの振幅に対応する受信信号強度を表す信号RS
を出力する受信信号強度表示回路(RSSI)20と、
第2局部発振信号LO2を供給する電圧制御発振回路
(VCO)21と、基準信号FRの供給を受けVCO2
1を制御するシンセサイザ29とを備える。The receiving section 200 is of a double superheterodyne type, and receives an RF amplifier 4 for amplifying the received signal R supplied from the ASW 3 with low noise and a first local oscillation signal LO1 and outputs the output signal of the RF amplifier 4 to the first amplifier. A mixer 5 for converting into a 1IF signal, IF amplifiers 7 and 9 for amplifying the first IF signal, and a SA which is a bandpass filter having predetermined band characteristics and removing spurious signals such as image signals.
W filter 8, mixer 11 receiving supply of second local oscillation signal LO2, converting output signal of IF amplifier 9 into second IF signal, and IF amplifiers 13, 1 for amplifying second IF signal
6, a SAW filter 14 having a predetermined band characteristic and removing a spurious signal such as an image signal, which is a band-pass filter for a second IF, a limiter 17 for limiting an amplitude of an output signal of the IF amplifier 16, and a limiter 17 A demodulation circuit 18 that demodulates the output signal of the above and outputs a demodulated signal, a comparator 19 that shapes the waveform of the demodulated signal and outputs the received data DR, and receives the output S of the IF amplifier 16 and responds to the amplitude of this output S. RS representing the received signal strength
A received signal strength display circuit (RSSI) 20 for outputting
A voltage controlled oscillator (VCO) 21 for supplying a second local oscillation signal LO2;
And a synthesizer 29 for controlling the control unit 1.
【0012】送信部300は、送信データDTの供給に
応答してFSK変調された送信IF信号IFTを供給す
るVCO32と、基準信号FRの供給を受けVCO32
を制御するシンセサイザ33と、送信IF信号IFTと
第1ローカル信号との供給を受け送信IF信号IFTを
所定周波数の変換信号TSに変換するミキサ25と、変
換信号TSのイメージ信号などのスプリアス信号を除去
するBPF26と、変換信号TSを電力増幅し送信信号
Tを出力するRFパワーアンプ27とを備える。The transmitting unit 300 supplies a transmission IF signal IFT modulated by FSK in response to the supply of the transmission data DT, and receives a supply of the reference signal FR from the VCO 32.
, A mixer 25 that receives the supply of the transmission IF signal IFT and the first local signal and converts the transmission IF signal IFT into a converted signal TS of a predetermined frequency, and a spurious signal such as an image signal of the converted signal TS. It comprises a BPF 26 for removing and an RF power amplifier 27 for power-amplifying the converted signal TS and outputting a transmission signal T.
【0013】ここで説明の便宜上、主な信号周波数につ
いて一般的な値として、各チャネルの受信/送信周波数
FRT2.4〜2.5GHz、チャネル間隔1MHz、
第1IF周波数および送信IF周波数400MHz、第
2IF周波数40MHz、第1局部発振周波数LO1
(FRT−400MHz)=2.0〜2.4GHz、第
2局部発振周波数LO2を360MHz、基準周波数F
R10MHzとそれぞれ設定する。Here, for convenience of explanation, as the general values of the main signal frequencies, the reception / transmission frequency FRT of each channel is 2.4 to 2.5 GHz, the channel interval is 1 MHz,
First IF frequency and transmission IF frequency 400 MHz, second IF frequency 40 MHz, first local oscillation frequency LO1
(FRT-400 MHz) = 2.0 to 2.4 GHz, the second local oscillation frequency LO2 is 360 MHz, and the reference frequency F
R10 MHz is set for each.
【0014】図2を参照して動作について説明すると、
まず、受信状態においては、アンテナ1で受信した受信
信号はBPF2で希望周波数帯域2.4〜2.5GHz
の所定チャネル対応の周波数の受信信号Rが抽出されA
SW3を経由してRFアンプ4に供給され増幅される。
RFアンプ4の出力信号はミキサ5に供給され、ミキサ
5はこの増幅受信信号とVCO28からの2.0〜2.
4GHz帯の設定チャネル対応の周波数の第1局部発振
信号LO1との供給を受けて400MHzの第1IF信
号I1を生成する。例えば、上記設定チャネル周波数が
2.45GHzとすると信号LO1の周波数は2.05
GHzとなる。信号I1はIFアンプ7で増幅され、S
AWフィルタ8でスプリアス信号が除去され、IFアン
プ9でさらに増幅され信号I1Aとしてミキサ11に供
給される。ミキサ11はこの信号I1AとVCO21か
らの周波数360MHzの第2局部発振信号LO2との
供給を受けて40MHzの第2IF信号I2を生成す
る。信号I2はIFアンプ13で増幅され、SAWフィ
ルタ14でスプリアス信号が除去され、IFアンプ16
でさらに増幅され信号I2Aとしてリミッタ17に、信
号SとしてRSSI20にそれぞれ供給される。リミッ
タ17は信号I2Aの供給を受けこの信号I2Aの所定
の振幅制限を行い生成した信号ILを復調回路18に供
給する。復調回路18は信号ILを復調して復調信号を
コンパレータ19に供給する。コンパレータ19はこの
復調信号を整形してディジタルデータ信号である受信デ
ータDRを生成出力する。一方、RSSI20は信号S
の供給に応答して信号Sの振幅すなわち受信信号強度対
応の信号RSを出力し、外部のコントロール系に供給す
る。また、この信号RSは、設定チャネルにおける他の
端末局の送信の有無のチェックにも使われる。The operation will be described with reference to FIG.
First, in a reception state, a reception signal received by the antenna 1 is a desired frequency band of 2.4 to 2.5 GHz by the BPF 2.
A received signal R having a frequency corresponding to the predetermined channel is extracted and A
The signal is supplied to the RF amplifier 4 via the SW 3 and amplified.
The output signal of the RF amplifier 4 is supplied to a mixer 5, which mixes the amplified received signal with the 2.0 to 2 ..
The first IF signal I1 of 400 MHz is generated by receiving the supply of the first local oscillation signal LO1 having a frequency corresponding to the set channel in the 4 GHz band. For example, if the set channel frequency is 2.45 GHz, the frequency of the signal LO1 is 2.05
GHz. The signal I1 is amplified by the IF amplifier 7 and
The spurious signal is removed by the AW filter 8, further amplified by the IF amplifier 9, and supplied to the mixer 11 as a signal I1A. The mixer 11 receives the signal I1A and the second local oscillation signal LO2 having a frequency of 360 MHz from the VCO 21 and generates a second IF signal I2 of 40 MHz. The signal I2 is amplified by the IF amplifier 13, the spurious signal is removed by the SAW filter 14, and the
Are supplied to the limiter 17 as the signal I2A and to the RSSI 20 as the signal S. The limiter 17 receives the supply of the signal I2A, limits the amplitude of the signal I2A to a predetermined value, and supplies the generated signal IL to the demodulation circuit 18. The demodulation circuit 18 demodulates the signal IL and supplies the demodulated signal to the comparator 19. The comparator 19 shapes the demodulated signal to generate and output reception data DR which is a digital data signal. On the other hand, the RSSI 20
, A signal RS corresponding to the amplitude of the signal S, that is, the received signal strength, is supplied to an external control system. This signal RS is also used for checking whether or not another terminal station transmits on the set channel.
【0015】周波数シンセサイザ30は第1局部発振信
号LO1を設定チャネルに対応した分周比で分周し約1
0MHzの分周信号を生成するプリスケーラである分周
回路と、この分周信号と基準周波数信号FRとの位相比
較を行いこの位相誤差に応答してVCO28に対する制
御信号を発生する位相同期ループ(PLL)回路とを含
む。周波数シンセサイザ30は発振回路31から10M
Hzの基準周波数信号FRの供給を受け、これを基準周
波数として位相同期動作を行い設定チャネル対応の周波
数の第1局部発振信号LO1を発生するようVCO28
を制御する。The frequency synthesizer 30 divides the first local oscillation signal LO1 by a frequency division ratio corresponding to the set channel, and
A frequency dividing circuit, which is a prescaler for generating a frequency-divided signal of 0 MHz, compares a phase of the frequency-divided signal with a reference frequency signal FR, and generates a control signal for the VCO 28 in response to the phase error. ) Circuit. The frequency synthesizer 30 is 10M from the oscillation circuit 31.
The VCO 28 receives the supply of the reference frequency signal FR of 1 Hz, performs a phase synchronization operation using the reference frequency signal FR as the reference frequency, and generates the first local oscillation signal LO1 having a frequency corresponding to the set channel.
Control.
【0016】次に、送信状態においては、送信データD
TがVCO32に供給される。このVCO32の発振周
波数は送信IF信号IFTの周波数400MHzであ
り、基準周波数信号FRの周波数10MHzを基準とす
る周波数シンセサイザ33の制御信号PTにより制御さ
れている。VCO32は送信データDTの供給に応答し
てこの制御信号PT対応の発振周波数を送信データDT
の符号値に対応する周波数シフトを行い、FSK変調さ
れた送信IF信号IFTを生成する。この送信IF信号
はミキサ25に供給される。ミキサ25は送信IF信号
IFTと第1局部発振信号LO1との供給に応答して設
定チャネル周波数の変換信号TSに変換し、スプリアス
信号除去用のBPF26を経由してRFパワーアンプ2
7に供給する。RFパワーアンプ27は、変換信号TS
を電力増幅し、送信信号Tを生成し、ASW3およびB
PF2を経由してアンテナ1に供給し、この送信信号T
を電波として送出する。Next, in the transmission state, the transmission data D
T is supplied to the VCO 32. The oscillation frequency of this VCO 32 is 400 MHz of the transmission IF signal IFT, and is controlled by the control signal PT of the frequency synthesizer 33 based on the frequency of 10 MHz of the reference frequency signal FR. The VCO 32 responds to the supply of the transmission data DT by changing the oscillation frequency corresponding to the control signal PT to the transmission data DT.
To generate a FSK-modulated transmission IF signal IFT. This transmission IF signal is supplied to the mixer 25. The mixer 25 converts the transmission IF signal IFT and the first local oscillation signal LO1 into the converted signal TS of the set channel frequency in response to the supply of the transmission IF signal IFT and the first local oscillation signal LO1, and the RF power amplifier 2 via the BPF 26 for removing the spurious signal.
7 The RF power amplifier 27 converts the converted signal TS
Is amplified, a transmission signal T is generated, and ASW3 and B
The signal is supplied to the antenna 1 via the PF 2 and the transmission signal T
Is transmitted as radio waves.
【0017】使用するチャネルの選択は、送受信共用部
100の周波数シンセサイザ30により、VCO28の
発振周波数すなわち第1局部発振信号LO1の周波数を
設定することにより行われる。上述のように、各々の端
末局は送信開始に先立つキャリアセンス状態で選択した
チャネルが空いていること、すなわち他の端末局がその
チャネルを使って送信していないことを確認する必要が
ある。そのため、上記チャネルに対してまず受信状態と
し、RSSI20の出力信号RCを参照して空チャネル
であることの確認後、間髪を入れずに送信状態に設定し
なければならない。この時間は短かい程他の端末局との
衝突防止のため良いのは当然であるが、実際のシステム
では、受信状態から送信立上げまでの所要時間として、
下記の根拠から10μs以下が要求される。Selection of the channel to be used is performed by setting the oscillation frequency of the VCO 28, that is, the frequency of the first local oscillation signal LO1 by the frequency synthesizer 30 of the transmission / reception sharing unit 100. As described above, each terminal station needs to confirm that the channel selected in the carrier sense state prior to the start of transmission is free, that is, that no other terminal stations are transmitting using that channel. For this reason, the channel must be set to the reception state first, and after confirming that the channel is an empty channel by referring to the output signal RC of the RSSI 20, the transmission state must be set without a break. It is natural that the shorter this time is, the better to prevent collision with other terminal stations, but in an actual system, as the time required from the reception state to the transmission start-up,
10 μs or less is required based on the following grounds.
【0018】上述のように、この周波数ホッピング方式
のワイヤレスLANでの上記所要時間の要求値は検討中
なるも、同程度のデータ伝送レートの直接拡散方式のワ
イヤレスLANでの上記要求値は、1994年1月に発
行された米国のIEEE802.11委員会の文書第I
EEE802.11−93/232rlにて10μs以
下と規定されている。As described above, while the required value of the required time in the frequency hopping type wireless LAN is under study, the required value in the direct spread type wireless LAN having the same data transmission rate is 1994. Document I of the IEEE 802.11 Committee of the United States, issued in January 1998
It is specified as 10 μs or less in EEE802.11-93 / 232rl.
【0019】一方、PLL回路を用いた周波数シンセサ
イザ30,29,および33およびそれぞれ対応のVC
O28,21,および32との組合せによるチャネル設
定対応の周波数の安定化所要時間すなわちロック時間
は、以下に示す根拠により設定されるこの種の一般的な
PLLの内部基準周波数およびループフィルタの時定数
対応の応答時間から、少なくとも数十μsとなる。On the other hand, frequency synthesizers 30, 29 and 33 using a PLL circuit and corresponding VCs
The time required for stabilizing the frequency corresponding to the channel setting in combination with O28, 21, and 32, that is, the lock time, is the internal reference frequency of this kind of general PLL and the time constant of the loop filter which are set based on the following grounds. From the corresponding response time, it is at least several tens of μs.
【0020】すなわち、上記PLL回路のロック時間
は、基準周波数信号FRから分周して生成される内部基
準周波数が高い程、またループフィルタの遮断周波数が
高い程短くなる。この例では、2.4〜2.5GHzを
1MHz間隔でチャネル設定するため、プリスケーラは
64/65分周の2モジュラス型を用いる必要があり、
クロック周波数として現在の技術の実用上の上限である
50MHzを用いても、上記内部基準周波数は500K
Hzが上限である。また、上記ループフィルタの遮断周
波数はキャリア・ノイズ比を考慮して最適値を設定する
必要がある。That is, the lock time of the PLL circuit becomes shorter as the internal reference frequency generated by dividing the frequency of the reference frequency signal FR becomes higher, and as the cutoff frequency of the loop filter becomes higher. In this example, since the channel is set at 2.4 MHz to 2.5 GHz at 1 MHz intervals, the prescaler needs to use a 2-modulus type of 64/65 frequency division.
Even if 50 MHz, which is the practical upper limit of the present technology, is used as the clock frequency, the internal reference frequency is 500K.
Hz is the upper limit. Further, the cutoff frequency of the loop filter needs to be set to an optimum value in consideration of the carrier-to-noise ratio.
【0021】このため、受信状態での空チャネルの確認
から、そのチャネルでの送信を高速で立上げるために
は、上述のように、第1局部発振信号LO1の周波数を
送受信で同一、したがって受信第1IF信号IF1と送
信IF信号IFTとの周波数を同一の400MHzとす
るとともに、送信部300のVCO32は受信状態のと
きでも常時発振させておく必要がある。Therefore, in order to quickly start transmission on that channel from the confirmation of an empty channel in the reception state, as described above, the frequency of the first local oscillation signal LO1 is the same for transmission and reception, and therefore the reception is performed. The frequency of the first IF signal IF1 and the frequency of the transmission IF signal IFT must be the same 400 MHz, and the VCO 32 of the transmission unit 300 must always oscillate even in the reception state.
【0022】[0022]
【発明が解決しようとする課題】上述した従来の無線通
信装置は、受信第1中間周波数と送信中間周波数とが同
一であるとともに送信に先立つキャリアセンス状態にお
ける高速の送信立上げの準備のため送信中間周波信号供
給用のVCOは常時発振状態となっているので、上記V
COからの放射漏洩信号の受信部への干渉に起因する受
信信号強度表示回路の誤動作により空の選択チャネルが
使用済みとみなされ送信開始が不可能になることを防止
するため、送信部と受信部相互間を厳重に遮蔽分離する
構造とする必要があり、例えばクレジットカードサイズ
まで装置外形を小型・薄型化することは極めて困難であ
るという欠点があった。In the above-mentioned conventional radio communication apparatus, the transmission first frequency and the transmission intermediate frequency are the same and the transmission is performed in preparation for the high-speed transmission startup in the carrier sense state prior to the transmission. Since the VCO for supplying the intermediate frequency signal is always in oscillation,
In order to prevent that an empty selected channel is regarded as being used and transmission cannot be started due to malfunction of the received signal strength display circuit due to interference of the radiation leakage signal from the CO to the receiving unit, the transmitting unit and the receiving unit It is necessary to have a structure in which the parts are strictly shielded and separated from each other, and there is a disadvantage that it is extremely difficult to reduce the size and thickness of the apparatus to a credit card size, for example.
【0023】[0023]
【課題を解決するための手段】本発明の無線通信装置
は、受信信号と予め定めた周波数帯域を分割した送受信
周波数が同一の複数の通信チャネルの任意の選択した1
つのチャネルである選択チャネル周波数対応の第1の周
波数の第1の局部発振信号との供給を受け第2の周波数
の第1中間周波信号を生成する第1の受信用ミキサと、
前記第1中間周波信号と第3の周波数の第2の局部発振
信号との供給を受け第4の周波数の第2中間周波信号を
生成する第2の受信用ミキサと、前記第1の局部発振信
号を発生する第1の局部発振回路と、前記第2の局部発
振信号を発生する第2の局部発振回路と、前記第1およ
び第2の局部発振回路に供給する基準周波数信号を発生
する基準周波数信号発振回路と、送信データによる所定
の変調を受けた前記第2の周波数の送信中間周波信号と
前記第1の局部発振信号との供給を受け前記選択チャネ
ル周波数の送信信号を生成する第1の送信用ミキサとを
備え、前記選択チャネルが他局の送信信号が存在しない
空チャネルであることを送信開始前に確認して自局の送
信信号を発射するキャリアセンス多重方式の無線通信装
置において、非直線素子を用い送受信切替信号の送信対
応の第1のレベルで動作状態に制御され前記基準周波数
信号を予め定めた逓倍数で逓倍し前記第4の周波数の送
信局部発振信号を発生する逓倍回路と、前記第3の周波
数で発振し送信時に前記送信データの供給を受け前記変
調を行い送信変調信号を生成する変調発振回路と、前記
送受信切替信号の前記第1のレベルで動作状態に制御さ
れ前記送信局部発振信号と前記送信変調信号との供給を
受け前記送信中間周波信号を生成する第2の送信用ミキ
サとを備えて構成されている。According to the present invention, there is provided a radio communication apparatus comprising: an arbitrary selected one of a plurality of communication channels having the same transmission / reception frequency obtained by dividing a reception signal and a predetermined frequency band;
A first receiving mixer that receives a supply of a first local oscillation signal of a first frequency corresponding to a selected channel frequency that is one of the two channels and generates a first intermediate frequency signal of a second frequency;
A second receiving mixer for receiving a supply of the first intermediate frequency signal and a second local oscillation signal of a third frequency to generate a second intermediate frequency signal of a fourth frequency, and the first local oscillation; A first local oscillation circuit for generating a signal, a second local oscillation circuit for generating the second local oscillation signal, and a reference for generating a reference frequency signal to be supplied to the first and second local oscillation circuits. A first signal generating circuit for generating a transmission signal of the selected channel frequency by receiving a supply of a transmission intermediate frequency signal of the second frequency and a first local oscillation signal which have been subjected to predetermined modulation by transmission data; A transmission mixer of the carrier sense multiplexing system for transmitting the transmission signal of the own station by confirming before the start of transmission that the selected channel is an empty channel where no transmission signal of another station exists. , Indecisive A multiplying circuit that is controlled to an operation state at a first level corresponding to transmission of a transmission / reception switching signal using an element, multiplies the reference frequency signal by a predetermined multiplication factor, and generates a transmission local oscillation signal of the fourth frequency, A modulation oscillation circuit which oscillates at the third frequency and receives the supply of the transmission data at the time of transmission and performs the modulation to generate a transmission modulation signal; and a transmission / reception control device controlled to an operation state at the first level of the transmission / reception switching signal. A second transmission mixer configured to receive the local oscillation signal and the transmission modulation signal and generate the transmission intermediate frequency signal.
【0024】[0024]
【実施例】次に、本発明の実施例を図2と共通の構成要
素には共通の参照文字/数字を付して同様にブロックで
示す図1を参照すると、この図に示す本実施例の無線通
信装置は、それぞれ従来の送受信共用部100と、受信
部200と、送信部300とに代り、それぞれ従来と同
様の機能を有する送受信共用部100Aと、受信部20
0Aと、送信部300Aとを備える。FIG. 1 is a block diagram showing an embodiment of the present invention, in which components common to those in FIG. 2 are denoted by common reference characters / numerals, and FIG. The radio communication device of the present embodiment is different from the conventional transmission / reception sharing unit 100, the reception unit 200, and the transmission unit 300, respectively, in that
0A and a transmission unit 300A.
【0025】送受信共用部100Aは、従来と共通のア
ンテナ1と、バンドパスフィルタ(BPF)2と、アン
テナ切換回路(ASW)3と、発振回路31と、電圧制
御発振回路(VCO)28と、シンセサイザ30とに加
えて、非直線回路素子を用い送受信切替信号CTの送信
状態対応のレベルのとき動作し基準周波数信号FRを4
逓倍し40MHzの送信局部発振信号LOTを生成する
逓倍回路24を備える。The transmission / reception sharing unit 100A includes an antenna 1, a band-pass filter (BPF) 2, an antenna switching circuit (ASW) 3, an oscillation circuit 31, a voltage-controlled oscillation circuit (VCO) 28, In addition to the synthesizer 30, a non-linear circuit element is used to operate when the transmission / reception switching signal CT is at a level corresponding to the transmission state, and the reference frequency signal FR is set to 4
A multiplying circuit 24 for multiplying and generating a transmission local oscillation signal LOT of 40 MHz is provided.
【0026】受信部200Aは、従来と共通のミキサ
5,11と、IFアンプ7,9,13,16と、SAW
フィルタ8,14と、リミッタ17と、復調回路18
と、コンパレータ19と、受信信号強度表示回路(RS
SI)20と、シンセサイザ29とに加えて、VCO2
1の代りに送信時に供給を受けた送信データDTのの符
号値に対応する周波数シフトを行いFSK変調された送
信局部発振信号/第2局部発振信号L2T/LO2を生
成するVCO21Aと、送信局部発振信号/第2局部発
振信号L2T/LO2を受信・送信それぞれの状態に対
応して受信RX側および送信TX側に切替るスイッチ回
路(SW)22と、送受切替信号CTの送信状態対応の
レベルのとき動作し供給されたスプリアス信号除去され
たフィルタド送信局部発振信号LOXとSW22からの
第1局部発振信号LO1とから送信IF信号IFTを生
成するミキサ23と、ミキサ5とIFアンプ7との間に
挿入され信号IFTと第1IF信号IF1とを切替てI
Fアンプ8に供給するSW6と、IFアンプ9とミキサ
11との間に挿入されIFアンプ9の出力信号をミキサ
11とミキサ25のいずれか一方に切替て供給するSW
10と、ミキサ11とIFアンプ13との間に挿入され
ミキサ11からの第2IF信号と送信局部発振信号LO
Tとを切替て一方をIFアンプ13に供給するSW12
と、SAWフィルタ14とIFアンプ16との間に挿入
されSAWフィルタ14の出力信号をIFアンプ16と
ミキサ23のいずれか一方に切替て供給するSW15と
を備える。これらSW22,6,10,12,および1
5の各々は送受信切替信号CTの受信および送信状態に
それぞれ対応するL,Hののレベルに応答して切替動作
を行う。The receiving unit 200A includes mixers 5 and 11, which are common with the conventional ones, IF amplifiers 7, 9, 13, and 16,
Filters 8, 14, a limiter 17, and a demodulation circuit 18
, A comparator 19, and a received signal strength display circuit (RS
SI) 20, a synthesizer 29, and a VCO2
A VCO 21A that performs a frequency shift corresponding to the code value of the transmission data DT supplied at the time of transmission in place of 1 to generate an FSK-modulated transmission local oscillation signal / second local oscillation signal L2T / LO2, and a transmission local oscillation A switch circuit (SW) 22 for switching the signal / second local oscillation signal L2T / LO2 between the reception RX side and the transmission TX side in accordance with the respective states of reception and transmission, and a level corresponding to the transmission state of the transmission / reception switching signal CT. Between the mixer 23 that generates the transmission IF signal IFT from the supplied filtered local oscillation signal LOX from which the spurious signal has been removed and the first local oscillation signal LO1 from the SW 22, and the mixer 5 and the IF amplifier 7 To switch between the signal IFT and the first IF signal IF1,
A SW 6 to be supplied to the F-amplifier 8 and a SW inserted between the IF amplifier 9 and the mixer 11 to switch and output the output signal of the IF amplifier 9 to one of the mixer 11 and the mixer 25
10, the second IF signal from the mixer 11 inserted between the mixer 11 and the IF amplifier 13 and the transmission local oscillation signal LO.
SW 12 that switches to T and supplies one to IF amplifier 13
And a SW 15 inserted between the SAW filter 14 and the IF amplifier 16 to switch and supply the output signal of the SAW filter 14 to one of the IF amplifier 16 and the mixer 23. These SW22, 6, 10, 12, and 1
5 perform the switching operation in response to the L and H levels respectively corresponding to the reception and transmission states of the transmission / reception switching signal CT.
【0027】送信部300Aは、従来のVCO32と周
波数シンセサイザ33は削除され、したがって、従来と
共通のミキサ25と、BPF26と、RFパワーアンプ
27とを備える。The transmitting section 300A has a conventional VCO 32 and a frequency synthesizer 33 eliminated, and therefore includes a mixer 25, a BPF 26 and an RF power amplifier 27 which are common with the conventional one.
【0028】従来と同様に、主な信号周波数について、
各チャネルの受信/送信周波数FRT2.4〜2.5G
Hz、チャネル間隔1MHz、第1IF周波数および送
信IF周波数400MHz、第2IF周波数40MH
z、第1局部発振周波数LO1(FRT−400MH
z)=2.0〜2.4GHz、第2局部発振周波数LO
2を360MHz、基準周波数FR10MHzとそれぞ
れ設定する。As in the prior art, for the main signal frequencies,
Reception / transmission frequency FRT 2.4 to 2.5 G for each channel
Hz, channel interval 1 MHz, first IF frequency and transmission IF frequency 400 MHz, second IF frequency 40 MH
z, the first local oscillation frequency LO1 (FRT-400MH
z) = 2.0-2.4 GHz, second local oscillation frequency LO
2 is set to 360 MHz and the reference frequency FR10 MHz.
【0029】次に、図1を参照して本実施例の動作につ
いて説明すると、まず、受信状態では、送受切替信号C
TのLレベルに応答してSW22,6,10,12,お
よび15の各々は受信RX側に設定される。また、ミキ
サ23および逓倍回路24は不動作状態に設定される。
これらの設定状態は上述した従来の無線通信装置の受信
状態の場合と同一であり、したがって、受信部各部の動
作も全く同一である。しかし、逓倍回路24およびミキ
サ23が不動作状態であるため、第1IF信号IF1と
同一周波数の送信IF信号IFTは存在せず、これによ
る受信部200Aに対する干渉はあり得ない。したがっ
て、送信開始に先立つ受信状態すなわちキャリアセンス
状態では、RSSI20の確実な動作が可能であり、選
択チャネルの空あるいは使用中に対応する受信信号強度
信号RSを発生する。上記選択チャネルが空である場合
には、この空チャネル対応の信号RSに応答して直ちに
外部コントロール系(図示省略)が送受切替信号CTを
送信状態対応のHレベルに設定する。Next, the operation of this embodiment will be described with reference to FIG. 1. First, in the receiving state, the transmission / reception switching signal C
In response to the L level of T, each of SWs 22, 6, 10, 12, and 15 is set on the receiving RX side. The mixer 23 and the multiplying circuit 24 are set to a non-operating state.
These setting states are the same as those in the above-described reception state of the conventional wireless communication apparatus, and therefore, the operation of each unit of the receiving unit is exactly the same. However, since the multiplying circuit 24 and the mixer 23 are in an inactive state, there is no transmission IF signal IFT having the same frequency as the first IF signal IF1, and there is no possibility of interference with the reception unit 200A. Therefore, in the reception state prior to the start of transmission, that is, in the carrier sense state, the RSSI 20 can reliably operate, and the corresponding reception signal strength signal RS is generated when the selected channel is empty or in use. When the selected channel is empty, the external control system (not shown) immediately sets the transmission / reception switching signal CT to the H level corresponding to the transmission state in response to the signal RS corresponding to the empty channel.
【0030】次に、送信状態では、送受切替信号CTの
Hレベルに応答してSW22,6,10,12,および
15の各々は送信TX側に設定される。また、ミキサ2
3および逓倍回路24は送受切替信号CTのHレベルに
応答する電源のオン制御などにより動作状態に設定され
る。これにより、発振回路31からの10MHzの基準
周波数信号FRが逓倍回路24で4逓倍され、40MH
zの送信局部発振信号LOTを生成する。逓倍回路24
は論理ゲート回路やステップリカバリダイオードなど非
直線回路素子をパルス駆動する公知の回路で構成され
る。この信号LOTはSW12,IFアンプ13を経由
してSAWフィルタ15に供給され、ここでスプリアス
信号成分が除去されたフィルタド送信局部発振信号LO
XとしてSW15を経由してミキサ23の一方の入力に
供給される。Next, in the transmission state, each of the SWs 22, 6, 10, 12, and 15 is set to the transmission TX side in response to the H level of the transmission / reception switching signal CT. Mixer 2
The 3 and the multiplying circuit 24 are set to an operating state by power-on control in response to the H level of the transmission / reception switching signal CT. As a result, the 10 MHz reference frequency signal FR from the oscillation circuit 31 is multiplied by 4 in the multiplication circuit 24 to 40 MHz.
A z local transmission signal LOT is generated. Multiplication circuit 24
Is constituted by a known circuit for pulse driving a non-linear circuit element such as a logic gate circuit or a step recovery diode. The signal LOT is supplied to the SAW filter 15 via the SW 12 and the IF amplifier 13, where the spurious signal component is removed from the filtered transmission local oscillation signal LO.
X is supplied to one input of the mixer 23 via the SW 15.
【0031】一方、送信データDTがVCO21Aに供
給される。このVCO21Aの発振周波数は第2局部発
振信号LO2の360MHzであり、基準周波数信号F
Rの周波数10MHzを基準とする周波数シンセサイザ
29の制御信号QTにより制御されている。VCO21
Aは送信データDTの供給に応答してこの制御信号QT
対応の発振周波数を送信データDTの符号値に対応する
周波数シフトを行い、FSK変調された送信第2局部発
振信号L2Tを生成する。この信号L2TはSW22を
経由してミキサ23の他方の入力に供給される。ミキサ
23は信号LOX,L2Tの供給に応答して400MH
zの送信IF信号IFTを生成し、SW6,IFアンプ
7を経由してSAWフィルタ8に供給する。SAWフィ
ルタ8は信号IFTのスプリアス信号成分を除去し、フ
ィルタド送信IF信号ITXとしてIFアンプ9,SW
10を経由してミキサ25の一方の入力に供給する。On the other hand, the transmission data DT is supplied to the VCO 21A. The oscillation frequency of this VCO 21A is 360 MHz of the second local oscillation signal LO2, and the reference frequency signal F
It is controlled by a control signal QT of the frequency synthesizer 29 based on the R frequency of 10 MHz. VCO21
A receives the control signal QT in response to the supply of the transmission data DT.
The corresponding oscillation frequency is shifted in frequency corresponding to the code value of the transmission data DT to generate an FSK-modulated transmission second local oscillation signal L2T. This signal L2T is supplied to the other input of the mixer 23 via the SW22. The mixer 23 responds to the supply of the signals LOX and L2T by 400 MHz.
The transmission IF signal IFT of z is generated and supplied to the SAW filter 8 via the SW 6 and the IF amplifier 7. The SAW filter 8 removes a spurious signal component of the signal IFT, and outputs the filtered transmission IF signal ITX as an IF amplifier 9, SW
The signal is supplied to one input of a mixer 25 via the input terminal 10.
【0032】ミキサ25はフィルタド送信IF信号IT
Xと第1局部発振信号LO1との供給に応答して、従来
と同様に、設定チャネル周波数の変換信号TSに変換
し、BPF26を経由してRFパワーアンプ27に供給
する。RFパワーアンプ27は、変換信号TSを電力増
幅し、送信信号Tを生成し、ASW3およびBPF2を
経由してアンテナ1に供給し、この送信信号Tを電波と
して送出する。The mixer 25 has a filtered transmission IF signal IT.
In response to the supply of X and the first local oscillation signal LO1, the signal is converted into a converted signal TS of the set channel frequency and supplied to the RF power amplifier 27 via the BPF 26 in the same manner as in the related art. The RF power amplifier 27 power-amplifies the converted signal TS, generates a transmission signal T, supplies the transmission signal T to the antenna 1 via the ASW 3 and the BPF 2, and transmits the transmission signal T as a radio wave.
【0033】VCO31,28,21の各々は、前述の
キャリアセンス/受信状態においても選択チャネル対応
の周波数で常時発振状態であり、また、シンセサイザの
ような特別な時定数回路などを含まない逓倍回路24,
ミキサ23の各々は電源オンなどによる動作状態設定か
ら典型的には1μs以内に立上がるので、10μs以下
の受信/送信切替所要時間は容易に満足できる。Each of the VCOs 31, 28 and 21 is always in an oscillating state at a frequency corresponding to the selected channel even in the above-described carrier sense / reception state, and a multiplication circuit which does not include a special time constant circuit such as a synthesizer. 24,
Since each of the mixers 23 typically rises within 1 μs from the operation state setting by turning on the power supply or the like, the required reception / transmission switching time of 10 μs or less can be easily satisfied.
【0034】上述のように、キャリアセンス/受信状態
における送信系信号の受信系への干渉が原理的に存在し
ないため、送信系と受信系相互間の遮蔽は簡単にするこ
とができ、両者の同一半導体チップ上への形成による高
集積化も可能となる。これにより、外形の小型・薄型化
が可能となり、外形寸法を例えば85.6mm×54m
m×5mm程度のいわゆるクレジットカードサイズに納
めることができる。As described above, since the transmission system signal does not interfere with the reception system in the carrier sense / reception state in principle, the shielding between the transmission system and the reception system can be simplified, and both of them can be simplified. High integration by forming on the same semiconductor chip is also possible. This makes it possible to reduce the size and thickness of the outer shape, and to reduce the outer size to, for example, 85.6 mm × 54 m.
It can be stored in a so-called credit card size of about mx 5 mm.
【0035】以上、本発明の実施例を説明したが、本発
明は上記実施例に限られることなく種々の変形が可能で
ある。例えば、送信信号のスプリアス成分除去のため受
信部のSAWフィルタを用いる代りに独立のバンドパス
フィルタを用い、関連するスイッチ回路を削除すること
も本発明の主旨を逸脱しない限り適用できることは勿論
である。Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, it is a matter of course that an independent band-pass filter may be used instead of using the SAW filter of the receiving unit to remove spurious components of a transmission signal, and the related switch circuit may be deleted without departing from the gist of the present invention. .
【0036】[0036]
【発明の効果】以上説明したように、本発明の無線通信
装置は、送信時に動作状態に制御され非直線素子を用い
送信局部発振信号を発生する逓倍回路と、第2局部発振
周波数の変調発振回路と、送信時に動作状態に制御され
送信局部発振信号と送信変調信号とから送信中間周波信
号を生成する第2の送信用ミキサとを備えることによ
り、キャリアセンス/受信状態における送信系信号の受
信系への干渉が原理的に存在しないため、送信系と受信
系相互間の遮蔽は簡単にすることができ、両者の同一半
導体チップ上への形成による高集積化も可能となること
により、キャリアセンス状態から高速な送信立上げを確
保しつつ例えばクレジットカードサイズまでに外形の小
型・薄型化が可能となるという効果がある。As described above, the radio communication apparatus according to the present invention comprises a multiplying circuit which is controlled to an operating state during transmission to generate a transmission local oscillation signal using a non-linear element, and a modulation oscillation of a second local oscillation frequency. Receiving a transmission system signal in a carrier sense / reception state by including a circuit and a second transmission mixer controlled to an operating state during transmission to generate a transmission intermediate frequency signal from a transmission local oscillation signal and a transmission modulation signal Since interference with the system does not exist in principle, shielding between the transmission system and the reception system can be simplified, and high integration can be achieved by forming both on the same semiconductor chip. There is an effect that the outer shape can be reduced in size and thickness down to, for example, the size of a credit card while securing a high-speed transmission start-up from the sense state.
【図1】本発明の無線通信装置の一実施例を示すブロッ
ク図である。FIG. 1 is a block diagram illustrating an embodiment of a wireless communication device according to the present invention.
【図2】従来の無線通信装置の一例を示すブロック図で
ある。FIG. 2 is a block diagram illustrating an example of a conventional wireless communication device.
1 アンテナ 2,26 BPF 3 ASW 4 RFアンプ 5,11,23,25 ミキサ 6,10,12,15,22 SW 7,9,13,16 IFアンプ 8,14 SAWフィルタ 17 リミッタ 18 復調回路 19 コンパレータ 20 RSSI 21,28,32,21A VCO 27 RFパワーアンプ 29,30,33 周波数シンセサイザ 30 周波数シンセサイザ 31 発振回路 100,100A 送受信共用部 200,200A 受信部 300,300A 送信部 DESCRIPTION OF SYMBOLS 1 Antenna 2,26 BPF 3 ASW 4 RF amplifier 5,11,23,25 Mixer 6,10,12,15,22 SW 7,9,13,16 IF amplifier 8,14 SAW filter 17 Limiter 18 Demodulation circuit 19 Comparator Reference Signs List 20 RSSI 21, 28, 32, 21A VCO 27 RF power amplifier 29, 30, 33 Frequency synthesizer 30 Frequency synthesizer 31 Oscillator circuit 100, 100A Transmission / reception common unit 200, 200A Receiver 300, 300A Transmitter
Claims (4)
した送受信周波数が同一の複数の通信チャネルの任意の
選択した1つのチャネルである選択チャネル周波数対応
の第1の周波数の第1の局部発振信号との供給を受け第
2の周波数の第1中間周波信号を生成する第1の受信用
ミキサと、前記第1中間周波信号と第3の周波数の第2
の局部発振信号との供給を受け第4の周波数の第2中間
周波信号を生成する第2の受信用ミキサと、前記第1の
局部発振信号を発生する第1の局部発振回路と、前記第
2の局部発振信号を発生する第2の局部発振回路と、前
記第1および第2の局部発振回路に供給する基準周波数
信号を発生する基準周波数信号発振回路と、送信データ
による所定の変調を受けた前記第2の周波数の送信中間
周波信号と前記第1の局部発振信号との供給を受け前記
選択チャネル周波数の送信信号を生成する第1の送信用
ミキサとを備え、前記選択チャネルが他局の送信信号が
存在しない空チャネルであることを送信開始前に確認し
て自局の送信信号を発射するキャリアセンス多重方式の
無線通信装置において、 非直線素子を用い送受信切替信号の送信対応の第1のレ
ベルで動作状態に制御され前記基準周波数信号を予め定
めた逓倍数で逓倍し前記第4の周波数の送信局部発振信
号を発生する逓倍回路と、 前記第3の周波数で発振し送信時に前記送信データの供
給を受け前記変調を行い送信変調信号を生成する変調発
振回路と、 前記送受信切替信号の前記第1のレベルで動作状態に制
御され前記送信局部発振信号と前記送信変調信号との供
給を受け前記送信中間周波信号を生成する第2の送信用
ミキサとを備えることを特徴とする無線通信装置。1. A first local oscillation of a first frequency corresponding to a selected channel frequency, which is a selected one of a plurality of communication channels having a same transmission / reception frequency obtained by dividing a reception signal and a predetermined frequency band. A first receiving mixer for receiving a signal and generating a first intermediate frequency signal of a second frequency; and a second mixer for receiving the first intermediate frequency signal and a second frequency of a third frequency.
A second receiving mixer for receiving a supply of the local oscillation signal of the first frequency and generating a second intermediate frequency signal of a fourth frequency; a first local oscillation circuit for generating the first local oscillation signal; A second local oscillation circuit for generating a second local oscillation signal; a reference frequency signal oscillation circuit for generating a reference frequency signal to be supplied to the first and second local oscillation circuits; A first transmission mixer for receiving a supply of the transmission intermediate frequency signal of the second frequency and the first local oscillation signal and generating a transmission signal of the selected channel frequency, wherein the selected channel is connected to another station. In the wireless communication apparatus of the carrier sense multiplexing method for transmitting before transmitting the confirmation that the transmission channel of the transmission signal does not exist and transmitting the transmission signal of the own station, the transmission corresponding to the transmission and reception switching signal using the nonlinear element A multiplying circuit that is controlled to an operating state at a level of 1 and multiplies the reference frequency signal by a predetermined multiplying number to generate a transmission local oscillation signal of the fourth frequency; A modulation oscillation circuit that receives the supply of transmission data and performs the modulation to generate a transmission modulation signal; and supplies the transmission local oscillation signal and the transmission modulation signal that are controlled to an operation state at the first level of the transmission / reception switching signal. And a second transmission mixer for receiving the transmission intermediate frequency signal.
局部発振信号を供給する前記第2の局部発振回路の機能
を共有することを特徴とする請求項1記載の無線通信装
置。2. The wireless communication apparatus according to claim 1, wherein said modulation oscillation circuit shares a function of said second local oscillation circuit for supplying said second local oscillation signal at the time of reception.
発振回路の各々が前記基準周波数信号を基準として動作
する位相ロックループ回路を含む第1および第2のシン
セサイザによりそれぞれ制御される第1および第2の電
圧制御発振回路を備えることを特徴とする請求項1記載
の無線通信装置。3. A first and a second oscillator, each of which is controlled by a first and a second synthesizer including a phase locked loop circuit in which each of the first local oscillation circuit and the modulation oscillation circuit operates based on the reference frequency signal. The wireless communication device according to claim 1, further comprising a second voltage controlled oscillation circuit.
レベルにそれぞれ応答して前記送信変調信号を前記第2
の送信用ミキサに前記第2の局部発振信号を前記第2の
受信用ミキサにそれぞれ供給するように切替る第1のス
イッチ回路と、 前記第1および第2のレベルにそれぞれ応答して前記送
信変調信号および前記第1中間周波信号のいずれか一方
を選択して第1中間周波増幅回路に供給する第2のスイ
ッチ回路と、 前記第1および第2のレベルにそれぞれ応答して前記第
1中間周波増幅回路の出力信号を前記第1の送信用ミキ
サおよび前記第2の受信用ミキサのいずれか一方に供給
する第3のスイッチ回路と、 前記第1および第2のレベルにそれぞれ応答して前記第
2の受信ミキサおよび前記送信局部発振信号のいずれか
一方を選択して第1の第2中間周波増幅回路に供給する
第4のスイッチ回路と、 前記第1および第2のレベルにそれぞれ応答して前記第
2中間周波信号用のバンドパスフィルタの出力信号を前
記第2の送信用ミキサおよび第2の第2中間周波増幅回
路のいずれか一方に供給する第5のスイッチ回路とを備
えることを特徴とする請求項1記載の無線通信装置。4. The method according to claim 1, wherein the transmission modulation signal is transmitted in response to first and second levels of the transmission / reception switching signal.
A first switch circuit for switching the second local oscillation signal to be supplied to the second mixer for transmission, respectively, to the transmission mixer, and the transmission circuit in response to the first and second levels, respectively. A second switch circuit for selecting any one of a modulation signal and the first intermediate frequency signal and supplying the selected signal to the first intermediate frequency amplifier circuit; and the first intermediate circuit in response to the first and second levels, respectively. A third switch circuit for supplying an output signal of a frequency amplification circuit to one of the first transmission mixer and the second reception mixer; and a third switch circuit responsive to the first and second levels, respectively. A fourth switch circuit that selects one of a second reception mixer and the transmission local oscillation signal and supplies the selected signal to the first second intermediate frequency amplification circuit; and a response to the first and second levels, respectively. And a fifth switch circuit for supplying an output signal of the bandpass filter for the second intermediate frequency signal to one of the second transmission mixer and the second second intermediate frequency amplifier circuit. The wireless communication device according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6985594A JP2600602B2 (en) | 1994-04-08 | 1994-04-08 | Wireless communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6985594A JP2600602B2 (en) | 1994-04-08 | 1994-04-08 | Wireless communication device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07283810A JPH07283810A (en) | 1995-10-27 |
JP2600602B2 true JP2600602B2 (en) | 1997-04-16 |
Family
ID=13414851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6985594A Expired - Fee Related JP2600602B2 (en) | 1994-04-08 | 1994-04-08 | Wireless communication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2600602B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5937341A (en) | 1996-09-13 | 1999-08-10 | University Of Washington | Simplified high frequency tuner and tuning method |
JP5575616B2 (en) * | 2010-11-24 | 2014-08-20 | ホーチキ株式会社 | Wireless device |
-
1994
- 1994-04-08 JP JP6985594A patent/JP2600602B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07283810A (en) | 1995-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100397716B1 (en) | Transmitter and Transceiver | |
JP3311794B2 (en) | Method of generating signals of different frequencies in a digital radio telephone | |
US5568098A (en) | Frequency synthesizer for use in radio transmitter and receiver | |
JP4499739B2 (en) | Multi-mode and multi-band RF transceiver and associated communication method | |
EP1484843B1 (en) | Radio communication method and system for performing communication among a plurality of radio communication terminals | |
JP3358183B2 (en) | Time division multiplexing transceiver | |
US5603097A (en) | Digital radio system capable of high-speed frequency changing at low power consumption | |
WO1993009606A1 (en) | Oscillator frequency divide-down transmit offset scheme for reducing self-quieting | |
US6621853B1 (en) | Frequency synthesizing device and method for dual frequency hopping with fast lock time | |
US6678503B1 (en) | Apparatus for radio frequency processing with dual modulus synthesizer | |
US6405022B1 (en) | Apparatus for radio frequency processing with single oscillator for intermediate frequency processing | |
EP0958653B1 (en) | Transmit signal generation with the aid of a receiver | |
JP3309904B2 (en) | Wireless transceiver | |
CN1079005C (en) | Frequency generator of radio communication system | |
JP2600602B2 (en) | Wireless communication device | |
US5339309A (en) | Transmitter-receiver | |
US20060217077A1 (en) | Radio frequency device with null or quasi-null intermediate frequency minimizing interfering frequency modulation applied to an integrated local oscillator | |
US6839548B1 (en) | Radio transmitter | |
JPS61103324A (en) | Synthesizer circuit of radio communication equipment | |
JPH07303059A (en) | Radio equipment | |
JP2003243983A (en) | Microwave zone and millimeter-wave zone phase synchronizing oscillator and high frequency transmitter and receiver using the same | |
US6137997A (en) | Circuit for receiving and transmitting signals and method | |
CN115473558A (en) | Signal transfer circuit, method and electronic equipment | |
JP2796969B2 (en) | Mobile radio equipment | |
JP2004023653A (en) | Wireless transmitter-receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961119 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |