JP2600117B2 - Temperature stable type selective radiation material - Google Patents

Temperature stable type selective radiation material

Info

Publication number
JP2600117B2
JP2600117B2 JP6307029A JP30702994A JP2600117B2 JP 2600117 B2 JP2600117 B2 JP 2600117B2 JP 6307029 A JP6307029 A JP 6307029A JP 30702994 A JP30702994 A JP 30702994A JP 2600117 B2 JP2600117 B2 JP 2600117B2
Authority
JP
Japan
Prior art keywords
film
temperature
radiation material
selective radiation
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6307029A
Other languages
Japanese (ja)
Other versions
JPH08144068A (en
Inventor
平 金
栄 種村
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6307029A priority Critical patent/JP2600117B2/en
Publication of JPH08144068A publication Critical patent/JPH08144068A/en
Application granted granted Critical
Publication of JP2600117B2 publication Critical patent/JP2600117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/06Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、環境エネルギー利用技
術に関するものであり、詳しくは高層大気または宇宙空
間を冷熱源とする放射冷却用選択放射材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for utilizing environmental energy, and more particularly to a selective radiation material for radiation cooling using a high-rise atmosphere or outer space as a heat source.

【0002】[0002]

【従来の技術】絶対温度が零度以上のすべての物体から
放射熱線が放射されていることはよく知られている。そ
して、熱放射現象の一例としては、地表面や地表面上の
物体がよく晴れた夜間に冷え込む放射冷却現象がある。
この現象には大気の分光特性が深く関与し、8〜13μ
mの波長範囲に非常に透過率の高い領域が存在し、「大
気の窓」と呼ばれている。気温程度の温度を有する地表
面及び地表付近の物体からの熱放射は上記の波長範囲で
大きいため、物体から出ていく放射熱線量が、入ってく
る他の物体または低層大気からの放射熱線量を上回り、
物体は冷却されることになる。こうした放射冷却の原理
を用い、人為的に制御して冷房等に利用しようという試
みは電力等のエネルギーの供給を必要としないという格
別の効果をもたらすものであるため、近年各種の検討が
なされている。
2. Description of the Related Art It is well known that radiant heat rays are emitted from all objects having an absolute temperature of zero degree or higher. As an example of the heat radiation phenomenon, there is a radiation cooling phenomenon in which the ground surface or an object on the ground surface cools down at night when the weather is fine.
Atmospheric spectral characteristics are deeply involved in this phenomenon,
There is a region with a very high transmittance in the wavelength range of m, which is called an “atmospheric window”. Since the heat radiation from the ground surface and near the ground surface having a temperature of about the air temperature is large in the above wavelength range, the radiant heat dose exiting the object will be the radiant heat dose coming from another incoming object or the lower atmosphere. Exceeds
The object will be cooled. Attempts to use such a principle of radiative cooling to artificially control and use it for cooling etc. have the special effect of not requiring the supply of energy such as electric power, and various studies have been made in recent years. I have.

【0003】上記「大気の窓」を利用した放射冷却用材
料のうち、波長選択性を有し、無選択性のものより低温
が得られる材料を選択放射材料と呼び、その具体的構成
としては、金属基板上に適当な厚さの誘電体膜や高分子
膜を形成してなるもの、適当な光路を有する気体などが
各種文献(C. G. Granqvist, Applied Optics, 20, 260
6 (1981), 松田守弘、寺田重雄、伊藤博、太陽エネルギ
ー、10, 33 (1984))にて提案されている。中でも特に
取り扱いの容易さや優れた耐環境性などから金属基板上
に誘電体膜(無機物膜)を形成した材料のものが有望視
されている。そして、金属基板上に一酸化珪素膜、ある
いは一酸化珪素と窒化珪素との混合膜を形成してなる材
料が試作されている。(T. S. Eriksson, S. -J. Jian
g, C. G.Granqvist, Solar Energy Materials, 12, 319
(1985), T. S. Eriksson, C. G.Granqvist, Applied O
ptics, 22, 3204 (1983))。
[0003] Of the radiation cooling materials utilizing the "atmospheric window", a material having wavelength selectivity and capable of obtaining a lower temperature than a non-selective material is called a selective radiation material. In addition, various materials (CG Granqvist, Applied Optics, 20, 260) can be used in which a dielectric film or polymer film having an appropriate thickness is formed on a metal substrate, or a gas having an appropriate optical path.
6 (1981), Morihiro Matsuda, Shigeo Terada, Hiroshi Ito, Solar Energy, 10, 33 (1984)). Among them, a material in which a dielectric film (inorganic film) is formed on a metal substrate is expected to be particularly promising in view of ease of handling and excellent environmental resistance. Then, a material in which a silicon monoxide film or a mixed film of silicon monoxide and silicon nitride is formed on a metal substrate has been prototyped. (TS Eriksson, S. -J. Jian
g, CGGranqvist, Solar Energy Materials, 12, 319
(1985), TS Eriksson, CGGranqvist, Applied O
ptics, 22, 3204 (1983)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の選択放射材料は、その性能が誘電体膜(無機物膜)
の膜厚に敏感に依存するので、通常薄膜の形成に用いら
れるスパッタリング法等の方法では膜厚を十分均一にで
きないために作製された材料ごとに温度低下の程度が大
きく異なるという欠点がある。また、温度低下の程度は
選択放射材料のまわりの断熱材の使用量や低温を他の場
所へ運ぶための冷媒の量によっても大きく異なることも
一定の温度低下が得られない原因となっている。従っ
て、選択放射材料の敏感な膜厚依存性を緩和し、ある一
定の安定した温度低下を実現する選択放射材料が嘱望さ
れていた。
However, the performance of the conventional selective radiation material is a dielectric film (inorganic film).
Since the thickness depends on the thickness of the film, the thickness of the film cannot be made sufficiently uniform by a method such as a sputtering method which is usually used for forming a thin film. In addition, the degree of the temperature drop varies greatly depending on the amount of the heat insulating material used around the selective radiation material and the amount of the refrigerant for transporting the low temperature to another place, which also causes a failure to obtain a constant temperature drop. . Therefore, there has been a demand for a selective radiating material that reduces the sensitive film thickness dependency of the selective radiating material and realizes a certain and stable temperature reduction.

【0005】[0005]

【課題を解決するための手段】本発明は上記に鑑み提案
されたもので、黒色基板上にタングステンを添加した二
酸化バナジウム膜を形成し、さらにその上面に一酸化珪
素膜を形成してなることを特徴とする放射冷却用温度安
定型選択放射材料に関するものである。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above, and comprises forming a vanadium dioxide film to which tungsten is added on a black substrate, and further forming a silicon monoxide film on the upper surface thereof. And a temperature-stable selective radiation material for radiation cooling.

【0006】また、上記黒色基板としては、赤外領域で
吸収率が高ければどのような材質でもよく、その形状や
寸法についても特に限定するものではない。さらに、形
成方法についてもスパッタリング法やその他の公知の方
法を用いることができるが、特に限定するものではな
い。
The black substrate may be made of any material as long as it has a high absorptance in the infrared region, and its shape and dimensions are not particularly limited. Further, a sputtering method and other known methods can be used as a forming method, but are not particularly limited.

【0007】尚、上記タングステンを添加した二酸化バ
ナジウム膜は、金属・半導体転移を示すサーモクロミッ
ク特性を有するものであれば、どのような材質でも良
く、形成方法についてもスパッタリング法やその他の公
知の方法を用いることができるが、特に限定するもので
はない。
The tungsten-added vanadium dioxide film may be made of any material as long as it has a thermochromic property showing a metal-semiconductor transition, and may be formed by a sputtering method or another known method. Can be used, but there is no particular limitation.

【0008】[0008]

【実施例】【Example】

実施例1 図1に示す実施例1の選択放射材料は、黒色基板1とし
て黒色ペンキを塗ったアルミニウム板を用い、その上面
に相転移温度12℃を有するタングステンを添加した二
酸化バナジウム膜2を設け、さらにその上面に一酸化珪
素膜3を形成してなる構成である。タングステンを添加
した二酸化バナジウム膜2の膜厚は0.1μm、一酸化
珪素膜3の膜厚は1μmである。黒色ペンキを塗った基
板1の厚さは赤外光について不透過性であれば特に限定
するものではない。
Example 1 As a selective radiation material of Example 1 shown in FIG. 1, an aluminum plate coated with black paint was used as a black substrate 1, and a vanadium dioxide film 2 to which tungsten having a phase transition temperature of 12 ° C. was added was provided on the upper surface thereof. And a structure in which a silicon monoxide film 3 is further formed on the upper surface thereof. The thickness of the vanadium dioxide film 2 to which tungsten is added is 0.1 μm, and the thickness of the silicon monoxide film 3 is 1 μm. The thickness of the substrate 1 coated with black paint is not particularly limited as long as it is impermeable to infrared light.

【0009】以上の構成において多層薄膜理論(藤原史
郎編、光学薄膜第2版、共立出版1986年刊)を用
い、断熱が理想的な場合の低下温度を計算した結果、選
択放射材料の温度は外部から約11W/m2の熱が流入して
も、外部へ約4W/m2の熱が過剰に排熱されても12℃で
平衡に達し、一定であった。
Using the theory of multilayer thin film (edited by Shiro Fujiwara, 2nd edition of optical thin film, published by Kyoritsu Shuppan, 1986) in the above configuration, the temperature drop of the case where insulation is ideal is calculated. Even when heat of about 11 W / m 2 flows in from, even when about 4 W / m 2 of heat is excessively discharged to the outside, the temperature reached an equilibrium at 12 ° C. and was constant.

【0010】尚、一酸化珪素の光学定数としては文献値
(ed. by E. D. Palik, Handbook of Optical Constant
s of Solids, Academic Press, 765(1985))を用い、タ
ングステンを添加した二酸化バナジウム膜の光学定数
は、スパッタリング法で作製した試料の反射率と透過率
を測定することによって得た値を用いた。黒色基板の光
学特性は黒体のそれを用いた。低下温度の計算は文献
(松田守弘、寺田重雄、伊藤博、太陽エネルギー、10,
33(1984)、田澤真人、吉村和記、三木健、種村栄、太陽
エネルギー、19, 39(1993))に紹介された方法を用い、
試料温度に対する放射冷却能の依存性を計算することに
よって行った。
The optical constants of silicon monoxide are described in the literature (ed. By ED Palik, Handbook of Optical Constant).
s of Solids, Academic Press, 765 (1985)), and the optical constant of the vanadium dioxide film doped with tungsten used the value obtained by measuring the reflectance and transmittance of the sample prepared by the sputtering method. . The optical characteristics of the black substrate were those of a black body. The calculation of the drop temperature is described in the literature (Morihiro Matsuda, Shigeo Terada, Hiroshi Ito, Solar Energy, 10,
33 (1984), Masato Tazawa, Kazuki Yoshimura, Ken Miki, Sakae Tanemura, Solar Energy, 19, 39 (1993))
This was done by calculating the dependence of radiative cooling capacity on sample temperature.

【0011】実施例2 図2に示す実施例2の選択放射材料は、黒色基板1とし
て黒色ペンキを塗ったアルミニウム板を用い、その上面
に転移温度14℃を有するタングステンを添加した二酸
化バナジウム膜2を設け、さらにその上面に一酸化珪素
膜3を形成してなる構成である。タングステンを添加し
た二酸化バナジウム膜2の膜厚は0.1μm、一酸化珪
素膜3の膜厚は1μmである。
Embodiment 2 As a selective radiation material of Embodiment 2 shown in FIG. 2, an aluminum plate coated with black paint is used as a black substrate 1, and a vanadium dioxide film 2 to which tungsten having a transition temperature of 14 ° C. is added on its upper surface. And a silicon monoxide film 3 is formed on the upper surface thereof. The thickness of the vanadium dioxide film 2 to which tungsten is added is 0.1 μm, and the thickness of the silicon monoxide film 3 is 1 μm.

【0012】上記実施例2の選択放射材料について、実
施例1と同様の計算を行った結果、選択放射材料の温度
は外部から約3W/m2の熱が流入しても、外部へ約9W/m2
の熱が過剰に排熱されても14℃で平衡に達し、一定で
あった。
As a result of performing the same calculation as in Example 1 for the selective radiating material of Example 2, the temperature of the selective radiating material is about 9 W even if heat of about 3 W / m 2 flows in from the outside. / m 2
The equilibrium was reached at 14 ° C. and remained constant even if the heat of the sample was excessively exhausted.

【0013】比較例1 アルミニウム基板上に厚さ1μmの一酸化珪素膜を形成
してなる選択放射材料について同様の計算を行い、比較
例1とした。上記比較例1の選択放射材料の温度は、外
部との熱の流入の放出もない場合は約0.4℃で平衡に
達したが、外部から約4W/m2の熱が流入した場合、約4
℃で、外部へ約2.5W/m2の熱が過剰に排熱された場
合、約−2℃で平衡に達した。
Comparative Example 1 A similar calculation was performed for a selective radiation material having a silicon monoxide film having a thickness of 1 μm formed on an aluminum substrate, and Comparative Example 1 was obtained. The temperature of the selective radiating material of Comparative Example 1 reached an equilibrium at about 0.4 ° C. when there was no release of heat inflow with the outside, but when about 4 W / m 2 of heat flowed in from the outside, About 4
When about 2.5 W / m 2 of heat was excessively exhausted to the outside at ° C., an equilibrium was reached at about −2 ° C.

【0014】以上本発明を実施例に基づいて説明した
が、本発明は前記した実施例に限定されるものではな
く、特許請求の範囲に記載した構成を変更しない限りど
のようにでも実施することができる。
Although the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and can be implemented in any manner unless the configuration described in the claims is changed. Can be.

【0015】[0015]

【発明の効果】以上説明したように本発明の選択放射材
料は、黒色基板と一酸化珪素膜との間にタングステンを
添加した二酸化バナジウムを挿入することによって、選
択放射材料の低下温度を安定にするものとなる。したが
って、温度が安定した低温を得ることが容易となり、例
えば温度一定での保存が必要な薬品などのコンテナー用
壁材などへの利用が期待されるものとなる。
As described above, the selective radiating material of the present invention stably reduces the temperature of the selective radiating material by inserting vanadium dioxide to which tungsten is added between the black substrate and the silicon monoxide film. Will do. Therefore, it is easy to obtain a low temperature with a stable temperature, and it is expected to be used for container wall materials and the like, for example, for chemicals that need to be stored at a constant temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の選択放射材料の構成を模式的に示す
断面図である。
FIG. 1 is a cross-sectional view schematically illustrating a configuration of a selective radiation material according to one embodiment.

【図2】他の一実施例の選択放射材料の構成を模式的に
示す断面図である。
FIG. 2 is a cross-sectional view schematically illustrating a configuration of a selective radiation material according to another embodiment.

【符号の説明】[Explanation of symbols]

1 黒色基板 2、2’ タングステンを添加した二酸化バナジウム膜 3 一酸化珪素膜 DESCRIPTION OF SYMBOLS 1 Black substrate 2, 2 'Vanadium dioxide film which added tungsten 3 Silicon monoxide film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 平成5年度 日本太陽エネルギー学 会・日本風力エネルギー協会合同研究発 表会講演論文集、(平5−12−9)、 P.245−248 サンシャインジャーナル 11〜1! (1990)、(平2−3−25)、P.25− 33 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Proceedings of the 1993 Joint Research Meeting of the Japan Solar Energy Society and the Japan Wind Energy Association, (Heisei 5-12-9), p. 245-248 Sunshine Journal 11-1! (1990), (Heisei 2-3-3-25), p. 25- 33

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 黒色基板上にタングステンを添加した二
酸化バナジウム膜を形成し、さらにその上面に一酸化珪
素膜を形成してなることを特徴とする放射冷却用選択放
射材料。
1. A selective radiation material for radiation cooling, comprising: forming a vanadium dioxide film to which tungsten is added on a black substrate, and further forming a silicon monoxide film on an upper surface thereof.
JP6307029A 1994-11-16 1994-11-16 Temperature stable type selective radiation material Expired - Lifetime JP2600117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307029A JP2600117B2 (en) 1994-11-16 1994-11-16 Temperature stable type selective radiation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307029A JP2600117B2 (en) 1994-11-16 1994-11-16 Temperature stable type selective radiation material

Publications (2)

Publication Number Publication Date
JPH08144068A JPH08144068A (en) 1996-06-04
JP2600117B2 true JP2600117B2 (en) 1997-04-16

Family

ID=17964181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307029A Expired - Lifetime JP2600117B2 (en) 1994-11-16 1994-11-16 Temperature stable type selective radiation material

Country Status (1)

Country Link
JP (1) JP2600117B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955609B4 (en) * 1999-11-19 2004-09-16 Dornier Gmbh Infrared camouflage system
WO2008095330A1 (en) * 2007-01-31 2008-08-14 Chen, Dongdong A cooling device and its application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
サンシャインジャーナル 11〜1!(1990)、(平2−3−25)、P.25−33
平成5年度 日本太陽エネルギー学会・日本風力エネルギー協会合同研究発表会講演論文集、(平5−12−9)、P.245−248

Also Published As

Publication number Publication date
JPH08144068A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
Taylor et al. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling
Granqvist et al. Surfaces for radiative cooling: Silicon monoxide films on aluminum
Kim et al. Visibly transparent radiative cooler under direct sunlight
Lin et al. A solution‐processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates
Ma et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling
Hossain et al. Radiative cooling: principles, progress, and potentials
Fan et al. Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide
US10508838B2 (en) Ultrahigh-performance radiative cooler
Zhou et al. Efficient Thermal–Light Interconversions Based on Optical Topological Transition in the Metal‐Dielectric Multilayered Metamaterials
US4082413A (en) Selective radiation absorption devices for producing heat energy
Jeon et al. Directional radiation for optimal radiative cooling
Mabchour et al. Daytime radiative cooling purposes with selective multilayer design based on Ta2O5
Czapla et al. Potential for passive radiative cooling by PDMS selective emitters
Feng et al. Thermal analysis in daytime radiative cooling
Laatioui et al. Zinc monochalcogenide thin films ZnX (X= S, Se, Te) as radiative cooling materials
JP2600117B2 (en) Temperature stable type selective radiation material
Arrés Chillón et al. Transparent Glass Surfaces with Silica Nanopillars for Radiative Cooling
Chowdhary et al. Selective thermal emitters for high-performance all-day radiative cooling
Seo et al. Spatially-segmented colored radiative cooler with angle-robustness
US3565671A (en) Thermal control of spacecraft and the like
Tazawa et al. Thin film used to obtain a constant temperature lower than the ambient
JPS6086173A (en) Solar heat reflective coating composition having radiational cooling function
US6177673B1 (en) Optically black surface for producing the same
Kim et al. Wavelength selective cover for sub-ambient passive radiative cooling
Hwang Climate-dependent enhancement of radiative cooling with mirror structures

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term