JP2599717B2 - Electrophotographic photoreceptor and electrophotographic method using the same - Google Patents

Electrophotographic photoreceptor and electrophotographic method using the same

Info

Publication number
JP2599717B2
JP2599717B2 JP62129824A JP12982487A JP2599717B2 JP 2599717 B2 JP2599717 B2 JP 2599717B2 JP 62129824 A JP62129824 A JP 62129824A JP 12982487 A JP12982487 A JP 12982487A JP 2599717 B2 JP2599717 B2 JP 2599717B2
Authority
JP
Japan
Prior art keywords
layer
charge
charge generation
generation layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62129824A
Other languages
Japanese (ja)
Other versions
JPS63296056A (en
Inventor
成人 小島
由紀雄 井手
宏 永目
孝一 大嶋
節 六反園
伸二 納所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62129824A priority Critical patent/JP2599717B2/en
Publication of JPS63296056A publication Critical patent/JPS63296056A/en
Application granted granted Critical
Publication of JP2599717B2 publication Critical patent/JP2599717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers

Description

【発明の詳細な説明】 [技術分野] 本発明は電子写真用感光体及び感光体を用いての電子
写真方法に関し、詳しくは正帯電でのアナログ画像形成
及び負帯電でのデジタル画像形成がおこなわれる両極性
画像形成法に適した積層型電子写真感光体及びその画像
形成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoconductor for electrophotography and an electrophotographic method using the photoconductor, and more specifically, performs analog image formation with positive charge and digital image formation with negative charge. The present invention relates to a laminated electrophotographic photosensitive member suitable for a bipolar image forming method and an image forming method thereof.

[従来技術] 近年、電子写真複写機の性能の向上はめざましく、良
質の画像が安定して得られる様になってきている。
[Related Art] In recent years, the performance of electrophotographic copying machines has been remarkably improved, and high-quality images have been stably obtained.

ところで、感光体に静電潜像を形成する手段として
は、一般に感光体上に一様の帯電を施した後、 (i)タングステンランプ、ハロゲンランプ、螢光灯な
どの光源を用いて複写原稿の反射光又は透過光による画
像露光を行い、静電潜像を形成する「アナログ画像形成
法」と、 (ii)半導体レーザー、He−Neレーザーなどの光源を用
いてドットより構成されるイメージ露光を行い静電潜像
を形成する「デジタル画像形成法」 とが知られている。
Means for forming an electrostatic latent image on a photoreceptor generally include applying a uniform charge on the photoreceptor, and then (i) copying the original using a light source such as a tungsten lamp, a halogen lamp, or a fluorescent lamp. An analog image forming method that forms an electrostatic latent image by performing image exposure using reflected light or transmitted light, and (ii) image exposure composed of dots using a light source such as a semiconductor laser or He-Ne laser Is performed to form an electrostatic latent image.

前者の(i)は連続調ないし中間調の強調された画像
を得るのに特に有利であり、後者の(ii)はネガ画像又
は反転現像してポジ画像(いずれもドット状画像)を得
るのに特に有利な方法である。
The former (i) is particularly advantageous for obtaining a continuous-tone or half-tone enhanced image, and the latter (ii) is for obtaining a negative image or reversal development to obtain a positive image (both dot-shaped images). This is a particularly advantageous method.

一つの電子写真複写機に上記の両機能を持たせる際の
構成を考えた場合、複写機内にアナログ露光用のタング
ステンランプ等の光源とデジタル露光用の半導体レーザ
ー等の光源を設けることは容易であるが、感光体及び現
像系をアナログ用、デジタル用に2組設ける事は機械も
大型化してしまうし、コスト的にも問題があり非常に望
ましくないことである。
When considering a configuration in which one electrophotographic copying machine has both of the above functions, it is easy to provide a light source such as a tungsten lamp for analog exposure and a light source such as a semiconductor laser for digital exposure in the copying machine. However, providing two sets of photoreceptor and developing system for analog and digital use would increase the size of the machine, and would be problematic in terms of cost, which is very undesirable.

ひとつの感光体で上記の両光源に対し良好な感度を有
し、また同時にどちらの光源による画像形成法によって
も良質の画像が得られる電子写真用感光体があれば、感
光体、現像系を1組で済ますことができ非常にコンパク
トかつ低コストの多機能複写機の設計が可能になる。
If there is an electrophotographic photoreceptor that has good sensitivity to both of the above light sources with one photoreceptor, and at the same time obtains a high-quality image by an image forming method using either light source, the photoreceptor and developing system can It is possible to design a very compact and low-cost multifunctional copier that can be completed by one set.

しかしながら、現在のところこれらの要求及び電子写
真感光体として要求される特性(コスト耐久性等)を完
全に満たす電子写真用感光体は存在しないのが実情であ
る。
However, at present, there is no electrophotographic photoconductor that completely satisfies these requirements and the characteristics (cost durability and the like) required as the electrophotographic photoconductor.

たとえば、上記の着想に基づく一つの感光体として支
持体上に700nm以上の光に感度を有するCGL、電荷移動層
(CTL)、400〜700nmの光に感度を有するCGLという順に
積層することによって、正帯電時にアナログ用光源での
感度、負帯電時にデジタル用光源での感度を持たせた感
光体がある。(特願昭61−145948号)この感光体は正負
両帯電での感度としては良好な値を示すが、最上層のCG
Lが有機物の薄層から構成されており、電子写真感光体
に要求される機械的強度が低く耐久性の点からは問題が
ある。
For example, by stacking a CGL having sensitivity to light of 700 nm or more on a support, a charge transfer layer (CTL), and a CGL having sensitivity to light of 400 to 700 nm as one photoconductor based on the above idea, There is a photoreceptor having a sensitivity with an analog light source when positively charged and a sensitivity with a digital light source when negatively charged. (Japanese Patent Application No. 61-145948) Although this photoreceptor shows a good value in both positive and negative charging, the CG of the uppermost layer
L is composed of a thin layer of an organic substance, and the mechanical strength required for the electrophotographic photoreceptor is low, and there is a problem in terms of durability.

そこでこれら従来の感光体の欠点を解消するために本
発明者らは導電性支持体上に(必要に応じて下引層)、
第1電荷発生層、電荷移動層、第2電荷発生層の順で積
層し、かつ第2電荷発生層をSe系合金、第1電荷発生層
は第2電荷発生層より分光的に長波長側に感度を有する
電荷発生層とした電子写真用感光体を出願した。
Then, in order to eliminate these drawbacks of the conventional photoreceptor, the present inventors placed on a conductive support (an undercoat layer if necessary) a
The first charge generation layer, the charge transfer layer, and the second charge generation layer are stacked in this order, and the second charge generation layer is a Se-based alloy, and the first charge generation layer is spectrally longer on the wavelength side than the second charge generation layer. Filed an electrophotographic photoreceptor having a charge generation layer having high sensitivity.

これにより両極性帯電において良好な感度を有する感
光体を得ることができた。この構成の電子写真感光体は
前述の様に最上層に有機電荷発生層を設けたものと比較
してSe合金層より成る電荷発生層が機械的強度が良好と
いう点から実用に耐えうるものであったが、複写機やプ
リンター等の高速化、高信頼性という観点ではまだ不充
分である。
As a result, it was possible to obtain a photosensitive member having good sensitivity in bipolar charging. The electrophotographic photoreceptor of this configuration can withstand practical use in that the charge generation layer composed of the Se alloy layer has good mechanical strength as compared with the case where the organic charge generation layer is provided on the uppermost layer as described above. However, it is still insufficient from the viewpoint of high speed and high reliability of copying machines and printers.

従来から感光体表面の機械的強度を向上させるために
感光層上に樹脂保護層を設ける工夫が数多く提案されて
いる。
Hitherto, many proposals have been made to provide a resin protective layer on a photosensitive layer in order to improve the mechanical strength of the photoreceptor surface.

たとえば特開昭57−30843号では保護層樹脂中に金属
粉や金属酸化物等の固有抵抗低下剤で低抵抗化する事に
よって残留電位の上昇を防ぐと共に、この低抵抗保護層
を高絶縁性樹脂、有機金属化合物等で帯電能力の向上及
び接着性向上の機能を付与した中間層を介して感光層上
に設ける試みをおこなって良い結果を得ている。ただ
し、これらの保護層は耐有機溶剤性を有する無機系の感
光層上には比較的容易に形成することができるが、有機
系電子写真感光体や光導電性微粒子を結合樹脂に分散さ
せた感光体など本来機械的強度が弱く保護層の必要な感
光層の上に形成する際には保護層塗工の際に用いる溶媒
等で感光層自体の樹脂等が溶解や変質を受けてしまうと
いった問題点があり、これらの感光体上に良好な保護層
を得られていないのが現状である。
For example, in JP-A-57-30843, the resistance of the protective layer resin is reduced by a specific resistance lowering agent such as a metal powder or a metal oxide to prevent an increase in the residual potential, and the low resistance protective layer has a high insulating property. Attempts have been made to provide a resin, an organometallic compound or the like on the photosensitive layer via an intermediate layer provided with functions of improving the charging ability and the adhesiveness, and have obtained good results. However, these protective layers can be relatively easily formed on the inorganic photosensitive layer having organic solvent resistance, but the organic electrophotographic photosensitive member and the photoconductive fine particles are dispersed in the binding resin. When formed on a photosensitive layer that originally has a weak mechanical strength such as a photoreceptor and requires a protective layer, the resin etc. of the photosensitive layer itself may be dissolved or deteriorated by the solvent used when coating the protective layer. At present, there is a problem that a good protective layer has not been obtained on these photoconductors.

[目 的] そこで本発明の目的は、正負両帯電時において更に良
好な感度を示し、タングステンランプ等を光源としたア
ナログ複写、半導体レーザー等を光源としたデジタル複
写を選択的に行うことができ、かつ耐久性を飛躍的に向
上させた電子写真感光体、及びこの感光体を用いた両極
性電子写真法を提供するものである。
[Purpose] Therefore, an object of the present invention is to provide a better sensitivity in both positive and negative charging, and to selectively perform analog copying using a tungsten lamp or the like as a light source and digital copying using a semiconductor laser or the like as a light source. Another object of the present invention is to provide an electrophotographic photosensitive member having dramatically improved durability and an ambipolar electrophotographic method using the photosensitive member.

[構 成] 本発明の感光体は導電性支持体上に必要に応じて下引
層、第1電荷発生層、電荷移動層、第2電荷発生層、必
要に応じて中間層、保護層の順に積層した構成の電子写
真感光体において、第1電荷発生層を第2電荷発生層よ
り分光的に長波長側の光に感度を有する電荷発生層と
し、電荷移動層と保護層あるいは電荷移動層と中間層と
の中間を耐溶剤性を有する砒素を20〜40wt%含有するSe
系合金より成る第2電荷発生層とすることにより構成さ
れる。
[Construction] The photoreceptor of the present invention comprises an undercoat layer, a first charge generation layer, a charge transfer layer, a second charge generation layer, and, if necessary, an intermediate layer and a protective layer on a conductive support. In the electrophotographic photoreceptor having a configuration in which the charge transfer layers are sequentially stacked, the first charge generation layer is a charge generation layer having sensitivity to light of a longer wavelength side than the second charge generation layer, and the charge transfer layer and the protective layer or the charge transfer layer Containing 20 to 40% by weight of arsenic having solvent resistance in the middle between
The second charge generation layer is made of a base alloy.

また、本発明の電子写真方法は、この感光体を使用し
て可視領域(主として450〜700nm)の波長の光で画像露
光するときは正帯電を印加し、赤外領域(主として700n
m以上)の波長の光で画像露光するときは負帯電を印加
することより構成される。
Further, the electrophotographic method of the present invention applies a positive charge when performing image exposure using light of a wavelength in a visible region (mainly 450 to 700 nm) using this photoreceptor, and applies an infrared region (mainly 700 n
m) is applied by applying a negative charge.

以下に本発明を添付の図面に従って更に詳細に説明す
る。第1図(a),(b),(c),(d)は本発明に
係る感光体の断面図を示しており、そこに付された番号
で1は導電性支持体、2は下引層、3は第1電荷発生
層、4は電荷移動層、5は第2電荷発生層6は中間層、
7は保護層を表している。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. 1 (a), 1 (b), 1 (c) and 1 (d) are cross-sectional views of a photoreceptor according to the present invention. Attraction layer, 3 is a first charge generation layer, 4 is a charge transfer layer, 5 is a second charge generation layer 6 is an intermediate layer,
7 represents a protective layer.

この感光体では正帯電時に感光体表面に正電荷、支持
体と第1電荷発生層あるいは下引層との界面には負電荷
が存在する。これにタングステンランプ等の可視域波長
の光(主として400〜700nm)を照射すると、その領域で
第2電荷発生層により電荷担体(正極性、負極性のペ
ア)の発生が起こり、負極性の担体は感光体表面の正電
荷と中和し、正極性の担体は電荷移動層に注入され支持
体界面側の負電荷に引かれて移動(一般に用いられてい
る電荷移動層は正極性の担体が移動する。)し、前記界
面の負電極と中和する。一方、非露光部には感光体表面
に正電荷が残って静電潜像が形成される。
In this photoreceptor, a positive charge is present on the surface of the photoreceptor when positively charged, and a negative charge is present on the interface between the support and the first charge generation layer or the undercoat layer. When this is irradiated with light in the visible wavelength range (mainly 400 to 700 nm) such as a tungsten lamp, charge carriers (positive and negative pairs) are generated by the second charge generation layer in that region, and negative carriers are generated. Neutralizes the positive charge on the photoreceptor surface, the positive carrier is injected into the charge transfer layer, and is attracted by the negative charge on the interface side of the support. And neutralizes with the negative electrode at the interface. On the other hand, in the non-exposed area, a positive charge remains on the surface of the photoconductor, and an electrostatic latent image is formed.

次に負帯電時には感光体表面に負電荷、支持体と第1
電荷発生層あるいは下引層との界面には正電荷が存在す
る。これに半導体レーザー等の赤外領域の光(主として
700nm以長)を照射すると、この光は第2電荷発生層及
び電荷移動層を通過して第1電荷発生層に到達し、その
領域で第1電荷発生層により電荷担体(正、負極性ペ
ア)の発生が起こり負極性の担体は前記支持体側界面の
正電荷と中和し、正極性の担体は電荷移動層に注入され
感光体表面の負電荷に引かれて移動し、表面の負電荷と
中和する。一方、非露光部には感光体表面に負電荷が残
って静電潜像が形成される。
Next, at the time of negative charging, the surface of the photosensitive member has a negative charge,
Positive charges exist at the interface with the charge generation layer or the undercoat layer. This is reflected in light in the infrared region such as a semiconductor laser (mainly
(700 nm or longer), this light passes through the second charge generation layer and the charge transfer layer and reaches the first charge generation layer, where the charge carriers (positive and negative polarity pairs) are generated by the first charge generation layer. ) Occurs, the negative carrier is neutralized with the positive charge at the support side interface, and the positive carrier is injected into the charge transfer layer and is attracted and moved by the negative charge on the surface of the photoreceptor. And neutralize. On the other hand, in the non-exposed area, a negative charge remains on the surface of the photoconductor, and an electrostatic latent image is formed.

本発明の特徴的なところは第2電荷発生層にSe系合金
を用いているところにある。その可視域光に対する高い
電荷発生能及び高い赤外光透過性により、両極性帯電に
おける良好な感度を得ることができ、またその耐有機溶
剤性により有機材料が露出している場合には非常に困難
であった保護層あるいは中間層、保護層の積層が容易に
できる様になり、機械的強度を飛躍的に向上させること
ができる。
A feature of the present invention resides in that a Se-based alloy is used for the second charge generation layer. Due to its high charge generation ability and high infrared light transmittance for visible light, good sensitivity in ambipolar charging can be obtained. The lamination of the protective layer, the intermediate layer, and the protective layer, which has been difficult, can be facilitated, and the mechanical strength can be dramatically improved.

実際に本発明の感光体を作成するには導電性支持体上
に必要に応じて下引層を形成して、その上に第1電荷発
生層を真空蒸着や塗布により形成し、次いで電荷移動層
を電荷移動性物質を含む樹脂溶液を塗布乾燥することに
よって形成し、その上にSe系合金の第2電荷発生層を真
空蒸着等の方法により設け、更にこの上に保護層あるい
は中間層、保護層をディッピングやスプレー法により塗
布乾燥させて設ければ良い。
To actually prepare the photoreceptor of the present invention, an undercoat layer is formed on a conductive support as necessary, a first charge generation layer is formed thereon by vacuum deposition or coating, and then charge transfer is performed. The layer is formed by applying and drying a resin solution containing a charge transfer material, and a second charge generation layer of a Se-based alloy is provided thereon by a method such as vacuum evaporation, and a protective layer or an intermediate layer is further provided thereon. The protective layer may be provided by coating and drying by dipping or spraying.

ここで導電性支持体としては導電体あるいは導電処理
をした絶縁体が用いられる。
Here, as the conductive support, a conductor or an insulator subjected to a conductive treatment is used.

たとえばAl、Ni、Fe、Cu、Au、等の金属あるいは合
金、ポリエステル、ポリカーボネート、ポリイミド、ガ
ラス等の絶縁性支持体上にAl、Ag、Au等の金属あるいは
In2O3、SnO2等の導電材料の薄膜を形成したもの、導電
処理をした紙等が例示できる。なお導電性支持体の形状
は特に制約はなく、必要に応じて板状、シリンダー状、
ベルト状のものが用いられる。
For example, Al, Ni, Fe, Cu, Au, etc. metal or alloy, polyester, polycarbonate, polyimide, glass or other insulating support Al, Ag, Au or other metal or
Examples thereof include those in which a thin film of a conductive material such as In 2 O 3 and SnO 2 is formed, paper subjected to a conductive treatment, and the like. The shape of the conductive support is not particularly limited, and may be a plate, a cylinder,
A belt-shaped thing is used.

下引層は、帯電性や疲労特性を改良するのに有効であ
り、その体積抵抗は105〜1014Ωcm、好ましくは108〜10
14Ωcmである。中間層の膜厚は0.1〜10μmが適当であ
る。
The undercoat layer is effective for improving the chargeability and fatigue properties, and has a volume resistance of 10 5 to 10 14 Ωcm, preferably 10 8 to 10 Ωcm.
14 Ωcm. The thickness of the intermediate layer is suitably from 0.1 to 10 μm.

この様な機能を有する中間層の材料としては、例えば
ポリアミド樹脂、ポリビニルアルコール、ポリビニルア
セタール、ポリアクリル酸などの樹脂層;あるいはこれ
らの樹脂にTiO2、SnO2、SiO2、MgO、ZnOなどの白色顔料
を分散させたもの;トリメチルモノメトキシシラン、γ
−グリシドキシプロピルトリメトキシシラン等のシラン
カップリング剤;チタンアセチルアセトネート、ジルコ
ニウムアセチルアセトネート等の金属アセチルアセトン
錯体;チタンテトラブトキサイド、ジルコニウムテトラ
ブトキサイド等の金属アルコキサイド等を用いることが
できる。
Examples of the material of the intermediate layer having such a function include resin layers such as polyamide resin, polyvinyl alcohol, polyvinyl acetal, and polyacrylic acid; or TiO 2 , SnO 2 , SiO 2 , MgO, ZnO, etc. White pigment dispersed; trimethylmonomethoxysilane, γ
Silane coupling agents such as glycidoxypropyltrimethoxysilane; metal acetylacetone complexes such as titanium acetylacetonate and zirconium acetylacetonate; and metal alkoxides such as titanium tetrabutoxide and zirconium tetrabutoxide.

第1電荷発生層は、第2電荷発生層よりも長波長光領
域(主として700nm以上)においてあるいはおいても電
荷発生能を有する層であり、この様な材料としては、無
金属フタロシアニン、金属フタロシアニン、スクエアリ
ック染料、アズレニウム染料、トリスアゾ顔料あるいは
Se系合金などを用いることができる。
The first charge generation layer is a layer having a charge generation ability in a light wavelength region (mainly 700 nm or more) or longer than the second charge generation layer. Examples of such a material include metal-free phthalocyanine and metal phthalocyanine. , Squaric dye, azurenium dye, trisazo pigment or
An Se-based alloy or the like can be used.

これらの材料は、真空蒸着や溶媒に溶解させたものを
キャスティングするなどして単独で用いるか、又はこれ
らを粉砕し微粒子化してポリエステル、ポリスチレン、
ポリカーボネート、ポリアクリレート、ポリビニルブチ
ラール、ポリ酢酸ビニル、エチルセルロースなどの樹脂
に分散させて用いられる。
These materials may be used alone, for example, by vacuum evaporation or casting of a solution dissolved in a solvent, or may be pulverized and finely divided into polyester, polystyrene,
It is used by being dispersed in a resin such as polycarbonate, polyacrylate, polyvinyl butyral, polyvinyl acetate, and ethyl cellulose.

この第1電荷発生層の厚さは、0.05〜3μm程度が好
ましい。また、樹脂に分散させて用いる場合、第1電荷
発生層中に占める上記電荷発生物質の量は1〜95重量%
くらいが適当である。
The thickness of the first charge generation layer is preferably about 0.05 to 3 μm. When used in a state of being dispersed in a resin, the amount of the charge generation substance in the first charge generation layer is 1 to 95% by weight.
Is appropriate.

第1電荷発生層上に形成される電荷移動層は、ポリビ
ニルカルバゾール、α−フェニルスチルベン化合物(特
開昭58−198043号)、ヒドラゾン化合物(特開昭55−46
760号)等の電荷輸送性物質を成膜性のある樹脂に溶解
させて形成する。
The charge transfer layer formed on the first charge generation layer comprises polyvinyl carbazole, an α-phenylstilbene compound (JP-A-58-198043), and a hydrazone compound (JP-A-55-46).
No. 760) is dissolved in a film-forming resin.

これは電荷輸送性物質が一般的に低分子量でそれ自身
では成膜性に乏しいためである。この様な成膜性樹脂と
してはポリアミド、ポリウレタン、ポリエステル、エポ
キシ樹脂、ポリケトン、ポリカーボネートなどの縮合樹
脂やポリビニルケトン、ポリスチレン、ポリアクリルア
ミドの様なビニル重合体などが用いられるが、絶縁性で
接着性がありかつ赤外光透過性がある樹脂はすべて使用
できる。必要により可塑剤がこれらの樹脂に加えられる
がそうした可塑剤としてはハロゲン化パラフィン、ポリ
塩化ビフェニル、ジメチルナフタリン、ジブチルフタレ
ートなどが例示できる。
This is because the charge transporting substance is generally low in molecular weight and poor in film forming properties by itself. As such a film-forming resin, a condensation resin such as polyamide, polyurethane, polyester, epoxy resin, polyketone, and polycarbonate, and a vinyl polymer such as polyvinyl ketone, polystyrene, and polyacrylamide are used. Any resin having an infrared light transmitting property can be used. If necessary, a plasticizer may be added to these resins. Examples of such a plasticizer include halogenated paraffin, polychlorinated biphenyl, dimethylnaphthalene, dibutylphthalate, and the like.

電荷移動層の厚さは3〜100μm、好ましくは5〜50
μmが適当である。また電荷移動層に占める電荷輸送物
質の量は10〜95重量%、好ましくは30〜90重量%であ
る。
The thickness of the charge transfer layer is 3 to 100 μm, preferably 5 to 50 μm.
μm is appropriate. The amount of the charge transport material in the charge transfer layer is 10 to 95% by weight, preferably 30 to 90% by weight.

次に形成する第2電荷発生層はSe系合金(Se、Se−T
e、Se−As、Se−As−Te等)が用いられるが、機械的・
熱的安定性よりSe−As系のSe合金が好ましい。この場合
Se−As合金のAs含有量は0.5〜50重量%で、好ましくは2
0〜40重量%である。またハロゲン(I or Cl等)も必要
に応じ含有してもかまわない。ハロゲンの存在量は10〜
10000ppmが適当である。この様に第2電荷発生層は非常
に薄い層のためにSe系合金より成る電子写真感光体(膜
厚50〜60μm)に比較して材料コストが安く済みコスト
の点から有利となる。
The second charge generation layer to be formed next is made of a Se alloy (Se, Se-T
e, Se-As, Se-As-Te, etc.) are used.
Se-As based Se alloys are preferred from the viewpoint of thermal stability. in this case
The As content of the Se-As alloy is 0.5 to 50% by weight, preferably 2 to 50% by weight.
0 to 40% by weight. Further, halogen (I or Cl or the like) may be contained as needed. Halogen abundance is 10 ~
10,000 ppm is appropriate. As described above, the second charge generation layer is very thin, so that the material cost is lower than that of the electrophotographic photoreceptor (film thickness: 50 to 60 μm) made of a Se-based alloy, which is advantageous in terms of cost.

更に中間層、保護層の積層に際し、この材料及び製膜
法については従来の公知の技術を利用することができ
る。
Further, in laminating the intermediate layer and the protective layer, a conventionally known technique can be used for the material and the film forming method.

たとえば中間層は保護層と感光層との接着性を高める
と共に帯電電荷を保護層と感光層との界面に止めて保護
層からの電荷注入による帯電電位の低下を防止するため
の層であるが、この様な機能を有する中間層の材料とし
ては例えばエポキシ樹脂、ポリエステル樹脂、ポリアミ
ド樹脂、ポリスチレン樹脂、ポリ塩化ビニリデン樹脂、
ポリ酢酸ビニル、ポリ塩化ビニル、アクリル樹脂、シリ
コン樹脂、フッ素樹脂等の各種有機高分子化合物;トリ
メチルモノメトキシシラン、γ−グリシドキシプロピル
トリメトキシシラン、γ−メタアクリロキシプロピルト
リメトキシシラン等のシランカップリング剤;チタンテ
トラブトキサイド、アルミニウムトリプロポキサイド、
ジルコニウムテトラブトキサイド等の金属アルコキサイ
ド;チタンアセチルアセトネート、ジルコニウム、アセ
チルアセトネート等の金属アセチルアセトン錯体より形
成される高分子化合物を用いることができる。この中間
層の厚さは通常10μm以下、好ましくは1μm以下であ
る。
For example, the intermediate layer is a layer for increasing the adhesiveness between the protective layer and the photosensitive layer and for stopping the charged charge at the interface between the protective layer and the photosensitive layer to prevent a decrease in the charged potential due to charge injection from the protective layer. As the material of the intermediate layer having such a function, for example, epoxy resin, polyester resin, polyamide resin, polystyrene resin, polyvinylidene chloride resin,
Various organic polymer compounds such as polyvinyl acetate, polyvinyl chloride, acrylic resin, silicone resin, and fluororesin; trimethylmonomethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, etc. Silane coupling agent: titanium tetrabutoxide, aluminum tripropoxide,
Metal alkoxides such as zirconium tetrabutoxide; and high molecular compounds formed from metal acetylacetone complexes such as titanium acetylacetonate, zirconium, and acetylacetonate can be used. The thickness of the intermediate layer is usually 10 μm or less, preferably 1 μm or less.

保護層としては結着剤としての有機高分子化合物に有
機化合物又は無機化合物などの導電制御剤を添加したも
のが用いられる。導電制御剤の具体例としては有機化合
物としてはメタロセン化合物など、無機化合物としては
Au、Ag、Ni、Al等の金属粉末、酸化亜鉛、酸化チタン、
酸化スズ、酸化インジウム、酸化アンチモン含有酸化ス
ズ、酸化スズ含有酸化インジウムなどの金属酸化物粉末
が挙げられる。
As the protective layer, a layer obtained by adding a conductivity controlling agent such as an organic compound or an inorganic compound to an organic polymer compound as a binder is used. Specific examples of the conductivity control agent include metallocene compounds as organic compounds and inorganic compounds as
Metal powders such as Au, Ag, Ni, Al, zinc oxide, titanium oxide,
Metal oxide powders such as tin oxide, indium oxide, tin oxide containing antimony oxide, and indium oxide containing tin oxide are exemplified.

これらの粉末の粒径は0.05〜0.3μmが好ましく、ま
たその使用量は結着樹脂100重量部に対し20〜80重量部
が好ましい。一方、これらの導電制御剤と併用される結
着樹脂としてはシリコン樹脂、ポリウレタン樹脂、アク
リル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、
スチレン樹脂、エポキシ樹脂等の通常の市販の樹脂が例
示できる。この保護層の厚さは通常0.1〜10μm、好ま
しくは2〜7μmである。この厚さが0.1μm以下では
保護層の機械的強度が弱く、かつ耐摩耗性が小さく、長
期の使用に対して保護膜としての効果がなくなり10μm
以上では保護層中に電荷が蓄積され、くり返し使用時に
残留電位が増大する。
The particle size of these powders is preferably 0.05 to 0.3 μm, and the amount used is preferably 20 to 80 parts by weight based on 100 parts by weight of the binder resin. On the other hand, as the binder resin used in combination with these conductivity control agents, silicone resin, polyurethane resin, acrylic resin, polyester resin, polycarbonate resin,
Typical commercial resins such as styrene resin and epoxy resin can be exemplified. The thickness of this protective layer is usually 0.1 to 10 μm, preferably 2 to 7 μm. When the thickness is 0.1 μm or less, the mechanical strength of the protective layer is weak, and the abrasion resistance is small.
As described above, charges are accumulated in the protective layer, and the residual potential increases during repeated use.

本発明に係る積層型電子写真感光体は上記の様な構成
をとるものであるが、支持体としてガラスや樹脂にIn2O
3、SnO2等の導電材料の薄膜を形成した透明導電性支持
体を使用して、光照射を支持体側からおこなう場合に
は、支持体(下引層)、第2電荷発生層、電荷移動層、
第1電荷発生層(ただし、この時は耐溶剤性のあるSe合
金層より成る)、(中間層)、保護層の順に積層した構
成であっても、本発明と同様な両極性感光体としての機
能を果たすことは言うまでもない。
Multilayer type electrophotographic photoreceptor according to the present invention but is intended to take such a structure described above, an In 2 O in glass or resin as the support
3. When light irradiation is performed from the support side using a transparent conductive support formed with a thin film of a conductive material such as SnO 2 , the support (undercoat layer), the second charge generation layer, the charge transfer layer,
The first charge generation layer (in this case, composed of a solvent-resistant Se alloy layer), an (intermediate layer), and a protective layer are laminated in this order to form a bipolar photoconductor similar to the present invention. It goes without saying that it fulfills the function of

また電荷移動層を負電荷担体の移動度が大きいものと
して、本発明と同様な構成をとれば負帯電−アナログ複
写、正帯電−デジタル複写の機能を有する感光体とな
る。ただし、負電荷担体移動度の大きい電荷移動層を形
成することが難しいという問題がある。
If the charge transfer layer has a high mobility of the negative charge carrier and has the same configuration as the present invention, a photoreceptor having the functions of negative charge-analog copying and positive charge-digital copying can be obtained. However, there is a problem that it is difficult to form a charge transfer layer having a large negative charge carrier mobility.

次にこの感光体を用いた画像形成法について説明をお
こなう。
Next, an image forming method using this photoconductor will be described.

既に述べた様にこの感光体に正帯電を施し、可視光に
よる画像露光をおこなうと、感光体表面上には正電荷に
よる静電潜像が形成される。
As described above, when the photosensitive member is positively charged and the image is exposed to visible light, an electrostatic latent image is formed on the surface of the photosensitive member by the positive charge.

これを負極性のトナー(検電微粒子)で現像すればポ
ジ画像が得られる(正帯電でのアナログ複写)。
If this is developed with a toner of negative polarity (electric detection fine particles), a positive image can be obtained (analog copying with positive charge).

一方、感光体上に負帯電を施し、半導体レーザー等の
赤外光でイメージ露光をおこなうと露光を受けなかった
部分の感光体表面上には負電荷による静電潜像が形成さ
れる。これを正極性トナーで現像すればネガ画像が得ら
れる。あるいは負帯電トナーを使用して反転現像をおこ
なえばポジ画像が得られる。(負帯電でのデジタル複
写)。
On the other hand, when the photosensitive member is negatively charged and image exposure is performed with infrared light from a semiconductor laser or the like, an electrostatic latent image due to the negative charge is formed on the surface of the photosensitive member that has not been exposed. If this is developed with a positive polarity toner, a negative image can be obtained. Alternatively, if reversal development is performed using negatively charged toner, a positive image can be obtained. (Digital copying with negative charge).

上記より明らかな様に、正帯電でのアナログ複写と反
転現像による負帯電でのデジタル複写という両機能を有
する複写機を設計する場合、この感光体を使用すれば、
現像系も負帯電トナーを使用する1組で済み、非常にコ
ンパクトで低コストの複写機を設計することができる。
As is clear from the above, when designing a copying machine having both functions of analog copying with positive charging and digital copying with negative charging by reversal development, if this photoconductor is used,
The development system can be a single set using negatively charged toner, and a very compact and low-cost copying machine can be designed.

以下に実施例によって本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 アルミ製シリンダー状支持体(外径80mmφ、長さ340m
m)に下記組成比の混合物 TiO2(石原産業社製タイペーク) 1重量部 ポリアミド樹脂(東レ社製CM−8000) 1重量部 メタノール 25重量部 をボールミルで12時間分散し調製した中間層形成液を乾
燥後の膜厚が約2μmになる様に浸漬法で塗工し、中間
層を形成した。
Example 1 Aluminum cylindrical support (outer diameter 80 mmφ, length 340 m)
m) 1 part by weight of a mixture having the following composition ratio TiO 2 (Taipec manufactured by Ishihara Sangyo Co., Ltd.) 1 part by weight of polyamide resin (CM-8000 manufactured by Toray Industries, Inc.) 1 part by weight Methanol 25 parts by weight was dispersed in a ball mill for 12 hours to prepare an intermediate layer forming liquid. Was applied by an immersion method so that the film thickness after drying was about 2 μm to form an intermediate layer.

この中間層上に下記トリスアゾ顔料を含む混合物をボ
ールミルで48時間分散し、 ポリエステル樹脂(東洋紡社製バイロン200) 12重量部 シクロヘキサノン 360重量部 これをシクロヘキサノン:メチルエチルケトン(ME
K)=1:1(重量比)の混合溶媒500重量部で希釈して調
製した分散液を浸漬法で塗工し、約0.15μm厚の第1電
荷発生層を形成した。
A mixture containing the following trisazo pigment was dispersed on the intermediate layer by a ball mill for 48 hours, Polyester resin (Toyobo's Byron 200) 12 parts by weight Cyclohexanone 360 parts by weight Cyclohexanone: methyl ethyl ketone (ME
A dispersion prepared by diluting with 500 parts by weight of a mixed solvent (K) = 1: 1 (weight ratio) was applied by a dipping method to form a first charge generation layer having a thickness of about 0.15 μm.

次いでこの第1電荷発生層上に下記組成の塗工液を乾
燥後の膜厚が約20μm ポリカーボネート樹脂(帝人社製パンライトC−1400)
150重量部 テトラヒドロフラン 910重量部 シリコンオイル(信越化学社製KF50) 0.03重量部 になる様に浸漬法で塗工して電荷移動層を設けた。
Next, a coating liquid having the following composition was dried on the first charge generation layer to a thickness of about 20 μm. Polycarbonate resin (Panelite C-1400 manufactured by Teijin Limited)
150 parts by weight Tetrahydrofuran 910 parts by weight Silicon oil (KF50 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied by an immersion method to 0.03 parts by weight to form a charge transfer layer.

更に上記の各層が形成された支持体を図−2で示す真
空蒸着装置のマンドレル部13にセットして、真空層11内
を10-5torr以下に真空排気し、支持体12の温度を80℃に
加熱保持した状態で蒸発源15を加熱しAsを35.5重量%含
有したSe−As合金16を膜厚が1μmになる様に蒸着して
第2電荷発生層を形成した。
Further, the support on which the above layers were formed was set on the mandrel portion 13 of the vacuum evaporation apparatus shown in FIG. 2, and the inside of the vacuum layer 11 was evacuated to 10 −5 torr or less, and the temperature of the support 12 was reduced to 80 ° C. The heating source 15 was heated while keeping the temperature at ℃, and a Se—As alloy 16 containing 35.5% by weight of As was deposited to a thickness of 1 μm to form a second charge generation layer.

更にこの第2電荷発生層上にメチルシリルイソシアネ
ート10重量部、テトラシリルイソシアネート10重量部、
酢酸ブチル80重量部から成る混合溶液をディッピング法
により塗布し、25℃60%RHにて2時間乾燥し、約2000Å
の中間層を設けた。
Further, 10 parts by weight of methylsilyl isocyanate, 10 parts by weight of tetrasilyl isocyanate,
A mixed solution consisting of 80 parts by weight of butyl acetate is applied by a dipping method, and dried at 25 ° C. and 60% RH for 2 hours.
Was provided.

最後にこの上にアクリルポリオール(スチレン−メタ
クリル酸−メタクリル酸2ヒドロキシエチルから成る共
重合体)15重量部、酸化アンチモン10重量%含有酸化ス
ズ粉末20重量部、溶媒適当量をボールミルで72時間分散
混合した後、ポリイソシアネート系硬化剤5重量部を加
えた溶液をディッピング法にて塗布し乾燥(80℃2hr)
させ約5μmの保護層を形成し感光体No.1を作成した。
Finally, 15 parts by weight of an acrylic polyol (copolymer of styrene-methacrylic acid-dihydroxyethyl methacrylate), 20 parts by weight of tin oxide powder containing 10% by weight of antimony oxide, and an appropriate amount of a solvent are dispersed on the ball mill for 72 hours. After mixing, a solution containing 5 parts by weight of a polyisocyanate-based curing agent is applied by dipping and dried (80 ° C. for 2 hours).
Then, a protective layer having a thickness of about 5 μm was formed.

この様にして作成した感光体は中間層、保護層の形成
時に電荷移動層が溶剤等により溶解、変質することは全
くなかった。
In the photoreceptor thus prepared, the charge transfer layer was not dissolved or deteriorated by a solvent or the like at the time of forming the intermediate layer and the protective layer.

この様にして得た感光体の正・負両極性帯電時におけ
る分光感度を第4図に示す。可視域光及び赤外光で良好
な感度を示すことがわかる。
FIG. 4 shows the spectral sensitivities of the photoreceptor obtained in this manner during positive and negative polarity charging. It can be seen that good sensitivity is exhibited in visible light and infrared light.

比較例1 実施例1と同一の支持体上に、実施例1と全く同様の
中間層、第1電荷発生層、電荷移動層を形成した。
Comparative Example 1 On the same support as in Example 1, an intermediate layer, a first charge generation layer and a charge transfer layer were formed exactly as in Example 1.

この上に シクロヘキサノン 300重量部 をボールミルで48時間粉砕分散した後、ポリスチレン
(電気化学社製HRM)30重量部を加え、シクロヘキサノ
ン:MEK=1:1(重量比)の混合溶媒400重量部で希釈した
分散液をスプレー法で塗工し、約1μm厚の第2電荷発
生層を形成した。
On this After 300 parts by weight of cyclohexanone is pulverized and dispersed by a ball mill for 48 hours, 30 parts by weight of polystyrene (HRM manufactured by Denki Kagaku Co., Ltd.) is added, and the dispersion is diluted with 400 parts by weight of a mixed solvent of cyclohexanone: MEK = 1: 1 (weight ratio). Was applied by a spray method to form a second charge generation layer having a thickness of about 1 μm.

この第2電荷発生層の上に実施例1と同様にして中間
層、保護層を積層しようとしたところ、中間層形成液中
に浸漬した際に感光層が溶解してしまい、うまく製膜す
ることができなかった。
When an intermediate layer and a protective layer were to be laminated on the second charge generation layer in the same manner as in Example 1, the photosensitive layer was dissolved when immersed in an intermediate layer forming solution, and the film was formed successfully. I couldn't do that.

比較例2 中間層と保護層が積層されていない以外は実施例1と
全く同様の感光体を作成した。
Comparative Example 2 A photoconductor was produced in exactly the same manner as in Example 1 except that the intermediate layer and the protective layer were not laminated.

これらの感光体を第3図で示される複写機にセットし
てテストを行なった。
These photoconductors were set in a copying machine shown in FIG. 3 and a test was conducted.

実施例1の感光体を用いて正帯電によるアナログ画像
を得るため、まず正帯電器22に6kvの電圧を印加して感
光体21表面に800Vを帯電させ、アナログ光(可視域光)
光学系23(ハロゲンランプ光)による画像露光した後現
像(負極性トナー)、転写、定着したところ、非常に鮮
明な画像が得られた。
In order to obtain a positively charged analog image using the photoconductor of the first embodiment, first, a voltage of 6 kv is applied to the positive charger 22 to charge the surface of the photoconductor 21 with 800 V, and analog light (visible light) is applied.
After image exposure using the optical system 23 (halogen lamp light), development (negative toner), transfer, and fixation, a very clear image was obtained.

一方、負帯電によるデジタル画像を得るために、負帯
電器24に−6KVの電圧を印加して感光体表面に−800Vを
帯電させデジタル光(赤外光)光学系25(半導体レーザ
ー光(780mm))にてイメージ露光をおこない反転現像
(負極性トナー)により露光部分を現像、転写、定着し
た結果、正帯電時と同様に鮮明なデジタル画像が得られ
た。
On the other hand, in order to obtain a digital image by negative charging, a voltage of -6 KV is applied to the negative charger 24 to charge the surface of the photoreceptor with -800 V, and the digital light (infrared light) optical system 25 (semiconductor laser light (780 mm )), Image exposure was performed, and the exposed portion was developed, transferred and fixed by reversal development (negative toner). As a result, a clear digital image was obtained as in the case of positive charging.

この様にしてくり返し画像を採取した結果30万サイク
ルを越えても両極性において鮮明な画像が得られた。
As a result of repeatedly collecting images in this manner, clear images were obtained in both polarities even after 300,000 cycles.

これと比較して比較例2の感光体を用いて同様のテス
トを行なったところ、2万サイクルまでは実施例1と同
様な鮮明な画像が得られたが、2万5千サイクル程度か
ら第2電荷発生層にキズがつき、アナログ画像の時に黒
いスジ状の異常が発生する様になって実用上耐えられな
くなった。
In comparison with this, a similar test was performed using the photoreceptor of Comparative Example 2. As a result, a clear image similar to that of Example 1 was obtained up to 20,000 cycles. The two charge generation layers were scratched, and black streak-like abnormalities occurred at the time of analog images, making it practically unbearable.

これより明らかな様に第2電荷発生層上に保護層を設
けることによって、その耐久性が飛躍的に向上している
ことがわかる。
As is clear from this, it can be seen that the durability is significantly improved by providing the protective layer on the second charge generation layer.

比較例3 実施例1の第2電荷発生層におけるSe−As合金中のAs
を5wt%とした以外は同様にして比較例3の感光体を作
製した。
Comparative Example 3 As in the Se—As alloy in the second charge generation layer of Example 1
The photoreceptor of Comparative Example 3 was prepared in the same manner except that the content was changed to 5 wt%.

本感光体は、保護層形成の際加熱されることにより、
第2電荷発生層が結晶化をおこし、保護層の剥離や、画
像のムラが発生する等の問題が生じ、実用に耐えなかっ
た。
The photoreceptor is heated when forming the protective layer,
The second charge generation layer was crystallized, causing problems such as peeling of the protective layer and unevenness of the image.

[効 果] 以上説明したことから明らかなように、本発明の構成
による感光体は、アナログ複写、デジタル複写という二
つの機能を併せ有するものであり、このように一つの感
光体において両機能の保持を実現したことによって、コ
ンパクトでしかも低コストの多機能複写機の設計が可能
となる。また、本発明の感光体は機械的強度が改善され
耐久性もすぐれており、鮮明な画像を安定して得ること
ができるという顕著な効果を奏するものである。
[Effects] As is clear from the above description, the photoreceptor according to the configuration of the present invention has two functions, analog copying and digital copying, and thus one photoconductor has both functions. The realization of the holding makes it possible to design a compact and low-cost multifunctional copying machine. Further, the photoreceptor of the present invention has improved mechanical strength and excellent durability, and has a remarkable effect that a clear image can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b),(c),(d)は、本発明の感
光体の断面を説明する図、第2図は、真空蒸着装置、第
3図は本発明の電子写真法を説明する図、第4図は、実
施例1で得た感光体の正負両極性帯電時における分光感
度(800V→400V)を示す図。 1……導電性支持体、2……下引層、 3……第1電荷発生層、4……電荷移動層、 5……第2電荷発生層、6……中間層、7……保護層、 21……感光体、22……正帯電器、24……負帯電器、 23……アナログ光(可視域光)光学系、 25……デジタル光(赤外光)光学系。
1 (a), (b), (c) and (d) are views for explaining the cross section of the photoreceptor of the present invention, FIG. 2 is a vacuum deposition apparatus, and FIG. 3 is an electrophotograph of the present invention. FIG. 4 is a diagram for explaining the method, and FIG. 4 is a diagram showing the spectral sensitivity (800 V → 400 V) of the photoconductor obtained in Example 1 when charging both positive and negative polarities. DESCRIPTION OF SYMBOLS 1 ... Conductive support, 2 ... Undercoat layer, 3 ... First charge generation layer, 4 ... Charge transfer layer, 5 ... Second charge generation layer, 6 ... Intermediate layer, 7 ... Protection Layer 21 Photoconductor 22 Positive charger 24 Negative charger 23 Analog light (visible light) optical system 25 Digital optical (infrared light) optical system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 孝一 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (72)発明者 六反園 節 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (72)発明者 納所 伸二 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 昭58−203446(JP,A) 特開 昭60−263946(JP,A) 特開 昭60−250348(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Oshima 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company Limited (72) Inventor Rokutanen Section 1-3-3 Nakamagome, Ota-ku, Tokyo No. 6 Inside Ricoh Company, Ltd. (72) Inventor Shinji Narisho 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company Limited (56) References JP-A-58-203446 (JP, A) JP-A Sho 60-263946 (JP, A) JP-A-60-250348 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性支持体上に必要に応じて下引層、第
1電荷発生層、電荷移動層、第2電荷発生層、必要に応
じて中間層、保護層の順に積層した構成の電子写真用感
光体において、第2電荷発生層を砒素を20〜40wt%含有
するSe合金層とし、第1電荷発生層を第2電荷発生層よ
りも分光的に長波長側の光に光電荷発生能を有する電荷
発生層としたことを特徴とする積層型両極性電子写真感
光体。
1. A structure in which an undercoat layer, a first charge generation layer, a charge transfer layer, a second charge generation layer, an intermediate layer, and a protective layer, if necessary, are laminated on a conductive support in this order. In the electrophotographic photoreceptor, the second charge generation layer is a Se alloy layer containing 20 to 40 wt% of arsenic, and the first charge generation layer is a photocharge which is spectrally longer than the second charge generation layer. A laminated bipolar electrophotographic photoreceptor comprising a charge generating layer having a generating ability.
【請求項2】導電性支持体上に必要に応じて下引層、第
1電荷発生層、電荷移動層、第2電荷発生層、必要に応
じて中間層、保護層の順に積層した構成の電子写真用感
光体において、第2電荷発生層を砒素を20〜40wt%含有
するSe合金層とし、第1電荷発生層を第2電荷発生層よ
りも分光的に長波長側の光に光電荷発生能を有する電荷
発生層とした両極性電子写真用感光体を使用し画像形成
を行う方法において、可視領域(主として400〜700nm)
の波長の光で画像露光するときは正帯電を印加し、赤外
領域(主として700nm以上)の波長の光で画像露光する
ときは負帯電を印加することを特徴とする電子写真方
法。
2. A structure in which an undercoat layer, a first charge generation layer, a charge transfer layer, a second charge generation layer, an intermediate layer, and a protective layer as necessary are laminated on a conductive support in this order. In the electrophotographic photoreceptor, the second charge generation layer is a Se alloy layer containing 20 to 40 wt% of arsenic, and the first charge generation layer is a photocharge which is spectrally longer than the second charge generation layer. In the method of forming an image using an ambipolar electrophotographic photoreceptor having a charge generating layer having a generating ability, a visible region (mainly 400 to 700 nm) is used.
An electrophotographic method characterized in that a positive charge is applied when performing image exposure with light having a wavelength of, and a negative charge is applied when performing image exposure with light having a wavelength in the infrared region (mainly 700 nm or more).
JP62129824A 1987-05-28 1987-05-28 Electrophotographic photoreceptor and electrophotographic method using the same Expired - Lifetime JP2599717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62129824A JP2599717B2 (en) 1987-05-28 1987-05-28 Electrophotographic photoreceptor and electrophotographic method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129824A JP2599717B2 (en) 1987-05-28 1987-05-28 Electrophotographic photoreceptor and electrophotographic method using the same

Publications (2)

Publication Number Publication Date
JPS63296056A JPS63296056A (en) 1988-12-02
JP2599717B2 true JP2599717B2 (en) 1997-04-16

Family

ID=15019127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129824A Expired - Lifetime JP2599717B2 (en) 1987-05-28 1987-05-28 Electrophotographic photoreceptor and electrophotographic method using the same

Country Status (1)

Country Link
JP (1) JP2599717B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149570A (en) * 1989-11-07 1991-06-26 Minolta Camera Co Ltd Image forming method and bipolar photosensitive body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410616A (en) * 1982-05-10 1983-10-18 Xerox Corporation Multi-layered ambipolar photoresponsive devices for electrophotography

Also Published As

Publication number Publication date
JPS63296056A (en) 1988-12-02

Similar Documents

Publication Publication Date Title
US4426435A (en) Process for forming an electrophotographic member having a protective layer
JPH1055077A (en) Electrophotographic photoreceptor
US4409309A (en) Electrophotographic light-sensitive element
JPH0943886A (en) Electrophotographic photoreceptor
JP4042646B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JPH0243175B2 (en)
JP2599717B2 (en) Electrophotographic photoreceptor and electrophotographic method using the same
JP2717533B2 (en) Electrophotographic photoreceptor
JPS63159865A (en) Electrophotographic sensitive body
JPH0353628B2 (en)
JPH0862862A (en) Electrophotographic image forming device
JP2675035B2 (en) Electrophotographic photoreceptor
EP0536692B2 (en) Use of a photoconductor in an electrophotographic apparatus employing contact charging
CA2004508C (en) Process for preparing an electrophotographic imaging member
JP2506694B2 (en) Electrophotographic photoreceptor
JPH08184979A (en) Electrophotographic photoreceptor and electrophotographic device
JPH0353627B2 (en)
JP2595234B2 (en) Electrophotographic photoreceptor
JP2689562B2 (en) Electrophotographic photoreceptor
JPH0727265B2 (en) Multilayer photoconductor
JPH0727263B2 (en) Multilayer photoconductor
JPH027057B2 (en)
JPS63273869A (en) Electrophotographic sensitive body and electrophotographic method using it
US20190094723A1 (en) Image forming method and image forming device
JP2005189764A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus