JP2599693B2 - High-voltage test equipment simulating the capacitance of the distribution system to ground - Google Patents

High-voltage test equipment simulating the capacitance of the distribution system to ground

Info

Publication number
JP2599693B2
JP2599693B2 JP6120838A JP12083894A JP2599693B2 JP 2599693 B2 JP2599693 B2 JP 2599693B2 JP 6120838 A JP6120838 A JP 6120838A JP 12083894 A JP12083894 A JP 12083894A JP 2599693 B2 JP2599693 B2 JP 2599693B2
Authority
JP
Japan
Prior art keywords
power
test
capacitance
ground
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6120838A
Other languages
Japanese (ja)
Other versions
JPH07294583A (en
Inventor
健次 渕上
Original Assignee
健次 渕上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健次 渕上 filed Critical 健次 渕上
Priority to JP6120838A priority Critical patent/JP2599693B2/en
Publication of JPH07294583A publication Critical patent/JPH07294583A/en
Application granted granted Critical
Publication of JP2599693B2 publication Critical patent/JP2599693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気設備における配電
系統の工事竣工前の各シーケンスチェックおよび調整時
に使用される高圧試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage test apparatus used at the time of each sequence check and adjustment before the completion of construction of a distribution system in electric equipment.

【0002】[0002]

【従来の技術】従来、電気設備における配電系統の受電
前の電気的予備試験は、配電設備におけるシーケンスを
模擬した仮想の接点信号などで行い、受電後に正規の電
源による検証を行っている。また、非常用電源設備、例
えば電気設備の最終的なバックアップ電源である非常用
発電機の発電系統におけるシーケンス試験および調整
は、商用電力を受電点で停電させ、非常用発電機負荷の
運転を確認すると同時にこの非常用発電機の発電運転中
に行われ、これら一連の試験および調整は受電後の総合
試運転で全ての検証を行っている。
2. Description of the Related Art Conventionally, an electrical preliminary test of a power distribution system in a power distribution system before power reception is performed using a virtual contact signal or the like simulating a sequence in the power distribution system, and after power reception, verification with a regular power supply is performed. In addition, sequence tests and adjustments in the emergency power supply equipment, for example, in the power generation system of the emergency generator, which is the final backup power supply for the electrical equipment, are to stop the commercial power at the receiving point and check the operation of the emergency generator load At the same time, this test is performed during the operation of the emergency generator, and a series of tests and adjustments are performed in a comprehensive test run after receiving power.

【0003】[0003]

【発明が解決しようとする課題】電算センター、病院な
どの重要施設には一般商用電源の他に予備線、発電機、
蓄電池、交流無停電電源装置などの複数電源が設置さ
れ、通常の設備電源である一般商用電源の喪失時には、
これらバックアップ電源が自動起動あるいは人為的な切
替え操作により供給される。ところが、これらの切替え
操作は電源数に累乗して複雑化し、その正確な理解と非
常時における確実な操作の習得は容易でない。このた
め、この切替え操作の試験に仮想の電気接点などを用い
ることは、シーケンス上誤解のもとであり、従来の技術
における、受電前の電気的予備試験を配電設備における
シーケンスを模擬した仮想の接点信号などで行い、受電
後に正規の電源による検証を行うという方法において
は、受電開始時の試充電試験でのトラブルが多いという
問題点があった。一般に受電後の工事工程は切迫してお
り、このトラブルの発生においてはその改修に時間的制
約が課せられ十分な検証が行えないという問題点があ
る。また、非常用発電機の発電に係る細部にわたるシー
ケンス試験および調整には長時間にわたる非常用発電機
の発電電力の確保が必要である。しかし、この期間は大
容量発電機に対して殆ど無負荷の運転となるために、非
常用発電機の主流となっているディーゼル機関では未燃
焼カーボンによる障害が発生し30分間以上の継続運転
はさけなければならず、このため試験および調整に時間
的制約を受け十分な試験ができないという問題点があ
る。さらにまた、近年の配電系統では、市街地での高圧
ケーブルの地中敷設化の多用、さらにはサージ吸収用コ
ンデンサの設置などによって、従来10アンペア以内で
あった1線地絡電流が25〜35アンペアに急増してい
るものが多い。この1線地絡電流の増加は、地絡故障時
の零相電圧の発生値を低下させ、零相電圧を動作要素の
一つとしている方向性地絡継電器の動作を困難にする。
このような現状においては、実際の系統で方向性地絡継
電器の動作を確認することがその機能判定を行う上で不
可欠なものとなっているが、その最も有効な動作確認試
験である人工地絡試験は一般配電系統では行うことはで
きないという問題点がある。本発明は、従来技術の上記
のような問題点に鑑み、その試験回路に複数の出力電源
を持つとともに、実際の高圧配電系統に近い大容量の対
地間静電容量を持つ試験装置を提供して、複数電源の切
替え試験を正式受電以前に実施できるようにする。また
同時に方向性地絡継電器の動作判定を容易かつその判定
の信頼性を格段に高めることができるようにして、受電
設備の信頼性を向上させ、受電以降の総合設備機器試運
転が円滑に行われることを目的とするものである。
In important facilities such as a computer center and a hospital, a spare line, a generator,
When multiple power supplies such as storage batteries and AC uninterruptible power supplies are installed, and when the general commercial power
These backup power supplies are supplied by automatic activation or manual switching operation. However, these switching operations are complicated by the power of the number of power supplies, and it is not easy to accurately understand them and to learn reliable operations in an emergency. For this reason, the use of virtual electrical contacts or the like for the test of this switching operation is a source of misunderstanding in the sequence. In the method of performing verification using a regular power supply after receiving power by using a contact signal or the like, there is a problem that there are many troubles in a trial charging test at the start of power reception. In general, the construction process after receiving power is imminent, and when this trouble occurs, there is a problem that a time constraint is imposed on the repair and sufficient verification cannot be performed. In addition, it is necessary to secure the power generated by the emergency generator for a long period of time for the detailed sequence test and adjustment related to the power generation of the emergency generator. However, during this period, the operation of the large-capacity generator is almost no-load, so the diesel engine, which is the mainstream of emergency generators, suffers a failure due to unburned carbon and continuous operation for more than 30 minutes Therefore, there is a problem that a sufficient test cannot be performed due to time constraints on the test and adjustment. Furthermore, in recent power distribution systems, due to the frequent use of underground high-voltage cables in urban areas and the installation of surge-absorbing capacitors, a single-line ground fault current of less than 10 amps has been reduced to 25 to 35 amps. Many are increasing rapidly. The increase in the one-line ground fault current lowers the value of the zero-phase voltage generated at the time of the ground fault, and makes it difficult to operate the directional ground fault relay using the zero-phase voltage as one of the operation elements.
Under these circumstances, it is indispensable to check the operation of the directional ground fault relay in the actual system to determine its function. There is a problem that the short-circuit test cannot be performed in the general distribution system. The present invention has been made in view of the above-described problems of the prior art, and provides a test apparatus having a plurality of output power supplies in a test circuit thereof and having a large capacitance to ground close to an actual high-voltage distribution system. Therefore, it is possible to execute the switching test of multiple power supplies before formal power reception. At the same time, the operation of the directional ground fault relay can be easily determined and the reliability of the determination can be significantly improved, thereby improving the reliability of the power receiving equipment and smoothly performing the trial operation of the comprehensive equipment after the power reception. The purpose is to do so.

【0004】[0004]

【課題を解決するための手段】このため本発明では、配
電系統の対地間静電容量を模擬した高圧試験装置を、入
力電源を変圧器を介して昇圧し、その出力電源を複数の
試験回路に供給できるようにするとともに、高圧出力側
に電気的に連結される接地コンデンサを備えるようにし
たものである。
Therefore, according to the present invention, a high voltage test apparatus simulating the capacitance of a power distribution system to ground is provided by boosting an input power supply via a transformer and connecting the output power supply to a plurality of test circuits. And a ground capacitor electrically connected to the high voltage output side.

【0005】[0005]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明に係る配電系統の対地間静電容量を
模擬した高圧試験装置の電気回路の単線結線図、図2は
被試験回路の単線結線図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a single-line diagram of an electric circuit of a high-voltage test apparatus simulating the electrostatic capacitance to the ground of a power distribution system according to the present invention, and FIG. 2 is a single-line diagram of a circuit under test.

【0006】図1に示すように本発明に係る高圧試験装
置は、昇圧比210V/6,600V,容量75KVA
の昇圧変圧器1と該昇圧変圧器1の二次側に電気的に接
続された接地用コンデンサ2a,2bとにより構成され
ている。該接地用コンデンサ2a,2bはダブルスター
結線方式の電力用コンデンサが使用されており、その容
量は各々50KVar、3.05μF/相である。前記
昇圧変圧器1の二次側には出力端子3,4が設けてあ
り、該出力端子3,4より出力電源を取り出すことによ
り、二つの試験回路を構成することができる。次に本高
圧試験装置による工事竣工前の試験調整における上記二
つの試験回路による複数電源の切替え方法を図1および
図2において説明する。出力端子3と端子9との間を高
圧ケーブル(図示せず)により接続し、商用電力常用回
路を模擬させる。また出力端子4と端子10との間を高
圧ケーブル(図示せず)により接続し、商用電力予備回
路を模擬させる。この時点において本高圧試験装置の端
子5は開放しておく。この二つの回路にはサーキットブ
レーカーS0 8を閉路することにより、商用電力を模
擬した高圧電力が昇圧変圧器1により昇圧されて需要設
備側の一般負荷16に、また蓄電池17および交流無停
電電源装置18を介して重要負荷19に供給されるが、
この供給はスイッチS1 6、スイッチS2 7を開閉
することにより商用常用回路と商用予備回路の切替え試
験を行うことができる。この模擬商用常用回路と模擬商
用予備回路は、需要設備側の切替器DT14を切り換え
ることにより需要設備側への供給を遮断することがで
き、この遮断を商用電力供給ストップとして模擬するこ
とができるが、この状態において商用電力供給ストップ
を想定した非常用発電機13の自己起動および停止の各
試験、さらには重要負荷19への電源供給における電気
回路のシーケンスチェック等その電気系統の検証、また
非常用発電機13の原動機側の機械系の動作機能を含め
た検証を行うことができる。この様に前記商用常用回路
と商用予備回路の切替え試験と合わせてシステム全体の
切替え試験を行うことができる。工事の進捗状況によっ
ては非常用発電機13の運転が不可能な場合も多いが、
この様な場合には、端子4と端子10との接続を端子4
と端子11との接続に切替えると同時に非常用発電機1
3の出力側回路12を開放して非常用発電機13の運転
を模擬し、非常用発電機13の原動機側の機械系の検証
以外の前記と同様の試験を行うことができる。この電源
切替え操作はスイッチS1 6、スイッチS2 7を開
閉させることによりなされる。
As shown in FIG. 1, a high-voltage test apparatus according to the present invention has a step-up ratio of 210 V / 6,600 V and a capacity of 75 KVA.
And the grounding capacitors 2a and 2b electrically connected to the secondary side of the step-up transformer 1. As the grounding capacitors 2a and 2b, power capacitors of a double star connection type are used, and their capacities are 50 KVar and 3.05 μF / phase, respectively. Output terminals 3 and 4 are provided on the secondary side of the step-up transformer 1, and two test circuits can be configured by extracting output power from the output terminals 3 and 4. Next, a method of switching between a plurality of power supplies by the above two test circuits in test adjustment before the completion of construction by the high-voltage test apparatus will be described with reference to FIGS. The output terminal 3 and the terminal 9 are connected by a high voltage cable (not shown) to simulate a commercial power commercial circuit. The output terminal 4 and the terminal 10 are connected by a high-voltage cable (not shown) to simulate a commercial power backup circuit. At this time, the terminal 5 of the high-pressure test apparatus is left open. By closing the circuit breaker S08 in these two circuits, high-voltage power simulating commercial power is boosted by the step-up transformer 1 to the general load 16 on the demand equipment side, as well as the storage battery 17 and the AC uninterruptible power supply. 18 to the critical load 19,
This supply can be performed by opening and closing the switches S16 and S27 to perform a switching test between the commercial service circuit and the commercial backup circuit. The simulated commercial service circuit and the simulated commercial standby circuit can cut off the supply to the demand equipment side by switching the switch DT14 on the demand equipment side, and this cutoff can be simulated as a commercial power supply stop. In this state, each test of the self-starting and stopping of the emergency generator 13 assuming that the commercial power supply is stopped, and further, verification of the electric system such as sequence check of the electric circuit in the power supply to the important load 19, and emergency use Verification including the operation function of the mechanical system on the prime mover side of the generator 13 can be performed. In this manner, the switching test of the entire system can be performed in combination with the switching test of the commercial service circuit and the commercial backup circuit. Although the operation of the emergency power generator 13 is often impossible depending on the progress of the construction,
In such a case, the connection between the terminal 4 and the terminal 10 is established by the terminal 4
Emergency generator 1 at the same time as switching to connection between
3, the output side circuit 12 is opened to simulate the operation of the emergency generator 13, and the same test as described above except for the verification of the mechanical system on the prime mover side of the emergency generator 13 can be performed. This power switching operation is performed by opening and closing the switches S16 and S27.

【0007】次に人工地絡試験の方法について説明す
る。出力端子3と端子9との間を高圧ケーブル(図示せ
ず)により接続し、商用電力常用回路を模擬させる。ま
た出力端子4と端子10との間を高圧ケーブル(図示せ
ず)により接続し、商用電力予備回路を模擬させる。次
に高圧試験装置の端子5を接続し、接地用コンデンサ2
a,2bと電気的に連結する。配電系統の1線地絡電流
は固有の数値をもっているが、その1線地絡電流が13
A程度の場合はN1端子20のみ、また1線地絡電流が
26A程度の場合はN1端子20とN2端子21を接地
する。この状態においてサーキットブレーカーS0 8
と、スイッチS1 6もしくはスイッチS2 7を閉路
する。次に人工地絡試験器15を用いて受電設備側の高
圧受変電設備高圧回路の所要部分を地絡させる。これに
より方向地絡継電器の動作、多段保護協調および慣性特
性などの状況が検証できる。非常用発電機13の発生電
力系統の人工地絡は一般商用配電系統への影響がないた
め、高圧試験装置を使用しなくても実施可能であるが、
工事の進捗状況によっては非常用発電機13の運転が不
可能な場合がある。この場合には端子5を開放し、端子
4と端子11とを接続し人工地絡試験を行うことができ
る。
Next, the method of the artificial ground fault test will be described. The output terminal 3 and the terminal 9 are connected by a high voltage cable (not shown) to simulate a commercial power commercial circuit. The output terminal 4 and the terminal 10 are connected by a high-voltage cable (not shown) to simulate a commercial power backup circuit. Next, connect the terminal 5 of the high-voltage test apparatus to the grounding capacitor 2.
a, 2b. The one-line ground fault current of the distribution system has a unique numerical value.
In the case of about A, only the N1 terminal 20 is grounded, and when the one-line ground fault current is about 26 A, the N1 terminal 20 and the N2 terminal 21 are grounded. In this state, the circuit breaker S08
Switch S16 or switch S27 is closed. Next, a required portion of the high-voltage receiving and transforming equipment high-voltage circuit on the power receiving equipment side is grounded using the artificial ground fault tester 15. This allows verification of the operation of the directional ground fault relay, multi-stage protection coordination, and inertia characteristics. Since the artificial ground fault of the generated power system of the emergency generator 13 does not affect the general commercial power distribution system, it can be performed without using a high-voltage test device.
The operation of the emergency generator 13 may not be possible depending on the progress of the construction. In this case, the terminal 5 is opened, and the terminal 4 and the terminal 11 are connected to perform an artificial ground fault test.

【0008】次に商用電力全停電時における重要負荷1
9の運転状況検証方法について説明する。予め重要負荷
19を電気的に細分化して昇圧変圧器1の容量で供給可
能な負荷群を設定しておく。端子7と端子11とを接続
し、端子5と非常用発電機13の出力側回路12は開放
する。この状態においてサーキットブレーカーS08と
スイッチS2 7を閉路して設定負荷群に電源を供給
し、運転状況の検証を行う。そして上記の方法にて細分
化した負荷群毎に順次運転状況を検証する。
Next, the important load 1 in the event of a complete blackout of commercial power
The operation status verification method of No. 9 will be described. The load group that can be supplied by the capacity of the step-up transformer 1 by electrically subdividing the important load 19 is set in advance. The terminal 7 and the terminal 11 are connected, and the terminal 5 and the output side circuit 12 of the emergency generator 13 are opened. In this state, the circuit breaker S08 and the switch S27 are closed to supply power to the set load group, and the operation status is verified. Then, the operation status is sequentially verified for each of the load groups subdivided by the above method.

【0009】本高圧試験装置の作用についてまとめる
と、上記した様に商用電力を模擬した複数の供給電源
と、実際の地絡事故を模擬できる接地用コンデンサを備
えたことにより、複数電源の切替え試験、方向地絡継電
器の試験(人工地絡試験)および商用電力全停電時にお
ける重要負荷の運転状況検証が端子間の接続構成を変更
するだけという簡単な操作手順によって可能となる。
The operation of the high-voltage test apparatus can be summarized as follows: a plurality of power supply switches simulating commercial power as described above and a grounding capacitor capable of simulating an actual ground fault are provided, so that a plurality of power supply switching tests can be performed. A simple operation procedure in which a directional ground fault relay test (artificial ground fault test) and an operation status verification of an important load during a total commercial power outage can be performed simply by changing a connection configuration between terminals becomes possible.

【0010】尚、本実施例においては、昇圧変圧器1の
二次側には出力端子3,4が設けてあり、該出力端子
3,4より出力電源を取り出すことにより、二つの試験
回路を構成することができるようにし、商用電力常用回
路と商用電力予備回路を模擬できる様にしているがこれ
に限定されるものではなく、出力端子を増設し出力試験
回路を増設したものなどでもよい。
In this embodiment, output terminals 3 and 4 are provided on the secondary side of the step-up transformer 1. By taking out output power from the output terminals 3 and 4, two test circuits are connected. In this case, the commercial power commercial circuit and the commercial power reserve circuit can be simulated. However, the present invention is not limited to this. For example, a circuit having an additional output terminal and an additional output test circuit may be used.

【0011】[0011]

【発明の効果】以上のように本発明では、配電系統の対
地間静電容量を模擬した高圧試験装置を、入力電源を変
圧器を介して昇圧し、その出力電源を複数の試験回路に
供給できるようにするとともに、高圧出力側に電気的に
連結される接地コンデンサを備えるようにしたので、複
数電源の切替え試験が正式受電以前に実施できるように
なるとともに、方向性地絡継電器の動作判定を容易かつ
その判定の信頼性を格段に高めることができるようにな
り、受電設備の信頼性を向上させるとともに、受電以降
の総合設備機器試運転を円滑に行うことができるという
すぐれた効果がある。また本高圧試験装置は、上記した
様にコンパクトに構成することができるので当該需要場
所の商用電力受電点付近に簡単に運搬できるとともに、
本実施例でも示した様に本高圧試験装置の容量は75K
VA程度であり、その一次入力電源供給用の工事用仮設
電力容量は一般的に200KVA以上であるため、試験
電源を容易に確保できるという効果も有する。
As described above, according to the present invention, a high-voltage test apparatus simulating the capacitance of a power distribution system to ground is boosted in input power through a transformer, and the output power is supplied to a plurality of test circuits. And a grounding capacitor that is electrically connected to the high-voltage output side, so that multiple power supply switching tests can be performed before formal power reception, and also to determine the operation of directional ground fault relays. And the reliability of the determination can be remarkably improved, and the reliability of the power receiving equipment can be improved, and the comprehensive equipment test run after the power reception can be smoothly performed. In addition, since the high-pressure test apparatus can be configured to be compact as described above, it can be easily transported to the vicinity of the commercial power receiving point of the demand location, and
As shown in this embodiment, the capacity of the high-pressure test apparatus is 75K.
Since the temporary power capacity for construction for supplying the primary input power is generally about 200 KVA or more, there is also an effect that a test power supply can be easily secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る配電系統の対地間静電容量を模擬
した高圧試験装置の電気回路の単線結線図である。
FIG. 1 is a single-line diagram of an electric circuit of a high-voltage test apparatus simulating the electrostatic capacitance to ground of a distribution system according to the present invention.

【図2】被試験回路の単線結線図である。FIG. 2 is a single-line diagram of a circuit under test.

【符号の説明】[Explanation of symbols]

1 昇圧変圧器 2a 接地コンデンサ 2b 接地コンデンサ 3 出力端子(商用常用電力模擬回路) 4 出力端子(商用予備電力模擬回路) DESCRIPTION OF SYMBOLS 1 Step-up transformer 2a Grounding capacitor 2b Grounding capacitor 3 Output terminal (commercial normal power simulation circuit) 4 Output terminal (commercial standby power simulation circuit)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力電源を変圧器を介して昇圧し、その
出力電源を複数の試験回路に供給できるとともに、高圧
出力側に電気的に連結された接地コンデンサを備えてな
る配電系統の対地間静電容量を模擬した高圧試験装置。
An input power supply is boosted through a transformer, and its output power is supplied to a plurality of test circuits. The power supply system further includes a grounding capacitor electrically connected to a high voltage output side. High-pressure test equipment that simulates capacitance.
【請求項2】 昇圧電圧が3相6,600Vであること
を特徴とする請求項1記載の配電系統の対地間静電容量
を模擬した高圧試験装置。
2. The high-voltage test apparatus according to claim 1, wherein the boosted voltage is three-phase 6,600 V.
【請求項3】接地コンデンサの対地間静電容量が6.1
μF(電気容量で100KVar相当)であることを特
徴とする請求項1又は請求項2記載の配電系統の対地間
静電容量を模擬した高圧試験装置。
3. The capacitance between the ground capacitor and the ground is 6.1.
The high-voltage test apparatus according to claim 1 or 2, wherein the high-frequency test apparatus simulates a capacitance between a power distribution system and ground.
【請求項4】接地コンデンサがダブルスター結線方式の
電力用コンデンサであることを特徴とする請求項1、請
求項2又は請求項3記載の配電系統の対地間静電容量を
模擬した高圧試験装置。
4. A high-pressure testing device grounding capacitor simulating the ground between the capacitance of the power distribution system of claim 1, claim 2 or claim 3, wherein the a power capacitor of the double star connection scheme .
JP6120838A 1994-04-20 1994-04-20 High-voltage test equipment simulating the capacitance of the distribution system to ground Expired - Lifetime JP2599693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6120838A JP2599693B2 (en) 1994-04-20 1994-04-20 High-voltage test equipment simulating the capacitance of the distribution system to ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6120838A JP2599693B2 (en) 1994-04-20 1994-04-20 High-voltage test equipment simulating the capacitance of the distribution system to ground

Publications (2)

Publication Number Publication Date
JPH07294583A JPH07294583A (en) 1995-11-10
JP2599693B2 true JP2599693B2 (en) 1997-04-09

Family

ID=14796215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6120838A Expired - Lifetime JP2599693B2 (en) 1994-04-20 1994-04-20 High-voltage test equipment simulating the capacitance of the distribution system to ground

Country Status (1)

Country Link
JP (1) JP2599693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818833B (en) * 2014-03-18 2015-10-28 国家电网公司 A kind of for the movable power transmitting device of high-potting bus
CN105445609A (en) * 2015-12-01 2016-03-30 国网河南宜阳县供电公司 Testing device and method for high voltage supply system loop

Also Published As

Publication number Publication date
JPH07294583A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
CN203881875U (en) Low-voltage three-phase line fault generator
CN108092312B (en) Temporary complete set of starting system under unfinished matched output engineering
CN110854925A (en) One-time voltage-on synchronous nuclear phase inspection system and inspection method for electrical system
CN110752615B (en) On-site joint debugging device and method for battery energy storage power station
CN207066733U (en) A kind of secondary conditioning device of switch cubicle mechanical characteristic test
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
CN105319466A (en) Medium voltage generating equipment simulated on-line detection test method
CN107834413B (en) Device for live replacement of protection device and live construction method
Boccaletti et al. High reliability storage systems for genset cranking
CN2619355Y (en) Relay protection live check instrument
Yinger et al. Southern California Edison's advanced distribution protection demonstrations
CN106885959B (en) Test method for replacing short-circuit copper bar by grounding knife switch in power plant electric main start test
CN112858958A (en) Method for detecting current wiring polarity of high-backup-power-transformation protection device
JP2599693B2 (en) High-voltage test equipment simulating the capacitance of the distribution system to ground
Gatta et al. Modelling of battery energy storage systems under faulted conditions: Assessment of protection systems behaviour
CN104597899A (en) Technical performance test platform of distribution automation device
CN106803436B (en) The verification method and device of nuclear power plant's standby accident mitigation power supply accident application function
Porta et al. An approach for explicitly modeling the protective relaying system in substation reliability evaluation studies
KR102298168B1 (en) Micro Protective Device and Method thereof and Artificial Fault Generator for the Micro Smart Grid Simulator and, Micro Performance Evaluation System of the Micro Protective Device
CN112798970A (en) Remote capacity checking system for storage battery of transformer substation
CN104198952A (en) Reliability validation method of 6.6KV mobile emergency power source of nuclear power station
CN221727947U (en) 10KV generating set parallel operation system
Allan Effects of protection systems operation and failures in composite system reliability evaluation
CN118017575B (en) Debugging circuit and method of cascade high-voltage direct-hanging energy storage system
Bipu et al. Hierarchical Failure Mode Effect Analysis for the Protection Design of a MV AC-DC Solid State Transformer based EV Extreme Fast Charging Station

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term