JP2598696B2 - Low temperature hydrogenation of fats and oils - Google Patents

Low temperature hydrogenation of fats and oils

Info

Publication number
JP2598696B2
JP2598696B2 JP1082857A JP8285789A JP2598696B2 JP 2598696 B2 JP2598696 B2 JP 2598696B2 JP 1082857 A JP1082857 A JP 1082857A JP 8285789 A JP8285789 A JP 8285789A JP 2598696 B2 JP2598696 B2 JP 2598696B2
Authority
JP
Japan
Prior art keywords
oils
fats
hydrogen storage
low temperature
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1082857A
Other languages
Japanese (ja)
Other versions
JPH02261897A (en
Inventor
真美 川成
寛昭 小西
均 佐藤
栄 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Snow Brand Milk Products Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Snow Brand Milk Products Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP1082857A priority Critical patent/JP2598696B2/en
Publication of JPH02261897A publication Critical patent/JPH02261897A/en
Application granted granted Critical
Publication of JP2598696B2 publication Critical patent/JP2598696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、油脂類を低温下で水素添加するための方法
に関する。なお、ここでいう“油脂類”とはグリセリド
など単純脂質やリン脂質などの複合脂質を包含する。
Description: TECHNICAL FIELD The present invention relates to a method for hydrogenating fats and oils at a low temperature. Here, the “oils and fats” include simple lipids such as glyceride and complex lipids such as phospholipids.

技術的背景 天然油脂は、それを構成する脂肪酸構成によって液体
乃至固体の状態になることは広く知られている。また、
その脂肪酸の有する二重結合の数や種類によっても状態
が変化する。サラダ油やドレッシング等に代表される液
体油脂は、大豆白絞油等をウインタリング処理や分別処
理で製造されている。
TECHNICAL BACKGROUND It is widely known that natural fats and oils can be in a liquid or solid state depending on the fatty acid composition that constitutes them. Also,
The state also changes depending on the number and type of double bonds of the fatty acid. Liquid oils and fats such as salad oils and dressings are produced by wintering or sorting soybean white squeezed oil.

しかし、その二重結合を飽和させる水素添加反応は、
概して、高温(120〜200℃)で行われるため、高度不飽
和脂肪酸や複合脂質など熱感受性の高いものには注意深
く行う必要があった。一般に、低温水素添加反応と呼ば
れている反応温度は、例えば大豆白絞油の場合、110〜1
20℃であり、主に、リノレン酸の飽和を促進させるがそ
の水素添加の程度は、低いものである。
However, the hydrogenation reaction that saturates the double bond,
Generally, since the reaction is performed at a high temperature (120 to 200 ° C.), it is necessary to carefully perform the treatment on highly heat-sensitive substances such as polyunsaturated fatty acids and complex lipids. Generally, the reaction temperature called the low-temperature hydrogenation reaction is, for example, 110 to 1
At 20 ° C., it mainly promotes the saturation of linolenic acid, but its degree of hydrogenation is low.

近年、水素貯蔵合金が開発され、形状記憶合金と共に
その応用が注目されてきている。水素貯蔵合金は、現
在、自動車、ヒートポンプ及び室内の冷暖房等の分野で
利用されているが、水素貯蔵合金には例えばLaNi5、Mg2
Ni等多くの種類があって、合金の水素ガス貯蔵量、排出
圧力および排出温度等の機能は、その構成金属によって
異なるため、その利用に当っては合金の選択が重要とな
る。
In recent years, hydrogen storage alloys have been developed, and their applications have attracted attention together with shape memory alloys. Hydrogen storage alloys are currently used in fields such as automobiles, heat pumps, and indoor air conditioning, and hydrogen storage alloys include, for example, LaNi 5 , Mg 2
Since there are many types such as Ni, and the functions of the alloy such as hydrogen gas storage amount, discharge pressure and discharge temperature differ depending on the constituent metals, the selection of the alloy is important for its use.

しかし、脂質を低温で水素添加反応する際に、水素貯
蔵合金を利用する技術については従来全く行われておら
ず、報告もみられない。
However, there has been no report on a technique using a hydrogen storage alloy when hydrogenating a lipid at a low temperature.

発明が解決しようとする課題 本発明は、油脂類を構成する脂肪酸のうち、熱感受性
の高い高度不飽和脂肪酸、例えばリノレン酸
(C18:3)、エイコサペンタエン酸(C20:5)等並びに
複合脂質、例えばリン脂質や糖脂質等を変質することな
く120℃より低い温度で水素添加するための方法を提供
することを課題とする。
Problems to be Solved by the Invention The present invention relates to a highly heat-sensitive highly unsaturated fatty acid such as linolenic acid (C 18: 3 ), eicosapentaenoic acid (C 20: 5 ) and the like among fatty acids constituting fats and oils. An object of the present invention is to provide a method for hydrogenating a complex lipid such as a phospholipid or a glycolipid at a temperature lower than 120 ° C. without deteriorating.

課題を解決するための手段 本発明は、油脂類の水素添加反応に水素貯蔵合金を用
いると、該合金が触媒としての機能を発揮し、かつこの
水素貯蔵合金を液浸系で用いてもその水素貯蔵能力を損
なわないという知見に基ずくものであって、特にCaNi
4.0〜5.0Co0〜1.0から成る群から選択される水素貯蔵
合金を用いて120℃未満の低温下で油脂類を水素添加す
ることを特徴とする。
Means for Solving the Problems The present invention provides that when a hydrogen storage alloy is used in a hydrogenation reaction of fats and oils, the alloy exhibits a function as a catalyst, and the hydrogen storage alloy can be used in an immersion system. It is based on the knowledge that hydrogen storage capacity is not impaired.
Oils and fats are hydrogenated at a low temperature of less than 120 ° C. using a hydrogen storage alloy selected from the group consisting of 4.0 to 5.0 Co 0 to 1.0 .

本発明で用いる上記水素貯蔵合金は、Ca及びNiを必須
元素とした六方晶のCaCu5型の結晶構造を有する化合物
を主相とするものであって、該結晶相が50重量%以上含
まれ、残部が主相以外の金属間化合物、不純物、添加元
素などが第2相もしくは混合相として存在するものであ
るが、大気圧を示す分解平衡圧力の温度が150℃以下の
範囲で水素を吸蔵する能力を有する。すなわち、CaNi
4.0〜5.0Co0〜1.0から成る水素貯蔵合金は、120℃未満
の低い温度で効率よく水素を放出するので、熱感受性の
高い高度不飽和脂肪酸を含む油脂類の水素添加に適して
いる。
The hydrogen storage alloy used in the present invention has a main phase of a compound having a hexagonal CaCu 5 type crystal structure containing Ca and Ni as essential elements, and the crystal phase is contained in an amount of 50% by weight or more. The remainder is the one in which intermetallic compounds, impurities, and additional elements other than the main phase exist as a second phase or a mixed phase, but occlude hydrogen when the decomposition equilibrium pressure indicating the atmospheric pressure is in the range of 150 ° C or less. Have the ability to That is, CaNi
A hydrogen storage alloy composed of 4.0 to 5.0 Co 0 to 1.0 releases hydrogen efficiently at a low temperature of less than 120 ° C., and is therefore suitable for hydrogenation of fats and oils containing highly unsaturated fatty acids having high heat sensitivity.

これらの水素貯蔵合金のうち、CaNi4.95Co0.05及びCa
Ni5.0は特に、低温における水添反応を促進するので実
用上好ましい。
Of these hydrogen storage alloys, CaNi 4.95 Co 0.05 and Ca
Ni 5.0 is particularly practically preferable because it accelerates the hydrogenation reaction at a low temperature.

なお、本発明において水添反応を50〜120℃未満の低
温で行う理由は、50℃より低い温度では、水添反応が行
われ難いか、水添反応速度が著しく遅いため所望の水添
度に達するまでに長時間を要することに因る。また、一
方、温度が120℃以上になると、熱感受性の高いリノレ
ン酸、エイコサペンタエン酸のような高度不飽和脂肪酸
やリン脂質、糖脂質のような複合脂質などが変質するこ
とが多いためである。
In the present invention, the reason why the hydrogenation reaction is performed at a low temperature of less than 50 to 120 ° C. is that at a temperature lower than 50 ° C., the hydrogenation reaction is difficult to be performed or the hydrogenation reaction rate is extremely slow, so that the desired degree of hydrogenation Because it takes a long time to reach. On the other hand, when the temperature exceeds 120 ° C., highly heat-sensitive highly unsaturated fatty acids such as linolenic acid and eicosapentaenoic acid, and phospholipids, and complex lipids such as glycolipids often deteriorate. .

また、本発明で用いる水素貯蔵合金は、その工業的生
産上及び油脂類との均一な混合上の観点から平均粉末粒
径が0.5〜100μmのものが好ましい。
The hydrogen storage alloy used in the present invention preferably has an average powder particle size of 0.5 to 100 μm from the viewpoint of industrial production and uniform mixing with fats and oils.

本発明においては、油脂類と、予め活性化処理を施し
た水素を貯蔵させた水素貯蔵合金を反応槽に入れ、撹拌
下に上記油脂を40〜120℃未満の温度に10〜720分間保持
するか、ジャケット式により水素貯蔵合金を冷却し得る
ようにした棚段式カラムに該合金を封入し、50〜120℃
程度に保持した油脂類を10〜720分間循環させることに
より水素添加反応を行う。次いで水素添加した油脂類を
反応終了後直ちに冷却し、回収する。
In the present invention, the fats and oils, and a hydrogen storage alloy in which hydrogen previously subjected to activation treatment is stored are placed in a reaction tank, and the fats and oils are maintained at a temperature of less than 40 to 120 ° C for 10 to 720 minutes with stirring. Alternatively, the alloy is sealed in a tray type column in which the hydrogen storage alloy can be cooled by a jacket type, and the temperature is 50 to 120 ° C.
The hydrogenation reaction is carried out by circulating the oils and fats held to a certain extent for 10 to 720 minutes. Next, the hydrogenated fats and oils are cooled and recovered immediately after the completion of the reaction.

ここで用いる水素貯蔵合金の油脂類に対する割合は5
〜85重量%が好ましく、5重量%より少ないと水素添加
反応に寄与する触媒としての有効面積が不足し、均一か
つ効率的な反応が進まなくなる。一方85重量%より多い
と1回の水添反応操作に対して得られる油脂の量が少な
くて操業上の効率が低くなり、さらに、反応混合液の撹
拌、搬送のための装置が複雑となる欠点がみられるよう
になる。
The ratio of the hydrogen storage alloy used here to oils and fats is 5
It is preferably up to 85% by weight, and if it is less than 5% by weight, the effective area as a catalyst contributing to the hydrogenation reaction is insufficient, and uniform and efficient reaction does not proceed. On the other hand, if the content is more than 85% by weight, the amount of fats and oils obtained in one hydrogenation reaction operation is small, and the operation efficiency is low, and the apparatus for stirring and transporting the reaction mixture becomes complicated. Disadvantages begin to appear.

なお、本発明では、触媒能力、耐食性及び熱伝導性の
向上のために表面改質されたメッキ粉末並びに表面処理
した粉末形態の水素貯蔵合金を用いることも可能であ
る。
In the present invention, it is also possible to use a surface-modified plating powder or a surface-treated hydrogen storage alloy in the form of a powder that has been surface-modified in order to improve catalytic performance, corrosion resistance and thermal conductivity.

以下実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

実施例1 容量が1のデッドエンド式の反応槽に、予め活性化
処理した水素貯蔵合金CaNi5(平均粉末粒径32μm)400
gを入れ、該反応槽に、脱気、脱水処理済みの大豆白絞
油500gを混入した。
Example 1 In a dead-end type reaction tank having a capacity of 1, a hydrogen storage alloy CaNi 5 (average powder particle size: 32 μm) 400 previously activated was placed.
g, and 500 g of degassed and dehydrated soybean white squeezed oil was mixed into the reaction vessel.

この混合液を90℃まで昇温し、この温度に保持し、水
素添加反応を行った。反応は90℃で30分間行った。反応
後、冷却し速やかに混合液中の水素貯蔵合金粉末と反応
させて大豆硬化油を、濾過、分離した。
This mixture was heated to 90 ° C., and kept at this temperature to carry out a hydrogenation reaction. The reaction was performed at 90 ° C. for 30 minutes. After the reaction, the mixture was cooled and immediately reacted with the hydrogen storage alloy powder in the mixed solution to filter and separate the hardened soybean oil.

この大豆硬化油を常法に従い活性白土を添加し、フィ
ルタープレスにより精製油とした。この方法により水添
24.9%の大豆硬化油が約460g得られた。
Activated clay was added to this soybean hardened oil according to a conventional method, and purified oil was obtained by a filter press. Water添度* 24.9% of soybean hardened oil was obtained about 460g by this method.

*水添度=(水添された二重結合数/水添前の二重結合
数) 実施例2 容量が1のデッドエンド式の反応槽に、予め活性化
処理した水素貯蔵合金CaNi4.9Co0.1(平均粉末粒径25μ
m)400gを入れ、該反応槽に、脱気、脱水処理済みの大
豆混合油500mlを混入した。
* Degree of hydrogenation = (Number of hydrogenated double bonds / Number of double bonds before hydrogenation) Example 2 A hydrogen storage alloy CaNi 4.9 Co previously activated was placed in a dead-end type reaction tank having a capacity of 1. 0.1 (average powder particle size 25μ
m) 400 g was charged, and 500 ml of deaerated and dehydrated soybean mixed oil was mixed into the reaction tank.

この混合液を70℃まで昇温し、この温度に15分保持
し、水素添加反応を行った。この後冷却し速やかに混合
液中の水素貯蔵合金粉末と大豆油を、濾過、分離した。
この水素添加した大豆硬化油を常法に従い活性白土を添
加し、フィルタープレスにより精製油とした。この方法
により水添度47.9%の大豆硬化油が約460g得られた。
This mixture was heated to 70 ° C., and kept at this temperature for 15 minutes to perform a hydrogenation reaction. Thereafter, the mixture was cooled and the hydrogen storage alloy powder and soybean oil in the mixed solution were immediately filtered and separated.
Activated clay was added to the hydrogenated soybean hardened oil according to a conventional method, and purified oil was obtained by a filter press. By this method, about 460 g of hydrogenated soybean oil having a hydrogenation degree of 47.9% was obtained.

実施例3 容量が1のデッドエンド式の反応槽に、予め活性化
処理した水素貯蔵合金CaNi4.95Co0.05(平均粉末粒径58
μm)500gを入れ、該反応槽に、脱気、脱水処理済みの
大豆レシチン600gを混入した。
Example 3 A hydrogen storage alloy CaNi 4.95 Co 0.05 (average powder particle size of 58) previously activated was placed in a dead-end type reaction tank having a capacity of 1.
μm), and 500 g of degassed and dehydrated soybean lecithin was mixed into the reaction tank.

この混合液を80℃まで昇温し、この温度に保持し、水
素添加反応を行った。反応後、冷却し速やかに混合液中
の水素貯蔵合金粉末と水素添加した水添大豆レシチンを
濾過、分離した。
The temperature of the mixed solution was raised to 80 ° C., and the temperature was maintained at this temperature to perform a hydrogenation reaction. After the reaction, the mixture was cooled, and the hydrogen storage alloy powder and the hydrogenated hydrogenated soybean lecithin in the mixture were immediately filtered and separated.

この水素添加した大豆レシチンを常法に従いソックス
レー抽出し、得られた溶液を濃縮、乾固し、水添度28.8
%の水添大豆レシチン約560g得られた。
This hydrogenated soy lecithin was subjected to Soxhlet extraction according to a conventional method, and the obtained solution was concentrated and dried to a degree of hydrogenation of 28.8.
About 560 g of a hydrogenated soybean lecithin was obtained.

発明の効果 本発明は、油脂類の改質技術として水素添加を特定の
水素貯蔵合金を用いることにより、従来法に比し低い温
度で実施し得るので、熱感受性の高い油脂類についても
効率よく水素添加することを可能にする。さらに、本発
明に係る水素添加方法では、水素貯蔵合金を用いること
により大量の水素を貯蔵でき、しかも低圧で使用できる
ので、従来の水素添加反応に比べ作業上の安全性にも優
れている。
Effect of the Invention The present invention uses a specific hydrogen storage alloy for hydrogenation as a technology for reforming fats and oils, so that it can be carried out at a lower temperature than in the conventional method. Enables hydrogenation. Furthermore, in the hydrogenation method according to the present invention, a large amount of hydrogen can be stored by using a hydrogen storage alloy and can be used at a low pressure, so that it is excellent in operational safety as compared with the conventional hydrogenation reaction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日向野 栄 東京都江東区東雲1丁目9番31号 三菱 製鋼株式会社技術開発センター内 (56)参考文献 特開 平2−77496(JP,A) 特開 昭63−268799(JP,A) 大角泰章著「金属水素化物−その物性 と応用」昭和58年12月25日 株式会社化 学工業社発行 P.124〜125,P.148 〜150 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Sakae Hyugano 1-9-131 Shinonome, Koto-ku, Tokyo Mitsubishi Steel Corporation Technology Development Center (56) Reference JP-A-2-77496 (JP, A) Kaisho 63-268799 (JP, A) Metal hydrides-their properties and applications, written by Yasumasa Oozaki, published December 25, 1983 by Kagaku Kogyo Co., Ltd. 124-125, p. 148 to 150

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】油脂類を水素添加するに当り、CaNi
4.0〜5.0Co0〜1.0から成る群から選択される、予め活
性化させた水素貯蔵合金の1種もしくは2種を用い、40
〜120℃未満の低温で水添反応を行うことを特徴とする
油脂類の低温下での水素添加方法。
(1) When hydrogenating fats and oils, CaNi
Is selected from the group consisting of 4.0 to 5.0 Co 0 to 1.0, with one or two kinds of hydrogen storage alloys were pre-activated, 40
A method for hydrogenating fats and oils at a low temperature, wherein the hydrogenation reaction is performed at a low temperature of less than 120 ° C.
【請求項2】水素貯蔵合金の平均粉末粒径が0.5〜100μ
mである請求項(1)に記載の油脂類の低温下での水素
添加方法。
2. The hydrogen storage alloy has an average powder particle size of 0.5 to 100 μm.
The method for hydrogenating fats and oils at a low temperature according to claim 1, wherein m is m.
【請求項3】水素貯蔵合金を油脂類に対して5〜85重量
%の割合で用いる請求項(1)に記載の油脂類の低温下
での水素添加方法。
3. The method for hydrogenating fats and oils at a low temperature according to claim 1, wherein the hydrogen storage alloy is used in an amount of 5 to 85% by weight based on the fats and oils.
JP1082857A 1989-03-31 1989-03-31 Low temperature hydrogenation of fats and oils Expired - Fee Related JP2598696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082857A JP2598696B2 (en) 1989-03-31 1989-03-31 Low temperature hydrogenation of fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082857A JP2598696B2 (en) 1989-03-31 1989-03-31 Low temperature hydrogenation of fats and oils

Publications (2)

Publication Number Publication Date
JPH02261897A JPH02261897A (en) 1990-10-24
JP2598696B2 true JP2598696B2 (en) 1997-04-09

Family

ID=13786027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082857A Expired - Fee Related JP2598696B2 (en) 1989-03-31 1989-03-31 Low temperature hydrogenation of fats and oils

Country Status (1)

Country Link
JP (1) JP2598696B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263900A (en) * 1989-04-05 1990-10-26 Snow Brand Milk Prod Co Ltd Preparation of hydrogen-added edible oil containing small amount of elaidic acid
US5360920A (en) * 1992-08-07 1994-11-01 The Procter & Gamble Company Hydrogenation in a plate heat exchanger
JP5466378B2 (en) * 2008-06-19 2014-04-09 ミヨシ油脂株式会社 Method for producing hardened oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268799A (en) * 1987-04-27 1988-11-07 Snow Brand Milk Prod Co Ltd Method for hydrogenating fat or oil
JP2555423B2 (en) * 1988-09-14 1996-11-20 雪印乳業株式会社 Method of hydrogenating edible fats and oils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大角泰章著「金属水素化物−その物性と応用」昭和58年12月25日 株式会社化学工業社発行 P.124〜125,P.148〜150

Also Published As

Publication number Publication date
JPH02261897A (en) 1990-10-24

Similar Documents

Publication Publication Date Title
JP4170542B2 (en) Process for producing highly unsaturated fatty acid derivative and high-purity eicosapentaenoic acid derivative
CA1301775C (en) Fractionation of fat blends
EP2311930B1 (en) Method of purifying transesterified oil
US4163750A (en) Process for the hydrogenation of a vegetable oil
JP2598696B2 (en) Low temperature hydrogenation of fats and oils
EP0021528B1 (en) Process for the selective hydrogenation of triglyceride oils and products so obtained
US5225581A (en) Electrocatalytic process for the hydrogenation of edible and non-edible oils and fatty acids
US4399007A (en) Hydrogenation
US1222660A (en) Process of making a catalyzing agent for the reduction of fats and unsaturated fatty acids.
JP2555423B2 (en) Method of hydrogenating edible fats and oils
JP2640263B2 (en) Edible fats and oils partially dehydrogenated and their production
US5063189A (en) Raney catalyst composition
US2365045A (en) Preparation of hydrogenated
JP2821791B2 (en) Method for producing partially dehydrogenated fatty acids and fatty acid derivatives
JPS63268799A (en) Method for hydrogenating fat or oil
EP0132889B1 (en) Nickel boride-polymer in-oil catalyst
JPS61199045A (en) Hydrogen occluding alloy
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds
US5861521A (en) Process for the hydrogenation of esters of unsaturated fatty acids
JPH07509746A (en) Hydrogenation method in plate heat exchanger
JP2900949B2 (en) Method for producing sugar alcohol
JP2603111B2 (en) Method for producing hydrogenated edible oil with low elaidic acid content
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
JPH02263900A (en) Preparation of hydrogen-added edible oil containing small amount of elaidic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees