JP2597599B2 - Superconducting current limiting switchgear - Google Patents

Superconducting current limiting switchgear

Info

Publication number
JP2597599B2
JP2597599B2 JP62243979A JP24397987A JP2597599B2 JP 2597599 B2 JP2597599 B2 JP 2597599B2 JP 62243979 A JP62243979 A JP 62243979A JP 24397987 A JP24397987 A JP 24397987A JP 2597599 B2 JP2597599 B2 JP 2597599B2
Authority
JP
Japan
Prior art keywords
current limiting
superconducting current
superconducting
current
surge absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62243979A
Other languages
Japanese (ja)
Other versions
JPS6489920A (en
Inventor
久利 池田
均 溝口
宣之 高橋
悟 柳父
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62243979A priority Critical patent/JP2597599B2/en
Publication of JPS6489920A publication Critical patent/JPS6489920A/en
Application granted granted Critical
Publication of JP2597599B2 publication Critical patent/JP2597599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力系統等の短絡事故時に発生する短絡電流
を限流して事故の被害を最小にすると共に、系統を構成
する機器に要求される短絡性能を低減することを目的と
する限流器に関するもので、特に、液体窒素温度以上で
超電導現象を示す物質を用いて、通常時は超電導状態で
通電し短絡事故に際しては常電導状態となって限流する
超電導限流開閉装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention limits the short-circuit current generated at the time of a short-circuit accident in an electric power system or the like to minimize the damage of the accident and configure the system. This is related to a current limiter intended to reduce the short-circuit performance required for equipment.In particular, it uses a substance that exhibits a superconducting phenomenon at a temperature of liquid nitrogen or higher. The present invention relates to a superconducting current-limiting switchgear that limits current in a normal conduction state.

(従来の技術) 電力系統の複雑化に伴って短絡事故時の電流が増加す
る傾向にあり、限流器への期待は高まっている。この限
流器については系統の複雑化がもっとも進んでいる米国
で勢力的に研究されており、Electic Power Research I
nstitute(EPRI)等から、数多くのレポートが出されて
いる。例えば、EL−276−SR Special Report;Symposium
Proceedings New concepts in Fault Current Limiter
s and Power Circuit Breakersなどがある。
(Prior Art) The current at the time of a short circuit accident tends to increase with the complication of the power system, and expectations for a current limiter are increasing. This current limiter has been actively studied in the United States, where the complexity of the system is the most advanced, and Electric Power Research I
Nstitute (EPRI) has published numerous reports. For example, EL-276-SR Special Report; Symposium
Proceedings New concepts in Fault Current Limiter
s and Power Circuit Breakers.

限流器の基本機能は短絡事故時に高インピーダンスと
なって電圧降下を生じ、短絡電流を流れなくすることで
ある。この機能を満足するものとして色々なものが考え
られているが、安定性と繰返し使用できる自復性の問題
から、今日幅広く実用化されているものは、ヒューズを
用いたものに限られている。ヒューズを用いた限流器と
してはアルカリ系の金属の状態変化を利用したものが考
案されている。(特開昭56−57236,特開昭47−40146
等)ヒューズを用いた場合には電圧降下を大きくするこ
とが困難であるので高々数千Vまでの低い電圧での使用
に限られている。
The basic function of a current limiter is to prevent a short-circuit current from flowing due to a high impedance at the time of a short-circuit accident, causing a voltage drop. Various things are considered to satisfy this function, but due to the problems of stability and self-recovery that can be used repeatedly, those widely used today are limited to those using fuses. . As a current limiter using a fuse, a current limiter utilizing a change in the state of an alkaline metal has been devised. (JP-A-56-57236, JP-A-47-40146)
Etc.) If a fuse is used, it is difficult to increase the voltage drop, so that use at a low voltage of at most several thousand volts is limited.

超電導を用いた限流器についても古くから検討されて
いる。しかしながら液体ヘリウム温度での超電導物質を
用いた限流器では、常電導状態での発熱を発揮すること
が困難であり、構想の段階で止まっている。
Current limiting devices using superconductivity have been studied for a long time. However, in a current limiter using a superconducting substance at a liquid helium temperature, it is difficult to exhibit heat generation in a normal conducting state, and has stopped at the stage of conception.

一方、最近の高温超電導材料の開発は急速に進められ
ており、液体窒素温度77Kを越え100K近くで超電導を示
す材料が開発されている。このような材料を用いると、
短絡事故時に電流密度が臨界電流密度Jcを越えて常電導
に転移して発熱量が急増しても、熱的に臨界状態を越え
ることなく使用できる可能性があり、限流器として期待
されている。これは、従来の液体ヘリウム温度での超電
導に比べ、高い温度で使用されるので、比熱が大きくな
り、しかも液体窒素温度と臨界温度との差が大きく取れ
るので、熱容量が大きくなるためである。
On the other hand, the development of high-temperature superconducting materials in recent years is proceeding rapidly, and materials exhibiting superconductivity at liquid nitrogen temperatures exceeding 77K and near 100K are being developed. With such a material,
Even if the current density exceeds the critical current density Jc and transitions to normal conduction during a short-circuit accident, and the heat generation increases rapidly, it may be usable without exceeding the thermal critical state, and is expected as a current limiter. I have. This is because, compared to the conventional superconductivity at liquid helium temperature, the superconductivity is used at a higher temperature, so that the specific heat increases, and the difference between the liquid nitrogen temperature and the critical temperature can be increased, thereby increasing the heat capacity.

(発明が解決しようとする問題点) このような高温超電導を用いた限流器の例を第3図に
示す。Y−Ba−Cu−O材料を用いて定格電圧400Vで設計
したものである。臨界電流Jcを1000A/cm2とすると定格
電流150Aの2倍の300Aで常電導に転移させるには、断面
積が0.3cm2の素子で構成する必要がある。常電導での比
抵抗を50mΩcmとすると1cm当りの抵抗は0.16Ωとなる。
(Problems to be Solved by the Invention) FIG. 3 shows an example of a current limiter using such high-temperature superconductivity. It is designed with a rated voltage of 400 V using Y-Ba-Cu-O material. Assuming that the critical current Jc is 1000 A / cm 2 , in order to make transition to normal conduction at 300 A, which is twice the rated current of 150 A, it is necessary to constitute an element having a cross-sectional area of 0.3 cm 2 . Assuming that the specific resistance in normal conduction is 50 mΩcm, the resistance per 1 cm is 0.16 Ω.

臨界温度を97Kとすると液体窒素温度は77Kであるので
許容される温度上昇は20Kである。比熱を200mJ/gKとす
ると、4J/gの熱容量が必要である。比重2g/cm3を想定す
ると、1cm当り0.6gであり、2.4Jの発熱が限界である。
常電導へ転移した後100msで電流が遮断されるとすれば
電流は12A以下にする必要がある。400Vで12Aの電流とす
るには全抵抗は33Ωとなり、従って全長は2mになる。第
3図では厚さ2cmで幅20×20cmの基板5に全長が2mとな
るジグザグの溝7を設け、この溝に添って断面積が0.3c
m2の素子を構成したものである。
If the critical temperature is 97K, the allowable temperature rise is 20K because the liquid nitrogen temperature is 77K. Assuming a specific heat of 200 mJ / gK, a heat capacity of 4 J / g is required. Assuming a specific gravity of 2 g / cm 3 , the weight is 0.6 g per cm, and heat generation of 2.4 J is the limit.
If the current is cut off 100 ms after the transition to normal conduction, the current must be 12 A or less. For a 12A current at 400V, the total resistance is 33Ω, so the total length is 2m. In FIG. 3, a zigzag groove 7 having a total length of 2 m is provided on a substrate 5 having a thickness of 2 cm and a width of 20 × 20 cm.
This is an element of m 2 .

第4図は第3図に示した超電導限流素子1と半導体素
子2a,2bを組合わせて構成した限流開閉装置を示す。短
絡事故時に超電導限流素子1で電流を限流するととも
に、超電導限流素子に現れる電圧降下を測定器3で検出
し、パルス発生器4により半導体素子2a,2bをオフす
る。
FIG. 4 shows a current limiting switchgear configured by combining the superconducting current limiting element 1 and the semiconductor elements 2a and 2b shown in FIG. In the event of a short circuit, the current is limited by the superconducting current limiting element 1, the voltage drop appearing in the superconducting current limiting element is detected by the measuring instrument 3, and the semiconductor elements 2 a and 2 b are turned off by the pulse generator 4.

このように、超電導限流素子と半導体素子を組合わせ
ることにより、高速で動作する限流開閉装置を提供する
ことができる。しかしながら、電源に大きなインダクタ
ンスを有する場合には結果的には超電導限流素子でその
エネルギーを瞬時に吸収することにより、局部的な破壊
に繋がることが予想される。
As described above, by combining the superconducting current limiting element and the semiconductor element, it is possible to provide a current limiting switching device that operates at high speed. However, if the power supply has a large inductance, it is expected that the energy will be absorbed instantaneously by the superconducting current limiting element, leading to local destruction.

本発明はこの様な欠点に鑑みてなされたもので、イン
ダクタンスの大きい電源の場合でもそのエネルギーを素
子が吸収して破壊することがない超電導限流開閉装置を
得ることを目的とする。このため、本発明では素子と並
列にまた大地間にZnOでつくられたサージ吸収素子を挿
入するようにしたものである。
The present invention has been made in view of such a drawback, and an object of the present invention is to provide a superconducting current-limiting switchgear in which a power supply having a large inductance does not cause the element to absorb energy and be destroyed. Therefore, in the present invention, a surge absorbing element made of ZnO is inserted in parallel with the element and between the ground.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段および作用) このため、本発明では素子と並列にまたは大地間にZn
Oでつくられたサージ吸収素子を挿入するようにしたも
のである。
(Means and Actions for Solving the Problems) For this reason, in the present invention, Zn is connected in parallel with the element or between the ground.
It is designed to insert a surge absorbing element made of O.

(実施例) 本発明の構成を第1図に示す一実施例をもとに説明す
る。1は、基板に形成されたジグザグの溝にY−Ba−Cu
−O材料を設けて構成した超電導限流器素子であり、こ
の超電導限流器素子1には、一対の半導体素子2a,2bが
接続されている。半導体素子2a,2bは互いに逆方向で並
列に接続されており、パルス信号により開閉可能な素子
である。超電導限流器素子1の両端にはこの素子に現れ
る電圧降下を検出する電圧測定器3が接続され、この電
圧測定器3には半導体素子2a,2bに対してパルスを出力
するパルス発生器4が接続されている。そして限流開閉
装置の両端子と大地間にZnOでつくられたサージ吸収素
子6a,6bを接続する。更に、第2図に示すように、超電
導限流器素子の端子間にもZnOで作られたサージ吸収素
子8を接続する。
(Embodiment) The configuration of the present invention will be described based on an embodiment shown in FIG. 1 is Y-Ba-Cu in a zigzag groove formed in the substrate.
This is a superconducting current limiting device element provided with a -O material. The superconducting current limiting device element 1 is connected to a pair of semiconductor elements 2a and 2b. The semiconductor elements 2a and 2b are connected in parallel in opposite directions, and can be opened and closed by a pulse signal. A voltage measuring device 3 for detecting a voltage drop appearing at the superconducting current limiting device 1 is connected to both ends of the device. Is connected. Then, surge absorbing elements 6a and 6b made of ZnO are connected between both terminals of the current limiting switchgear and the ground. Further, as shown in FIG. 2, a surge absorbing element 8 made of ZnO is connected between the terminals of the superconducting current limiter element.

このように構成された本実施例による超電導限流開閉
装置は、短絡事故時の事故電流を超電導限流素子1によ
り限流し、超電導限流素子1に現れる電圧降下を電圧測
定器3で検出し、この信号によりパルス発生器4より半
導体素子2a,2bに対してパルスが発生されるので、半導
体素子2a,2bをオフにすることができる。また大地間に
接続されたZnOで作ったサージ吸収素子により、限流に
よつて電源のインダクタンスに残ったエネルギーを吸収
することができる。また、超電導限流素子のジグザグ構
造の一、ないし、数往復に並列に、やはり、ZnOのサー
ジ吸収素子を取付けることにより、素子自体のインダク
タンスに残るエネルギーも吸収することができる。
The superconducting current limiting switching device according to the present embodiment configured as described above limits the fault current at the time of a short circuit fault by the superconducting current limiting element 1 and detects the voltage drop appearing in the superconducting current limiting element 1 with the voltmeter 3. Since the pulse is generated from the pulse generator 4 to the semiconductor elements 2a and 2b by this signal, the semiconductor elements 2a and 2b can be turned off. In addition, a surge absorbing element made of ZnO connected between the grounds can absorb the energy remaining in the inductance of the power supply due to current limiting. Also, by installing a ZnO surge absorbing element in parallel with one or several round trips of the zigzag structure of the superconducting current limiting element, energy remaining in the inductance of the element itself can be absorbed.

第2図の実施例では、ZnOサージ吸収素子を接続する
構成であったが、基板自体をZnOのセラミックで作り、
これに溝を掘って超電導限流素子とするのも効果的であ
る。
In the embodiment of FIG. 2, the ZnO surge absorbing element is connected, but the substrate itself is made of ZnO ceramic,
It is also effective to make a superconducting current limiting element by digging a groove in this.

〔発明の効果〕 このように、本発明の超電導限流開閉装置によれば、
限流開閉装置の端子と大地間に接続したサージ吸収素子
で電源等のインダクタンスに残留するエネルギーを吸収
することができるとともに、また、素子と並列のサージ
吸収素子によって素子自体のインダクタンスに残留する
エネルギーも吸収することができ、限流時の素子の局部
的な破壊を防ぐのに効果的である。
[Effects of the Invention] As described above, according to the superconducting current limiting switchgear of the present invention,
The energy remaining in the inductance of the power supply etc. can be absorbed by the surge absorbing element connected between the terminal of the current limiting switch and the ground, and the energy remaining in the inductance of the element itself by the surge absorbing element in parallel with the element. Can also be absorbed, which is effective in preventing local destruction of the element at the time of current limiting.

【図面の簡単な説明】 第1図,第2図は本発明による超電導限流開閉装置の素
子を示す概略構成図、第3図及び第4図はY−Ba−Cu−
Oを用いた定格電圧400V,定格電流150Aで臨界電流300A
の従来形の限流器を示す概略構成図である。 1……超電導限流器素子、2a,2b……半導体素子 3……電圧測定器、4……パルス発生器 5……基板、6a,6b……サージ吸収素子 7……溝
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are schematic structural views showing elements of a superconducting current limiting switch according to the present invention, and FIGS. 3 and 4 are Y-Ba-Cu-.
Critical current 300A at rated voltage 400V, rated current 150A using O
1 is a schematic configuration diagram showing a conventional current limiter of FIG. DESCRIPTION OF SYMBOLS 1 ... Superconducting current limiter element, 2a, 2b ... Semiconductor element 3 ... Voltage measuring device, 4 ... Pulse generator 5 ... Substrate, 6a, 6b ... Surge absorbing element 7 ... Groove

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Y−Ba−Cu−Oなどの77Kの液体窒素温度
以上で超電導特性を示す材料を基板上にジグザグに掘っ
た溝に設けて超電導限流素子を構成し、この超電導限流
素子にパルス信号により開閉可能な互いに逆方向で並列
に接続された一対の半導体素子を接続し、前記超電導限
流素子の電圧降下を検出する測定器と、この測定器から
の信号により前記半導体素子に対してパルス信号を発生
するパルス発生器とにより前記半導体素子を開閉させる
超電導限流開閉装置において、 装置の両端子と大地間にZnOで作ったサージ吸収素子を
取付け、更に、ジグザグの素子の一ないし数往復に並列
に、ZnOで作ったサージ吸収素子を取付けたことを特徴
とする超電導限流開閉装置。
1. A superconducting current limiting element is formed by providing a material having superconducting properties at a temperature of 77 K or higher liquid nitrogen such as Y-Ba-Cu-O in a zigzag groove on a substrate. A pair of semiconductor elements connected in parallel in opposite directions that can be opened and closed by a pulse signal and connected to the element, a measuring device for detecting a voltage drop of the superconducting current limiting element, and a semiconductor device based on a signal from the measuring device. In a superconducting current limiting switch for opening and closing the semiconductor element by a pulse generator that generates a pulse signal, a surge absorbing element made of ZnO is attached between both terminals of the apparatus and the ground, and further, a zigzag element A superconducting current limiting switch, wherein a surge absorbing element made of ZnO is mounted in parallel in one or several round trips.
JP62243979A 1987-09-30 1987-09-30 Superconducting current limiting switchgear Expired - Lifetime JP2597599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62243979A JP2597599B2 (en) 1987-09-30 1987-09-30 Superconducting current limiting switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62243979A JP2597599B2 (en) 1987-09-30 1987-09-30 Superconducting current limiting switchgear

Publications (2)

Publication Number Publication Date
JPS6489920A JPS6489920A (en) 1989-04-05
JP2597599B2 true JP2597599B2 (en) 1997-04-09

Family

ID=17111897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62243979A Expired - Lifetime JP2597599B2 (en) 1987-09-30 1987-09-30 Superconducting current limiting switchgear

Country Status (1)

Country Link
JP (1) JP2597599B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297837U (en) * 1989-01-19 1990-08-03
JPH04312717A (en) * 1991-04-11 1992-11-04 Toshiba Corp Superconducting current limiter
DE19744011A1 (en) * 1997-09-26 1999-04-01 Siemens Ag Circuit breaker device for power supply and distribution
KR100888147B1 (en) * 2007-08-20 2009-03-13 한국전력공사 Hybrid type superconducting fault current limiter

Also Published As

Publication number Publication date
JPS6489920A (en) 1989-04-05

Similar Documents

Publication Publication Date Title
EP2028741B1 (en) Hybrid-type superconducting fault current limiter
Gromoll et al. Resistive fault current limiters with YBCO films 100 kVA functional model
US4961066A (en) Fault current limiter
Gromoll et al. Resistive current limiters with YBCO films
Hyun et al. Reliability enhancement of the fast switch in a hybrid superconducting fault current limiter by using power electronic switches
Heidary et al. Controllable reactor based hybrid HVDC breaker
Aly et al. Comparison between resistive and inductive superconducting fault current limiters for fault current limiting
US5083232A (en) Fault current limiter
JP2597599B2 (en) Superconducting current limiting switchgear
Lindmayer et al. Resistive fault current limiters with HTSC-measurements and simulation
Descloux et al. Protection system for meshed HVDC network using superconducting fault current limiters
Liang et al. Exploration and verification analysis of YBCO thin film in improvement of overcurrent stability for a battery unit in a SMES-battery HESS
Fisher et al. Superconducting fault current limiter for railway transport
Dutta et al. Modelling and analysis of resistive superconducting fault current limiter
JPH01185128A (en) Self-reset current limiter
JPH04207923A (en) Current limiting method and current limiter
Martini et al. Simulations and electrical testing of superconducting fault current limiter prototypes
JPH02260343A (en) High voltage dc contact breaker circuit
WO2019143813A1 (en) Superconducting fault current limiter having improved energy handling
Yim et al. Application of resistive type SFCL to protect Bi-2223/Ag tape against AC over-currents
JPH02294222A (en) Current-limiting apparatus
JP3343946B2 (en) Current limiter
Sato et al. A study on DC S/N transition type superconducting fault current limiting interrupter
GB2225164A (en) Current limiting device
Shimizu et al. Operation of superconducting fault current limiter using vacuum interrupter driven by electromagnetic repulsion force for commutating switch