JP2597099B2 - Multi-source ellipsometry - Google Patents

Multi-source ellipsometry

Info

Publication number
JP2597099B2
JP2597099B2 JP17879987A JP17879987A JP2597099B2 JP 2597099 B2 JP2597099 B2 JP 2597099B2 JP 17879987 A JP17879987 A JP 17879987A JP 17879987 A JP17879987 A JP 17879987A JP 2597099 B2 JP2597099 B2 JP 2597099B2
Authority
JP
Japan
Prior art keywords
light
sample
ellipsometry
incident
cosφ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17879987A
Other languages
Japanese (ja)
Other versions
JPS6423126A (en
Inventor
泉 潟岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP17879987A priority Critical patent/JP2597099B2/en
Publication of JPS6423126A publication Critical patent/JPS6423126A/en
Application granted granted Critical
Publication of JP2597099B2 publication Critical patent/JP2597099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は試料に直線偏光を入射し、その試料の表面
の光学的状態により生じる楕円偏光反射光の楕円率を測
定して試料の膜厚を計測する偏光解析法(エリプソメト
リ)に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial application field" This invention applies linearly polarized light to a sample, measures the ellipticity of elliptically polarized light reflected by the optical state of the surface of the sample, and measures the film thickness of the sample. Ellipsometry, which measures the ellipsometry.

「従来の技術」 第2図に従来の自動エリプソメトリ(偏光解析法)を
示す。光源1からの光は偏光子2により直線偏光とさ
れ、その直線偏光は薄膜試料3に入射される。その入射
光は試料3の表面の光学的状態によりある特定の楕円率
と方向とをもった楕円偏光として反射される。その反射
光は回転検光子4によりその偏光状態が光量の変化に変
えられて光検出器5に入射され、これにて電気信号に変
換される。
[Prior Art] FIG. 2 shows a conventional automatic ellipsometry (ellipsometry). Light from the light source 1 is linearly polarized by the polarizer 2, and the linearly polarized light is incident on the thin film sample 3. The incident light is reflected as elliptically polarized light having a specific ellipticity and direction depending on the optical state of the surface of the sample 3. The reflected light is changed in its polarization state into a change in the amount of light by the rotation analyzer 4 and is incident on the photodetector 5, where it is converted into an electric signal.

その回転検光子4で変換された光量Iは、その時の検
光子4の方位角をAとすると、 I(A)=I0(1+αcosA+βsin2A) で表わされる。I0は入射光量、α,βはフーリエ係数で
ある。従ってI(A)を測定して、α,βを定めること
ができる。α,βは入射光の偏光状態及び試料3の表面
状態と以下の関係があることが知られている。
The light quantity I converted by the rotary analyzer 4 is represented by I (A) = I 0 (1 + αcosA + βsin 2 A), where A is the azimuthal angle of the analyzer 4 at that time. I 0 is the amount of incident light, and α and β are Fourier coefficients. Therefore, α and β can be determined by measuring I (A). It is known that α and β have the following relationship with the polarization state of incident light and the surface state of the sample 3.

α=−cosΨ′,β=sin2Ψ′cosΔ tanΨ′=cosP tanΨ Pは偏光子2の方位角 従って試料3上で偏光された楕円偏光の方向Ψ及び楕
円率Δは となる。この関係から、P,α,βを知ってΨ及びΔを求
めることができる。
α = −cosΨ ′, β = sin2Ψ′cosΔ tanΨ ′ = cosP tanΨ P is the azimuthal angle of the polarizer 2, and therefore the direction Ψ and the ellipticity Δ of the elliptically polarized light polarized on the sample 3 are Becomes From this relationship,, and Δ can be obtained by knowing P, α, and β.

試料3の表面上の複素振幅反射率P, =(r1P+r2Pe−2iδ)/(1+r1Pr2Pe−2iδ =(r1S+r2Se−2iδ)/(1+r1Sr2Se−2iδ) r1P=(n1COSφ−n0COSφ)/(n1COSφ+n0COSφ
) r1S=(n0COSφ−n1COSφ)/(n0COSφ+n1COSφ
) r2P=(n2COSφ−n1COSφ)/(n2COSφ+n1COSφ
となることが知られている。n0、n1、n2は大気(もしく
は真空)、試料3、試料3の基板のそれぞれの屈折率、
dは試料3の膜厚、φは光の入射角度、φは試料3
の屈折角度、φは試料3の基板の屈折角度、添字S、
Pは偏光の方向を示し、λは計測に用いる光の波長であ
る。
Complex amplitude reflectance P on the surface of the sample 3, S is P = (r 1P + r 2P e -2iδ) / (1 + r 1P r 2P e -2iδ) S = (r 1S + r 2S e -2iδ) / (1 + r 1S r 2S e −2iδ ) r 1P = (n 1 COSφ 0 −n 0 COSφ 1 ) / (n 1 COSφ 0 + n 0 COSφ
1 ) r 1S = (n 0 COSφ 0 −n 1 COSφ 1 ) / (n 0 COSφ 0 + n 1 COSφ
1 ) r 2P = (n 2 COSφ 1 −n 1 COSφ 2 ) / (n 2 COSφ 1 + n 1 COSφ
2 ) It is known that n 0 , n 1 , and n 2 are the air (or vacuum), the refractive index of each of Sample 3 and the substrate of Sample 3,
d is the film thickness of sample 3, φ 0 is the incident angle of light, and φ 1 is sample 3.
Is the refraction angle of φ, φ 2 is the refraction angle of the substrate of sample 3,
P indicates the direction of polarization, and λ is the wavelength of light used for measurement.

ここで複素振幅反射率P,を実測できる実数振幅
反射率RP,RSと位相変化δPとに分けて表示する
と、 =RPeiδP=RSeiδS となり、Ψ,Δは tanΨ=RP/RS,Δ=δ−δ という関係となる。従って通常はΨ,Δの値に対応する
n,dを計算で求めて図表(Ψ,Δ図表)を作り、実測値
に対応するn,dをさがすか、又は逐次近似計算法により
n,dを求める。
Here, if the complex amplitude reflectances P and S are displayed separately by the real number amplitude reflectances R P and R S and the phase changes δ P and δ S , which can be measured, P = R P e iδP and S = R S e iδS , [psi, delta is the relationship tanΨ = R P / R S, Δ = δ P -δ S. Therefore, it usually corresponds to the values of Ψ and Δ
Calculate n, d to create a chart (Ψ, Δ chart) and find n, d corresponding to the actual measurement value, or use a successive approximation calculation method
Find n and d.

「発明が解決しようとする問題点」 この従来の偏光解析法(エリプソメトリ)において、
反射光が直線偏光に近くなると測定精度が悪くなり、求
めた膜厚dの誤差が大きくなる。
"Problems to be solved by the invention" In the conventional ellipsometry (ellipsometry),
When the reflected light approaches linearly polarized light, the measurement accuracy deteriorates, and the error in the obtained film thickness d increases.

「問題点を解決するための手段」 この発明によれば波長が異なる複数の光源を用意し、
その1つの光源よりの光に対する試料からの反射光が直
線偏光に近い状態のときは、別の光源の光を計測に用い
る。このようにこの発明では異なる波長に対する試料の
光学的距離が異なることを利用して、偏光率を常に高精
度で測定することにより、試料の膜厚の計測精度を向上
させるものである。
"Means for solving the problem" According to the present invention, a plurality of light sources having different wavelengths are prepared,
When the reflected light from the sample with respect to the light from one light source is close to linearly polarized light, the light from another light source is used for measurement. As described above, in the present invention, the measurement accuracy of the film thickness of the sample is improved by always using the fact that the optical distance of the sample is different with respect to different wavelengths to measure the polarization ratio with high accuracy.

「実施例」 第1図にこの発明の実施例を示す、真空容器11内に薄
膜試料12が配される。この例では波長が異なる二つの光
源13,14が設けられた場合で、光源13,14としてレーザが
使用される。光源13,14の各出射光をON,OFFするチョッ
パ15,16が設けられ、両光源13,14から光が同時に測定系
に入射されないようにされている。チョッパ15,16の動
作位置を検出するための光源17,18が設けられ、その光
源17,18とチョッパ15,16をそれぞれ介して光ファイバ2
1,22の各一端面が対向される。光ファイバ21,22の他端
面に対向して光検出器23,24が配される。この光検出器2
3,24よりチョッパの位置信号は電子計算機25に入力され
る。
"Embodiment" FIG. 1 shows an embodiment of the present invention, in which a thin film sample 12 is disposed in a vacuum vessel 11. In this example, two light sources 13 and 14 having different wavelengths are provided, and lasers are used as the light sources 13 and 14. Choppers 15 and 16 are provided to turn on and off each of the light emitted from the light sources 13 and 14, so that light from both light sources 13 and 14 is not simultaneously incident on the measurement system. Light sources 17 and 18 for detecting the operating positions of the choppers 15 and 16 are provided, and the optical fiber 2 is transmitted through the light sources 17 and 18 and the choppers 15 and 16, respectively.
Each end face of 1,22 is opposed. Photodetectors 23 and 24 are arranged to face the other end surfaces of the optical fibers 21 and 22. This photo detector 2
The chopper position signal is input to the computer 25 from 3 and 24.

光源13,14からの光はウェッジミラー26により同一光
軸上に伝播される。そのウェッジミラー26からの光は偏
光子27で直線偏光とされ、真空容器11の窓28を通じて真
空容器11内の薄膜試料12に入射される。試料12の反射光
は真空容器11の窓29より真空容器11外の回転検光子31に
入射される。回転検光子31の角度位置を検出するため、
回転検光子31の回転板32を挟み光源33と光ファイバ34の
一端とが配される。光ファイバ34の他端に光検出器35が
配され、光検出器35から得られる回転検光子31の回転角
と対応したパルス信号が電子計算機25に入力される。回
転検光子31よりの出射光は光検出器36で電気信号とされ
て電子計算機25に入力される。
Light from the light sources 13 and 14 is propagated on the same optical axis by the wedge mirror 26. The light from the wedge mirror 26 is converted into linearly polarized light by the polarizer 27, and is incident on the thin film sample 12 in the vacuum vessel 11 through the window 28 of the vacuum vessel 11. The reflected light of the sample 12 is incident on the rotary analyzer 31 outside the vacuum vessel 11 from the window 29 of the vacuum vessel 11. In order to detect the angular position of the rotation analyzer 31,
The light source 33 and one end of the optical fiber 34 are arranged with the rotating plate 32 of the rotating analyzer 31 interposed therebetween. A photodetector 35 is provided at the other end of the optical fiber 34, and a pulse signal corresponding to the rotation angle of the rotation analyzer 31 obtained from the photodetector 35 is input to the computer 25. The emitted light from the rotating analyzer 31 is converted into an electric signal by the photodetector 36 and input to the electronic computer 25.

光源13,14より各光を用いた試料12の屈折率,膜厚の
計測法は従来の方法と同様である。一方の光源13よりの
光で計測を行っていて、試料12からの反射光が楕円偏光
から直線偏光に近ずいて来ると、他の光源14よりの光で
計測を行う。これは前述の位相差δが波長及び屈折率で
異なるため、2つの波長で計測すると、別々のΨに対し
直線偏光となることを利用している。すなわち、2つの
光源13,14よりの光を時間的に交互に試料13に入射さ
せ、一定の楕円率より大きくなると、一方の波長光によ
るデータから他方の波長光によるデータを用いて算出し
た屈折率n、膜厚dを得るようにすることにより、常に
高精度で試料12の膜厚とが計測される。
The measuring method of the refractive index and the film thickness of the sample 12 using each light from the light sources 13 and 14 is the same as the conventional method. Measurement is performed using light from one light source 13, and when reflected light from the sample 12 approaches elliptically polarized light to linearly polarized light, measurement is performed using light from the other light source 14. This utilizes the fact that the above-mentioned phase difference δ differs depending on the wavelength and the refractive index, so that when measured at two wavelengths, it becomes linearly polarized light for different Ψ. That is, light from the two light sources 13 and 14 is alternately temporally incident on the sample 13, and when the light exceeds a certain ellipticity, the refraction calculated from the data based on one wavelength light and the data based on the other wavelength light. By obtaining the ratio n and the film thickness d, the film thickness of the sample 12 is always measured with high accuracy.

測定用光源の数を増加させてこれらを切替えて測定し
てもよい。
The number of light sources for measurement may be increased and these may be switched for measurement.

「発明の効果」 以上述べたようにこの発明によれば試料の反射光が直
線偏光に近ずけば測定する光の波長を変えることによ
り、偏光率を常に高精度で測定でき、このため試料の膜
厚を高い精度で測定することができる。
[Effects of the Invention] As described above, according to the present invention, if the reflected light of the sample approaches linearly polarized light, the polarization ratio can always be measured with high accuracy by changing the wavelength of the light to be measured. Can be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を示す図、第2図は従来の方
法を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料に直線偏光を入射し、その試料の表面
の光学的状態により生じる楕円偏光反射光の楕円率を測
定して試料の膜厚を計測する偏光解析法において、 波長の異なる複数の光源を用意し、 その1つの光源よりの光に対する上記試料からの反射光
が直線偏光に近い状態のときは、別の光源よりの光を上
記試料に入射させて計測することを特徴とする多光源偏
光解析法。
In a polarization analysis method, linearly polarized light is incident on a sample, the ellipticity of elliptically polarized light reflected by the optical state of the surface of the sample is measured, and the film thickness of the sample is measured. When light reflected from the sample with respect to light from one light source is close to linearly polarized light, light from another light source is incident on the sample and measurement is performed. Multi-source ellipsometry.
JP17879987A 1987-07-17 1987-07-17 Multi-source ellipsometry Expired - Fee Related JP2597099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17879987A JP2597099B2 (en) 1987-07-17 1987-07-17 Multi-source ellipsometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17879987A JP2597099B2 (en) 1987-07-17 1987-07-17 Multi-source ellipsometry

Publications (2)

Publication Number Publication Date
JPS6423126A JPS6423126A (en) 1989-01-25
JP2597099B2 true JP2597099B2 (en) 1997-04-02

Family

ID=16054848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17879987A Expired - Fee Related JP2597099B2 (en) 1987-07-17 1987-07-17 Multi-source ellipsometry

Country Status (1)

Country Link
JP (1) JP2597099B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412473A (en) * 1993-07-16 1995-05-02 Therma-Wave, Inc. Multiple angle spectroscopic analyzer utilizing interferometric and ellipsometric devices
US5798837A (en) 1997-07-11 1998-08-25 Therma-Wave, Inc. Thin film optical measurement system and method with calibrating ellipsometer
US6278519B1 (en) 1998-01-29 2001-08-21 Therma-Wave, Inc. Apparatus for analyzing multi-layer thin film stacks on semiconductors
KR100352127B1 (en) * 2000-04-11 2002-09-12 김상열 rotating analyzer type in situ ellipsometer
CN103063348B (en) * 2012-12-30 2015-11-04 徐州苏煤矿山设备制造有限公司 A kind of track hauling capacity of a locomotive and braking force test device

Also Published As

Publication number Publication date
JPS6423126A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5255075A (en) Optical sensor
JPH054606B2 (en)
US5502567A (en) Micropolarimeter, microsensor system and method of characterizing thin films
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
EP0371550B1 (en) Measure for measuring thin film thickness
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
CA2293369A1 (en) Extended range interferometric refractometer
JPH02503115A (en) differential ellipsometer
KR20200007267A (en) Normal-incidence ellipsometer and method for measuring optical properties of the sample using the same
JP2597099B2 (en) Multi-source ellipsometry
JP3520379B2 (en) Optical constant measuring method and device
JPH0571923A (en) Polarization analyzing method and thin film measuring apparatus
US7224462B2 (en) Beam shifting surface plasmon resonance system and method
JP4032511B2 (en) Method for measuring optical constants of thin films
JPS6231289B2 (en)
JPH08201277A (en) Method and apparatus for measuring double refraction
JP3181655B2 (en) Optical system and sample support in ellipsometer
US5659393A (en) Method of and device for measuring the refractive index of wafers of vitreous material
JP2522480B2 (en) Refractive index measurement method
JPH07111327B2 (en) Ellipsometer
JPH07151674A (en) Quenching polarization measuring apparatus
JPH04294226A (en) Ellipsometer
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
JPH04294227A (en) Ellipsometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees