JP2594926B2 - Pattern formation method - Google Patents

Pattern formation method

Info

Publication number
JP2594926B2
JP2594926B2 JP62035508A JP3550887A JP2594926B2 JP 2594926 B2 JP2594926 B2 JP 2594926B2 JP 62035508 A JP62035508 A JP 62035508A JP 3550887 A JP3550887 A JP 3550887A JP 2594926 B2 JP2594926 B2 JP 2594926B2
Authority
JP
Japan
Prior art keywords
layer
organic
pattern
etching
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62035508A
Other languages
Japanese (ja)
Other versions
JPS63204253A (en
Inventor
洋 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62035508A priority Critical patent/JP2594926B2/en
Publication of JPS63204253A publication Critical patent/JPS63204253A/en
Application granted granted Critical
Publication of JP2594926B2 publication Critical patent/JP2594926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パタン形成法に係り、特に半導体等の微細
加工技術のリソグラフイ工程において、有機物からなる
高アスペクト比のレジストパタンを形成する方法に関す
る。
Description: FIELD OF THE INVENTION The present invention relates to a pattern forming method, and particularly to a method of forming a high aspect ratio resist pattern made of an organic material in a lithography step of a fine processing technique for a semiconductor or the like. About.

〔従来の技術〕[Conventional technology]

従来、半導体などの微細加工技術分野において、高ア
スペクト比のレジストパタンを形成する方法としては、
特開昭57−169245号に記載のような、所謂3層レジスト
法があつた。上層レジストにシリコン元素等を含有させ
3層を2層に簡便化した方法(特開昭61−144369号な
ど)も開発されたが、いずれも酸素の反応性イオンエツ
チング(以下O2−RIEと略す)の異方性エツチング能を
利用して、所定パタンの上層あるいは中間層を下層に転
写するものである。
Conventionally, in the field of microfabrication technology such as semiconductors, as a method of forming a resist pattern having a high aspect ratio,
There is a so-called three-layer resist method as described in JP-A-57-169245. Methods have been developed in which the upper layer resist contains a silicon element or the like to simplify the three layers into two layers (Japanese Patent Laid-Open No. 144369/1986), all of which have been developed by reactive ion etching of oxygen (hereinafter referred to as O 2 -RIE). In this method, an upper layer or an intermediate layer of a predetermined pattern is transferred to a lower layer by utilizing the anisotropic etching ability (abbreviated).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、O2−RIE工程において、数十mmTorr
以下、望ましくは数mmTorr以下の高真空下で高周波放電
を行なう必要があつた。そのような高真空下で高周波放
電を維持するため装置は複雑、高価となる問題があつ
た。また高いアスペクト比を得るためには、真空度を高
くし、放電によつて生ずる反応性イオンの方向性を高め
る必要があるが、そうすると、エツチング時間は長大と
なり、所謂スループツトの向上は、高アスペクト比の実
現と相反した。さらに、このとき素子ダメジの要因とな
り得るイオン衝撃は、避けることができないという問題
もあつた。
The above prior art, the O 2 -RIE process, tens mmTorr
Hereinafter, it is necessary to perform high-frequency discharge under a high vacuum of preferably several mmTorr or less. In order to maintain the high-frequency discharge under such a high vacuum, the apparatus is complicated and expensive. Further, in order to obtain a high aspect ratio, it is necessary to increase the degree of vacuum and increase the directionality of the reactive ions generated by the discharge. However, in such a case, the etching time becomes long, and the improvement of the so-called throughput increases at a high aspect ratio. Contrary to the realization of the ratio. Further, at this time, there is also a problem that ion bombardment, which can be a cause of element damage, cannot be avoided.

本発明の目的は、高真空や、方向性イオン衝撃を用い
ることなく、単純な工程で異方性エツチングを行なう多
層レジスト法を実現することにある。
An object of the present invention is to realize a multilayer resist method for performing anisotropic etching in a simple process without using high vacuum or directional ion bombardment.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は、基板上に有機物層を形成する工程、該有
機物層の上に、非酸化性材料又は酸化反応によつて実質
的に不揮発性の酸化物に変化する材料からなる所定のパ
タンを形成する工程及び酸化雰囲気下で上記パタンに光
を照射し、露出部の有機物層を光酸化エツチング(光ア
ツシヤー)で除去することを特徴とするパタン形成法に
よつて達成される。
The object is to form an organic layer on a substrate, and to form a predetermined pattern on the organic layer from a non-oxidizing material or a material that changes to a substantially non-volatile oxide by an oxidation reaction. And a step of irradiating the pattern with light in an oxidizing atmosphere, and removing the organic layer at the exposed portion by photo-oxidation etching (photo-ashing).

下層である有機物層に用いる材料としては、酸化によ
つてCO2,H2Oなどの気化する物質に変化するもので、か
つ塗膜となり得る材料がよい。このような材料とては有
機ポリマーが好ましい。有機ポリマー中には金属やSiな
どの半金属を含まないものが好ましい。この材料はいく
つかの物質の混合物でもよい。
The material used for the lower organic layer is preferably a material that changes into a vaporizable substance such as CO 2 or H 2 O by oxidation and can be a coating film. As such a material, an organic polymer is preferable. It is preferable that the organic polymer does not contain a metal or a metalloid such as Si. This material may be a mixture of several substances.

さらに有機物層は光酸化エツチングの光が該層の1μ
m厚当り3以上の吸光度を示すように設定されているこ
とが望ましい。例えば有機ポリマーに染料を混合して、
上記のような吸光度を示すように混合量を調節した材料
を用いることが好ましい。染料の種類によるが、ポリマ
ーに対して0.1wt%〜数wt%の染料をポリマーに混合す
ればよい。また通常のホトレジストは、有機ポリマーに
対し、5〜30wt%程度の光反応性物質をポリマーに混合
したものが多く、ほとんどの光反応性物質は紫外光を吸
収する物質である。それ故通常のホトレジストでSiなど
の半金属や金属を実質的に含まないものであれば有機物
層の材料として用いることができる。上記の染料や光反
応性物質の添加量は多くてもさしつかえない。ただしそ
の量が多すぎるとポリマーの量が少なくなるので塗膜の
形成能が低下する。それ故塗膜が形成できる範囲であれ
ば添加量が多くてもよい。
Further, the light of the photo-oxidative etching is applied to the organic material layer by 1 μm of the layer.
It is desirable that the thickness is set to show an absorbance of 3 or more per m thickness. For example, mixing a dye with an organic polymer,
It is preferable to use a material whose mixing amount is adjusted so as to exhibit the above absorbance. Depending on the type of the dye, 0.1 wt% to several wt% of the dye may be mixed with the polymer. In addition, ordinary photoresists often contain about 5 to 30 wt% of a photoreactive substance mixed with an organic polymer, and most photoreactive substances are substances that absorb ultraviolet light. Therefore, any ordinary photoresist that does not substantially contain a metalloid such as Si or a metal can be used as a material for the organic layer. The amount of the dye or photoreactive substance added may be large. However, if the amount is too large, the amount of the polymer becomes small, so that the ability to form a coating film is reduced. Therefore, the addition amount may be large as long as a coating film can be formed.

このような材料の例として、ポリスチレン,ポリビニ
ルフエノールなどの有機ポリマーにスダンレツド,オイ
ルバイオレツト又はスダンRなどの染料を加えた組成
物、ポリビニルフエノール,フエノール樹脂などのポリ
マーにナフトキノン−1,2−ジアゾ−5−スルホン酸エ
ステルなどを加えたホトレジストなどがある。
Examples of such a material include a composition obtained by adding a dye such as sudan red, oil violet or Sudan R to an organic polymer such as polystyrene or polyvinyl phenol, or a polymer such as polyvinyl phenol or phenol resin to naphthoquinone-1,2-diazo. There is a photoresist to which -5-sulfonic acid ester or the like is added.

非酸化性材料又は酸化反応によつて実質的に不揮発性
の酸化物に変化する材料としては、シリコンなどの半金
属又は金属を含むホトレジストが好ましい。ヨー素もま
た酸化によつて不揮発性の酸化物になるので、ヨー素を
含むホトレジストも用いることができる。
As a non-oxidizing material or a material which changes to a substantially non-volatile oxide by an oxidation reaction, a semi-metal such as silicon or a photoresist containing a metal is preferable. Since iodine also becomes a non-volatile oxide upon oxidation, a photoresist containing iodine can also be used.

光酸化エツチングの光としては、解像度の点から紫外
光、遠紫外光が好ましいが、可視光も用いることができ
る。
As light for the photo-oxidizing etching, ultraviolet light and far-ultraviolet light are preferable in terms of resolution, but visible light can also be used.

光酸化エツチングの装置としては市販の装置が利用で
きる。例えば導入ガスは酸素、圧力は1気圧、紫外線照
度は約3mW/cm2(λ=254nm)、基板温度120℃の条件で
1μm厚の有機物層を約400分でエツチングできる。
A commercially available apparatus can be used as the apparatus for photooxidation etching. For example, the introduced gas is oxygen, the pressure is 1 atm, the UV illuminance is about 3 mW / cm 2 (λ = 254 nm), and the substrate temperature is 120 ° C., and the organic layer having a thickness of 1 μm can be etched in about 400 minutes.

〔作用〕[Action]

有機材料の光酸化エツチングは、酸素・オゾン等の酸
化性雰囲気下におかれた有機材料の露光部が選択的に酸
化され、水、二酸化酸素など揮発性の低分子化合物が生
成し、該露光部が除去されることを云う。このとき、露
光部の一部表面が、非酸化性の被覆あるいは、酸化によ
つて不揮発性の酸化物層を形成するような被覆であれ
ば、その被覆下部の該有機材料は、光酸化されない。本
発明では、露光波長を該有機材料が大きく吸収する領域
に選ぶので、該被覆部下層は、実質的に自己遮光性とな
り、露出部の光酸化エツチングが進行しても実質的にサ
イドエツチングは進行しない。
Photo-oxidative etching of an organic material is performed by selectively oxidizing an exposed portion of the organic material placed in an oxidizing atmosphere such as oxygen and ozone, and generating volatile low-molecular compounds such as water and oxygen dioxide. Part is removed. At this time, if the partial surface of the exposed portion is a non-oxidizing coating or a coating that forms a nonvolatile oxide layer by oxidation, the organic material under the coating is not photo-oxidized. . In the present invention, since the exposure wavelength is selected to be a region where the organic material largely absorbs, the lower layer of the coating portion becomes substantially self-shielding, and even if the photooxidation etching of the exposed portion proceeds, the side etching substantially does not occur. Does not progress.

〔実施例〕〔Example〕

以下、図面を用いて本発明をさらに詳細に説明する。
第1図は、本発明による光酸化エツチング工程を示す。
第2図は、有機物層に用いたナフトキノンジアジド系ポ
ジ型ホトレジスト(東京応化工業製品OFPR−800)を200
℃で20分間ベークした後の吸収スペクトルを示す。この
とき塗膜の厚さは約0.1μmであつた。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows a photo-oxidation etching process according to the present invention.
Figure 2 shows a naphthoquinonediazide-based positive photoresist (Tokyo Ohka Kogyo Co., Ltd. OFPR-800) used for the organic material layer.
3 shows an absorption spectrum after baking at 20 ° C. for 20 minutes. At this time, the thickness of the coating film was about 0.1 μm.

実施例1. シリコン基板上に、ナフトキノンジアジド系ポジ型ホ
トレジストOFPR−800を回転塗布法にて塗布し、200℃、
20分間ベークすることにより有機物層のレジスト膜を形
成する。このとき塗膜の厚さは、1.1μmであつた。上
記レジスト膜形成後、その上に、シリコン含有ポジ型ホ
トレジスト(日立化成製品レイキヤストRG−8500P)を
回転塗布法にて塗布、80℃20分のベークによつて、厚さ
0.5μmのレジスト膜を形成する。縮小投影露光機(日
立製作所製RA−101)を用いて、所定のテストパタンを
露光した後、有機アルカリ現像液(東京応化工業性現像
液NMD−3,2.38%)を用いて、常法に従つて現像し、上
層のレジストパタンを形成した。
Example 1. On a silicon substrate, a naphthoquinonediazide-based positive photoresist OFPR-800 was applied by spin coating at 200 ° C.
A resist film of an organic layer is formed by baking for 20 minutes. At this time, the thickness of the coating film was 1.1 μm. After the above resist film is formed, a silicon-containing positive photoresist (Hitachi Chemical Reycast RG-8500P) is applied thereon by a spin coating method, and the thickness is baked at 80 ° C. for 20 minutes.
A 0.5 μm resist film is formed. After exposing a predetermined test pattern using a reduction projection exposure machine (RA-101 manufactured by Hitachi, Ltd.), an organic alkali developing solution (Tokyo Oka Industrial Developer NMD-3, 2.38%) is used, and a conventional method is used. Accordingly, development was performed to form an upper resist pattern.

この基板を、120Wの低圧水銀ランプを備えたホトレジ
ストはく離装置(株式会社サムコインターナシヨナル研
究所製UV DRYSTRIPPER UV−1)にて、40分間、光酸
化エツチングを行つた。このとき、酸素流量は500ml/分
であつた。こし光酸化エツチング工程を第1図を用いて
説明する。第1図1.はシリコン基板で、2は既述の有機
物層のレジスト膜、3は所定パタンに形成したシリコン
含有上層パタンである。4は、酸化性ガス雰囲気を示
し、上記装置では、内蔵オゾナイザによつて生成したオ
ゾンを含む酸素ガスである。5は、光酸化露光光線を示
し、上記装置では、低圧水銀ランプの253.7nmの輝線を
主とする。上層パタン3は、シリコンを含有しており、
光酸化によつて不揮発性の二酸化ケイ素の被膜が形成さ
れそれ以上エツチングは進行しなくなる。一方、3によ
つて被覆されていない2の表面は、露光光線を効率的に
吸収し、光酸化エツチングが逐次的に、シリコン基板に
到るまで進行する。第2図に示されるように、該下層レ
ジストは、253.7nmでは、膜厚0.1μmで吸光度約0.3で
あることにより、膜厚1μmで吸光度約3であることが
わかる。従つて、上層パタン被覆部では、下層に露光光
はほとんど到達せず、露出部の光酸化エツチングが進行
しても、サイドエツチングは実質的に起きない。上記光
酸化エツチング終了後の該基板を、走査型電子顕微鏡で
観察したところ、上層レジストパタンを忠実に転写した
高アスペクト比の下層レジストパタンが形成されている
ことが認められた。
This substrate was subjected to photo-oxidation etching for 40 minutes using a photoresist stripper equipped with a 120 W low-pressure mercury lamp (UV DRYSTRIPPER UV-1 manufactured by Samco International Laboratories Inc.). At this time, the oxygen flow rate was 500 ml / min. The photo-oxidation etching step will be described with reference to FIG. FIG. 1 is a silicon substrate, 2 is a resist film of the organic layer described above, and 3 is a silicon-containing upper layer pattern formed in a predetermined pattern. Reference numeral 4 denotes an oxidizing gas atmosphere, which is an oxygen gas containing ozone generated by a built-in ozonizer in the above apparatus. Reference numeral 5 denotes a photo-oxidation exposure light beam. In the above-mentioned apparatus, a 253.7 nm bright line of a low-pressure mercury lamp is mainly used. The upper layer pattern 3 contains silicon,
A non-volatile silicon dioxide film is formed by the photo-oxidation, and the etching does not proceed any further. On the other hand, the surface of 2 not covered by 3 efficiently absorbs the exposure light, and the photo-oxidative etching proceeds sequentially until it reaches the silicon substrate. As shown in FIG. 2, the lower layer resist has an absorbance of about 0.3 at a thickness of 0.1 μm at 253.7 nm, and thus has an absorbance of about 3 at a thickness of 1 μm. Therefore, in the upper layer pattern coating portion, the exposure light hardly reaches the lower layer, and even if the photooxidation etching of the exposed portion proceeds, side etching does not substantially occur. Observation of the substrate after the completion of the photo-oxidation etching with a scanning electron microscope revealed that a lower resist pattern having a high aspect ratio to which the upper resist pattern was faithfully transferred was formed.

実施例2. 有機物層レジストとして、上層レジストパタン形成に
用いるg-線を効果的に吸収する材料であるレイキヤスト
RG−3900B(日立化成製品)を用いた以外は、実施例1
と同様にして、高アスペクト比の有機物層レジストパタ
ンを形成できた。
Example 2. As an organic material layer resist, a material used for forming an upper layer resist pattern, which is a material that effectively absorbs g - rays
Example 1 except that RG-3900B (Hitachi Chemical) was used.
In the same manner as in the above, an organic layer resist pattern having a high aspect ratio was formed.

実施例3. シリコン基板上に有機物層レジストレイキヤストRG−
3900Bの塗膜を形成した後、中間層として塗布型ガラス
(東京応化工業製品OCD−P59310)を回転塗布し、200
℃、30分ベークした後0.1μmのガラス層を得た。上記
基板にさらに、ポジ型ホトレジストOFPR−800を回転塗
布法で塗布、90℃20分ベークして膜厚0.5μmのパタニ
ング層を形成した。縮小投影露光機RA−101にて、テス
トパタンを露光した後、有機アルカリ現像液NMD−3、
2.38%(東京応化工業製品)で現像してテストパタンを
得た。該基板を、フッ素系パラズマに曝すことによつ
て、上記テストパタンを中間層に転写した後、上層パタ
ニングレジストを有機溶剤ではく離した。得られた基板
は、有機物層の上に、所定パタンのガラス質上層が被覆
した形になつている。これを実施例1と同様にして光酸
化エツチングを施した後、走査形電子顕微鏡で観察した
ところ、実施例1と同種の良好なパタン転写を確認でき
た。
Example 3. Organic layer resist rake cast RG- on a silicon substrate
After forming a coating film of 3900B, spin-coating a coating type glass (Tokyo Ohka Kogyo OCD-P59310) as an intermediate layer,
After baking at 30 ° C. for 30 minutes, a glass layer of 0.1 μm was obtained. The substrate was further coated with a positive photoresist OFPR-800 by a spin coating method and baked at 90 ° C. for 20 minutes to form a 0.5 μm-thick patterning layer. After exposure of the test pattern with a reduction projection exposure machine RA-101, an organic alkali developer NMD-3,
Developed at 2.38% (Tokyo Ohka Kogyo) to obtain a test pattern. The test pattern was transferred to the intermediate layer by exposing the substrate to fluorine-based plasma, and then the upper layer patterning resist was stripped with an organic solvent. The obtained substrate has a shape in which a glassy upper layer of a predetermined pattern is coated on the organic material layer. This was subjected to photooxidative etching in the same manner as in Example 1, and then observed with a scanning electron microscope. As a result, good pattern transfer similar to that of Example 1 was confirmed.

実施例4. 上層パタニングレジストとして、ポジ型電子線レジス
ト、レイキヤストRE−5000P(日立化成工業製品)を用
い、電子線露光装置HL−600を用いて、所定のテストパ
タン描画を行ない専用アルカリ現像液(RE−5000P現像
液、日立化成工業製品)で上層パタンを形成したこと以
外は、実施例3と同様にして、高アスペクト比の有機物
層レジストパタンが得られた。
Example 4. Using a positive-type electron beam resist, Rakecast RE-5000P (Hitachi Chemical Co., Ltd.) as an upper layer patterning resist, and performing a predetermined test pattern drawing using an electron beam exposure apparatus HL-600, a dedicated alkaline developer. (RE-5000P developer, Hitachi Chemical Co., Ltd.) A high aspect ratio organic layer resist pattern was obtained in the same manner as in Example 3 except that the upper layer pattern was formed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電圧(大気圧)下で、多層レジスト
法における有機物層レジスト膜へのパタン転写ができる
ので、連続工程を形成することが容易である。従来のO2
−RIEを用いた多層レジスト法では、下層レジスト膜へ
のパタン転写に用いるO2−RIEに、高真空下の高周波放
電を可能とする複雑で高価な装置を必要とする上、高真
空を保つためバツチ処理をせざるを得ず、連続工程を形
成する上で問題となつた。本発明では、この困難を避け
た上、半導体素子のダメージの要因になり得るイオン衝
撃を無くすることができたので、素子の信頼性向上にも
寄与できた。
According to the present invention, since a pattern can be transferred to an organic layer resist film in a multilayer resist method under a voltage (atmospheric pressure), it is easy to form a continuous process. Conventional O 2
In the multi-layer resist method using -RIE, O 2 -RIE used for pattern transfer to the lower resist film requires complicated and expensive equipment that enables high-frequency discharge under high vacuum, and keeps high vacuum Therefore, a batch process has to be performed, which is a problem in forming a continuous process. In the present invention, this difficulty was avoided, and ion bombardment that could cause damage to the semiconductor device could be eliminated, thereby contributing to improvement in device reliability.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の光酸化エツチングによるパタン転写
する基板の断面図、第2図は、一実施例で用いた有機物
層レジストの吸収スペクトルを示す図である。 1……基板、2……有機物層、3……上層パタン、4…
…酸化性雰囲気、5……光酸化光線。
FIG. 1 is a cross-sectional view of a substrate to which a pattern is transferred by photo-oxidation etching of the present invention, and FIG. 2 is a view showing an absorption spectrum of an organic layer resist used in one embodiment. 1 ... substrate, 2 ... organic layer, 3 ... upper pattern, 4 ...
... oxidizing atmosphere, 5 ... photo-oxidizing light beam.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に有機物層を形成する工程と、該有
機物層上に非酸化性材料または、酸化反応によって実質
的に不揮発性の酸化物に変化する材料を含む上層を形成
する工程と、該上層を所定のパタン形状に加工して上記
有機物層を露出する工程と、該所定パタン形状の上層を
マスクとして酸化性雰囲気下で上記有機物層に光を照射
して上記有機物層を光酸化エッチングする工程を有し、
かつ上記照射光として上記有機物層の1μm厚当たり3
以上の吸光度を示す波長の光を用いることを特徴とする
パタン形成法。
1. A step of forming an organic layer on a substrate, and a step of forming an upper layer on the organic layer containing a non-oxidizable material or a material that changes to a substantially non-volatile oxide by an oxidation reaction. Processing the upper layer into a predetermined pattern shape to expose the organic material layer, and irradiating the organic material layer with light in an oxidizing atmosphere using the upper layer of the predetermined pattern shape as a mask to photo-oxidize the organic material layer. Having a step of etching,
And the irradiation light is 3 μm per 1 μm thickness of the organic material layer.
A pattern formation method using light having a wavelength showing the above absorbance.
【請求項2】上記酸化性雰囲気は酸素ガスまたはオゾン
を含む特許請求の範囲第1項記載のパタン形成法。
2. The pattern forming method according to claim 1, wherein said oxidizing atmosphere contains oxygen gas or ozone.
【請求項3】上記上層はシリコン元素を含む材料からな
る特許請求の範囲第1項又は第2項記載のパタン形成
法。
3. The pattern forming method according to claim 1, wherein said upper layer is made of a material containing a silicon element.
JP62035508A 1987-02-20 1987-02-20 Pattern formation method Expired - Lifetime JP2594926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035508A JP2594926B2 (en) 1987-02-20 1987-02-20 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035508A JP2594926B2 (en) 1987-02-20 1987-02-20 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS63204253A JPS63204253A (en) 1988-08-23
JP2594926B2 true JP2594926B2 (en) 1997-03-26

Family

ID=12443702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035508A Expired - Lifetime JP2594926B2 (en) 1987-02-20 1987-02-20 Pattern formation method

Country Status (1)

Country Link
JP (1) JP2594926B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711344A (en) * 1980-06-25 1982-01-21 Mitsubishi Electric Corp Dry developing method
JPS57204033A (en) * 1981-06-10 1982-12-14 Toshiba Corp Formation of fine pattern
US4464460A (en) * 1983-06-28 1984-08-07 International Business Machines Corporation Process for making an imaged oxygen-reactive ion etch barrier

Also Published As

Publication number Publication date
JPS63204253A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
US4241165A (en) Plasma development process for photoresist
US5652084A (en) Method for reduced pitch lithography
US6221562B1 (en) Resist image reversal by means of spun-on-glass
TWI387998B (en) A lithography method
US6713236B2 (en) Lithography method for preventing lithographic exposure of peripheral region of semiconductor wafer
JPS6341047B2 (en)
US4321317A (en) High resolution lithography system for microelectronic fabrication
KR20050010821A (en) Sensitized chemically amplified photoresist for use in photomask fabrication and semiconductor processing
JPH06148887A (en) Photosensitive resin composition
US6423455B1 (en) Method for fabricating a multiple masking layer photomask
JP2594926B2 (en) Pattern formation method
US5356758A (en) Method and apparatus for positively patterning a surface-sensitive resist on a semiconductor wafer
US6143473A (en) Film patterning method utilizing post-development residue remover
US6045978A (en) Chemically treated photoresist for withstanding ion bombarded processing
JPH04176123A (en) Manufacture of semiconductor device
US7300880B2 (en) Methods for forming fine photoresist patterns
EP0250762B1 (en) Formation of permeable polymeric films or layers via leaching techniques
EP4276532A1 (en) Reflective photomask blank, and method for manufacturing reflective photomask
JPH0474434B2 (en)
JPH02156244A (en) Pattern forming method
JPH01244447A (en) Pattern forming method and resist material used therefor
JPH0594022A (en) Multilayered resist structure and its manufacture
KR19990061090A (en) Photoresist for multilayer resist process and fine pattern manufacturing method of semiconductor device using same
JPH11231544A (en) Resist mask structure, method for accelerating sensitivity of chemically amplified resist and pattern forming method
JPH05267278A (en) Pattern formation method for semiconductor device