JP2592869B2 - Heat exchange equipment - Google Patents

Heat exchange equipment

Info

Publication number
JP2592869B2
JP2592869B2 JP62289766A JP28976687A JP2592869B2 JP 2592869 B2 JP2592869 B2 JP 2592869B2 JP 62289766 A JP62289766 A JP 62289766A JP 28976687 A JP28976687 A JP 28976687A JP 2592869 B2 JP2592869 B2 JP 2592869B2
Authority
JP
Japan
Prior art keywords
liquid
heat
temperature
heat exchanger
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62289766A
Other languages
Japanese (ja)
Other versions
JPH01132500A (en
Inventor
正 松下
正夫 古川
良一 今井
義雄 栗山
実 小森
重人 大島
勇二 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62289766A priority Critical patent/JP2592869B2/en
Publication of JPH01132500A publication Critical patent/JPH01132500A/en
Application granted granted Critical
Publication of JP2592869B2 publication Critical patent/JP2592869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば、人工衛星等の宇宙航行体に搭載
される宇宙使用機器の熱制御を行なうのに好適する熱交
換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Industrial Application Field) The present invention relates to a heat exchange suitable for performing heat control of space use equipment mounted on a space vehicle such as an artificial satellite. Related to the device.

(従来の技術) 一般に、宇宙航行体に搭載される宇宙使用機器は、温
度変化の激しい宇宙環境において使用することから、動
作の確実化を確保するために、熱制御を行なう必要があ
る。このような宇宙使用機器の熱制御手段としては、コ
ールド・プレートと称する熱交換器を用いた流体ループ
排熱システムの熱交換装置を用いるものがある。この熱
交換装置は、その熱交換器に対して宇宙使用機器が搭載
され、直接的に宇宙使用機器から熱を奪って所望の温度
に熱制御する。
(Prior Art) In general, space use equipment mounted on a spacecraft is used in a space environment in which temperature changes drastically. Therefore, it is necessary to perform thermal control to ensure operation reliability. As a heat control means for such a space use equipment, there is a heat control means using a heat exchange device of a fluid loop heat exhaust system using a heat exchanger called a cold plate. In this heat exchange device, a space use device is mounted on the heat exchanger, and heat is directly taken from the space use device to control the heat to a desired temperature.

第3図及び第4図はこのような熱交換装置の要部を示
すもので、第3図はプレートフィン型を示し、第4図は
チューブ型を示す。
FIG. 3 and FIG. 4 show the main parts of such a heat exchanger. FIG. 3 shows a plate fin type, and FIG. 4 shows a tube type.

すなわち、第3図の熱交換装置は、一対の支持部材1
a,1bでフィン2を挟装した熱交換器を用いて、このフィ
ン2の間に冷媒液を通過させることにより、支持部材1
a,1b上に搭載した図示しない宇宙使用機器の熱が支持部
材1a,1b及びフィン2を介して冷媒液に伝えられ、この
熱を強制対流による顕熱の状態で熱輸送して熱制御を行
う。
That is, the heat exchange device shown in FIG.
The refrigerant liquid is passed between the fins 2 using a heat exchanger having the fins 2 sandwiched between the fins 2a and 1b, so that the support member 1
The heat of the space use equipment (not shown) mounted on a, 1b is transmitted to the refrigerant liquid via the support members 1a, 1b and the fins 2, and this heat is transported as sensible heat by forced convection to perform heat control. Do.

また、第4図の熱交換装置は、一対の支持部材1a,1b
でチューブ3を挟装した熱交換器を用いて、そのチュー
ブ3に冷媒液を通過させることにより、支持部材1a,1b
上に搭載した図示しない宇宙使用機器の熱が支持部材1
a,1b及びチューブ3を介して冷媒液に伝えられ、この熱
を強制対流による顕熱の状態で熱輸送して熱制御を行
う。
Further, the heat exchange device of FIG. 4 has a pair of support members 1a, 1b.
The refrigerant liquid is passed through the tube 3 using a heat exchanger having the tube 3 sandwiched between the support members 1a, 1b.
The heat of the space equipment (not shown) mounted on the
The heat is transmitted to the refrigerant liquid via the tubes 1 and 1b and the tube 3, and the heat is transferred in the state of sensible heat by forced convection to perform heat control.

ところが、上記熱交換装置では、そのフィン2及びチ
ューブ3内の冷媒液に気液混相領域が分布するため、大
形の宇宙使用機器の熱制御に適用するように構成した場
合、宇宙環境の無重力場の影響から気液混相領域におけ
る気泡が異常発生して、熱効率の低下を招くおそれがあ
る。また、気泡の異常発生により、振動等の不安定現象
が発生したり、あるいは冷媒液出口における状況が急変
して、正確な熱制御が困難となることも予想される。
However, in the above heat exchange device, since the gas-liquid mixed phase region is distributed in the refrigerant liquid in the fins 2 and the tubes 3, when the heat exchange device is configured to be applied to heat control of a large space use device, the weightlessness of the space environment is Due to the influence of the field, bubbles may be abnormally generated in the gas-liquid mixed phase region, which may cause a decrease in thermal efficiency. In addition, it is expected that an unstable phenomenon such as vibration occurs due to the occurrence of bubbles, or the situation at the refrigerant liquid outlet changes suddenly, making accurate heat control difficult.

(発明が解決しようとする問題点) 以上述べたように、従来の熱交換装置では、その構成
上、宇宙空間の無重力場において気液混相領域に気泡の
異常発生を招き、振動等が発生して正確な熱制御が困難
となるおそれを有していた。
(Problems to be Solved by the Invention) As described above, in the conventional heat exchange device, due to its configuration, anomalies are generated in the gas-liquid mixed phase region in the zero-gravity field of outer space, and vibrations and the like are generated. Therefore, accurate heat control may be difficult.

この発明は上記の事情に鑑みてなされたもので、構成
簡易にして、熱制御の効率化を図り得、かつ、正確な熱
制御を実現し得るようにした熱交換装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchange device that can simplify the configuration, increase the efficiency of heat control, and realize accurate heat control. And

[発明の構成] (問題点を解決するための手段) この発明は周囲部に軸方向の一端部に比して中間部か
ら他端部方向に密に形成した複数の連通孔を有し、他端
部が液供給源に接続された蒸気通路に対して前記連通孔
を介して連通される液通路を並設した伝熱路を複数列配
置してなる熱交換器と、前記液供給源に接続され、前記
液通路の一端部に冷媒液を供給する第1の液供給手段
と、前記液供給源に接続され、前記連通孔の密な位置に
対応する液通路の中間部に前記冷媒液を供給する第2の
液供給手段と、前記熱交換器の温度を検出する温度検出
手段と、この温度検出手段の検出値に応動して前記第2
の液供給手段を制御し、前記冷媒液の供給量を制御する
制御手段とを備えたものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention has a plurality of communication holes formed in a peripheral portion more densely in a direction from an intermediate portion to another end portion than one end portion in an axial direction, A heat exchanger comprising a plurality of rows of heat transfer paths arranged in parallel with a liquid passage communicating with the vapor path whose other end is connected to the liquid supply source through the communication hole; And a first liquid supply means for supplying a refrigerant liquid to one end of the liquid passage, and a refrigerant supply medium connected to the liquid supply source and provided at an intermediate portion of the liquid passage corresponding to a dense position of the communication hole. A second liquid supply unit for supplying a liquid, a temperature detection unit for detecting a temperature of the heat exchanger, and the second liquid supply unit in response to a detection value of the temperature detection unit.
And a control means for controlling the liquid supply means and controlling the supply amount of the refrigerant liquid.

(作用) 上記構成によれば、宇宙使用機器の発熱量が多くなる
と、制御手段が応動して第2の液供給源を作動して、液
通路は中間部の冷媒液の供給量が増加される。同時に、
液通路は温度上昇率が高く気泡発生し易い、中間部から
他端部の冷媒液中に気泡が発生した場合においても、冷
媒液が連通孔を介して確実に蒸気通路の内周壁に供給が
なされる。これにより、熱交換器の温度の均一化が図れ
るため、最低源の冷媒液で効率的な熱制御が実現でき、
かつ、液供給源の容量の低減も図り得る。
(Operation) According to the above configuration, when the amount of heat generated by the space use equipment increases, the control means responds and activates the second liquid supply source, and the supply amount of the refrigerant liquid in the intermediate portion of the liquid passage increases. You. at the same time,
The liquid passage has a high temperature rise rate and easily generates bubbles.Even when bubbles are generated in the refrigerant liquid from the middle portion to the other end portion, the refrigerant liquid is reliably supplied to the inner peripheral wall of the vapor passage through the communication hole. Done. As a result, the temperature of the heat exchanger can be made uniform, so that efficient heat control can be realized with the minimum source refrigerant liquid,
In addition, the capacity of the liquid supply source can be reduced.

(実施例) 以下、この発明の実施例について、図面を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る熱変換装置を示す
もので、図中10は伝熱路11を複数列配置した熱交換器
で、複数の宇宙使用機器12が搭載される。この伝熱路11
は第2図に示すように、蒸気通路13と液通路14が並設さ
れている。このうち蒸気通路13は内周壁にグループと称
する複数の案内溝13aが軸方向に延設して形成され、そ
の周囲部には複数の連通孔15が軸方向の一端部に比して
中間部の所定の位置、例えば、略中央部から他端部方向
に密な間隔を有して形成されて該連通孔15を介して液通
路14と連通されている。そして、蒸気通路13の他端部に
は蒸気出口部16が形成され、この蒸気出口部16は図示し
ない放熱器を介して冷媒供給源に接続される。また、液
通路14の一端部には第1の液供給部17が形成され、その
中間部の所定の位置、例えば、略中央部には第2の液供
給部18が連通孔15の密部分に対応して形成される。この
第1の液供給部17には蒸気液供給源(図示せず)に接続
されたヘッダ19の出口が供給管20aを介して連結され
る。また、このヘッダ19の出口には上記第2の液供給部
18が供給管20b及び流量調整弁21を介して接続される。
この流量調整弁21は制御装置22に接続され、この制御装
置22には温度検出センサ23の出力端が接続される。この
温度センサ23は、例えば、宇宙使用機器12の温度を検出
して熱交換器10の温度を検出し、その検出信号を上記制
御装置22に出力する。
FIG. 1 shows a heat converter according to one embodiment of the present invention. In the figure, reference numeral 10 denotes a heat exchanger in which a plurality of heat transfer paths 11 are arranged, and a plurality of space use equipments 12 are mounted. This heat transfer path 11
As shown in FIG. 2, a vapor passage 13 and a liquid passage 14 are provided side by side. Among them, the steam passage 13 has a plurality of guide grooves 13a, which are called groups, formed in the inner peripheral wall so as to extend in the axial direction. At a predetermined position, for example, from the substantially central portion to the other end portion, and is communicated with the liquid passage 14 through the communication hole 15. A steam outlet 16 is formed at the other end of the steam passage 13, and the steam outlet 16 is connected to a coolant supply source via a radiator (not shown). Further, a first liquid supply part 17 is formed at one end of the liquid passage 14, and a second liquid supply part 18 is provided at a predetermined position in an intermediate part thereof, for example, at a substantially central part, in a dense part of the communication hole 15. Is formed in correspondence with. An outlet of a header 19 connected to a vapor liquid supply source (not shown) is connected to the first liquid supply section 17 via a supply pipe 20a. The outlet of the header 19 is connected to the second liquid supply section.
18 is connected via a supply pipe 20b and a flow control valve 21.
The flow control valve 21 is connected to a control device 22, to which an output terminal of a temperature detection sensor 23 is connected. The temperature sensor 23 detects, for example, the temperature of the space use equipment 12 to detect the temperature of the heat exchanger 10, and outputs a detection signal to the control device 22.

上記構成において、宇宙使用機器12の熱制御を行なう
場合は、先ず上記液供給源(図示せず)からヘッダ19に
冷媒液が供給され、第1及び第2の液供給部17,18を介
して液通路14に供給される。すると、液通路14の冷媒液
は連通孔15を通って蒸気通路13の内周壁に導かれて案内
溝13aを軸方向に移動しながら宇宙使用機器12の熱を奪
って蒸気となり、奪った熱を潜熱の状態で熱輸送して宇
宙使用機器12の熱制御を行なう。そして、この蒸気は蒸
気出口部16を介して放熱器(図示せず)に導かれて奪っ
た熱を放出して、再び、冷媒液となり、液供給源(図示
せず)に導かれる。この際、第2の液供給部18の流量調
整弁21は温度検出センサ23の検出信号に対応して制御装
置22を介して所定の弁開度に制御されている。
In the above configuration, when performing heat control of the space use equipment 12, first, a coolant liquid is supplied to the header 19 from the liquid supply source (not shown), and the refrigerant liquid is supplied to the header 19 via the first and second liquid supply units 17 and 18. The liquid is supplied to the liquid passage 14. Then, the refrigerant liquid in the liquid passage 14 is guided to the inner peripheral wall of the vapor passage 13 through the communication hole 15 and moves in the guide groove 13a in the axial direction while removing the heat of the space use equipment 12 to become steam. Is transported in the state of latent heat to perform heat control of the space use equipment 12. Then, the vapor is guided to a radiator (not shown) through the vapor outlet section 16 to release the taken heat, becomes a refrigerant liquid again, and is guided to a liquid supply source (not shown). At this time, the flow control valve 21 of the second liquid supply unit 18 is controlled to a predetermined valve opening degree via the control device 22 in accordance with the detection signal of the temperature detection sensor 23.

そして、上記熱交換器10上の別の宇宙使用機器12が可
動されて、発熱密度が多くなった場合には、先ず、熱交
換器10上の温度が上昇する。すると、この温度上昇を温
度検出センサ23が検出して、その検出信号を制御装置22
に出力し、この制御装置22が流量調整弁21の弁開度を制
御して冷媒液の供給量を増加する。これにより、液通路
14は第2の液供給部18からの冷媒液の供給量が増加し
て、温度上昇率の高い略中央部から他端部側の温度が一
端部側と略同様の温度に保たれ、温度上昇に伴う気泡発
生が抑制される。同時に、液通路14の冷媒液は連通孔15
の密部分から多量に蒸気通路13に導かれ、温度上昇率の
高い略中央部から他端部側の温度が一端部側と略同様の
温度に制御され、例えば、気泡が発生した場合において
も、該気泡の流出が迅速に行われる。しかして、熱交換
器10は宇宙使用機器12の稼働状況が可変した場合におい
ても、その温度上昇が迅速に行われて、宇宙使用機器12
の熱制御を行ないせしめる。
Then, when another space use device 12 on the heat exchanger 10 is moved to increase the heat generation density, first, the temperature on the heat exchanger 10 increases. Then, this temperature rise is detected by the temperature detection sensor 23, and the detection signal is sent to the control device 22.
The control device 22 controls the valve opening of the flow control valve 21 to increase the supply amount of the refrigerant liquid. Thereby, the liquid passage
14 is such that the supply amount of the refrigerant liquid from the second liquid supply unit 18 is increased, and the temperature from the substantially central portion where the temperature rise rate is high to the other end is maintained at substantially the same temperature as the one end, The generation of bubbles due to the rise is suppressed. At the same time, the refrigerant liquid in the liquid passage 14
A large amount is guided to the steam passage 13 from the dense portion, and the temperature at the other end side from the substantially central portion where the temperature rise rate is high is controlled to substantially the same temperature as the one end portion side, for example, even when bubbles are generated The outflow of the air bubbles is performed quickly. Thus, even when the operation status of the space use equipment 12 is changed, the temperature of the heat exchanger 10 is rapidly increased, so that the space use equipment 12
Heat control.

また、宇宙使用機器12の稼働状況が低減された場合に
は、上記温度検出センサ23がこれを検知して上述した温
度上昇の際と逆の動作が行われ、第2の液供給部18への
冷媒液の供給量が低減される。
Further, when the operating state of the space use equipment 12 is reduced, the temperature detection sensor 23 detects this and performs the reverse operation to the above-described case of the temperature rise. The supply amount of the refrigerant liquid is reduced.

このように、上記熱交換装置は熱交換器10に搭載され
た宇宙使用機器12の稼働状況に応じて温度上昇率の高い
液通路14の略中央部から他端部側の冷媒液の供給量を制
御すると共に、蒸気通路13と液通路14の連通孔15を軸方
向の一端部に比して略中央部から他端部側に間隔を密に
形成した。これによれば、熱交換器10の温度上昇にとも
なって、先ず、気泡が発生するが、この場合でも気泡
は、液通路14の略中央部から他端部側の密に形成した連
通孔15から蒸気通路13に効率良く導かれて解消がなされ
るため、気泡発生による局部的な温度上昇が防止され
る。一方、熱交換器10の温度に対応して温度上昇率の高
い略中央部に供給される冷媒液の量が自動的に制御され
ることで、温度上昇にともななう気泡発生の防止が図
れ、正確にして、効率的に熱制御が実現できる。
As described above, the heat exchange device supplies the supply amount of the refrigerant liquid from the substantially central portion to the other end portion of the liquid passage 14 having a high temperature rising rate according to the operation state of the space use equipment 12 mounted on the heat exchanger 10. And the communication hole 15 between the vapor passage 13 and the liquid passage 14 is formed closer to the other end than the center in the axial direction. According to this, as the temperature of the heat exchanger 10 rises, air bubbles are first generated. Even in this case, the air bubbles are densely formed from the substantially central portion of the liquid passage 14 to the communication hole 15 formed on the other end side. Is efficiently guided to the steam passage 13 for elimination, thereby preventing a local temperature rise due to the generation of bubbles. On the other hand, by automatically controlling the amount of the refrigerant liquid supplied to the substantially central portion having a high temperature rise rate in accordance with the temperature of the heat exchanger 10, it is possible to prevent the generation of bubbles due to the temperature rise. It is possible to achieve accurate and efficient thermal control.

なお、この発明は上記実施例に限ることなく、その
他、この発明の要旨を逸脱しない範囲で種々の変形を実
施し得ることは勿論のことである。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明によれば、構成簡易に
して、熱制御の効率化を図り得、かつ、正確な熱制御を
実現し得るようにした熱交換装置を提供することができ
る。
[Effects of the Invention] As described in detail above, according to the present invention, there is provided a heat exchange apparatus that can simplify the configuration, increase the efficiency of heat control, and realize accurate heat control. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に係る熱交換装置を示す断
面図、第2図は第1図の伝熱路を取出して示す斜視図、
第3図及び第4図は従来の熱交換装置を示す斜視図であ
る。 10……熱交換器、11……伝熱路、12……宇宙使用機器、
13……蒸気通路、13a……案内溝、14……液通路、15…
…連通孔、16……蒸気出口部、17,18……第1及び第2
の液供給部、19……ヘッド、20a,20b……供給管、21…
…流量調整弁、22……制御装置、23……温度検出セン
サ。
FIG. 1 is a cross-sectional view showing a heat exchange device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a heat transfer path of FIG. 1 taken out,
3 and 4 are perspective views showing a conventional heat exchange device. 10 heat exchanger, 11 heat transfer path, 12 space use equipment,
13 ... steam passage, 13 a ... guide groove, 14 ... liquid passage, 15 ...
... Communication hole, 16 ... Steam outlet, 17,18 ... First and second
Liquid supply section, 19 ... head, 20a, 20b ... supply pipe, 21 ...
... Flow control valve, 22 ... Control device, 23 ... Temperature detection sensor.

フロントページの続き (72)発明者 今井 良一 茨城県新治郡桜村千現2丁目1番1号 宇宙開発事業団筑波宇宙センター内 (72)発明者 栗山 義雄 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向工場内 (72)発明者 小森 実 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向工場内 (72)発明者 大島 重人 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向工場内 (72)発明者 井戸 勇二 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向工場内Continued on the front page. (72) Ryoichi Imai 2-1-1, Sengen Sakuramura, Niigata-gun, Ibaraki Pref. Japan Space Development Agency Tsukuba Space Center Inside the Toshiba Komukai Plant (72) Inventor Minoru Komori 1st Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Komukai Plant (72) Inventor Shigeto Oshima Toshiba, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Yuji Yuji Well 1 in Komukai Toshiba Town, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周囲部に軸方向の一端部に比して中間部か
ら他端部方向に密に形成した複数の連通孔を有し、他端
部が液供給源に接続された蒸気通路に対して前記連通孔
を介して連通される液通路を並設した伝熱路を複数列配
置してなる熱交換器と、前記液供給源に接続され、前記
液通路の一端部に冷媒液を供給する第1の液供給手段
と、前記液供給源に接続され、前記連通孔の密な位置に
対応する液通路の中間部に前記冷媒液を供給する第2の
液供給手段と、前記熱交換器の温度を検出する温度検出
手段と、この温度検出手段に応動して前記第2の液供給
手段を制御し、前記冷媒液の供給量を制御する制御手段
とを具備したことを特徴とする熱交換装置。
1. A vapor passage having a plurality of communicating holes formed in a peripheral portion from an intermediate portion to an other end portion in a direction closer to an axial end portion than the one end portion, and the other end portion connected to a liquid supply source. A heat exchanger having a plurality of rows of heat transfer paths arranged in parallel with liquid passages that communicate with each other via the communication holes; and a refrigerant liquid connected to the liquid supply source and having one end of the liquid passages. A second liquid supply unit connected to the liquid supply source and supplying the refrigerant liquid to an intermediate portion of a liquid passage corresponding to a dense position of the communication hole; Temperature detecting means for detecting the temperature of the heat exchanger, and control means for controlling the second liquid supply means in response to the temperature detection means and controlling the supply amount of the refrigerant liquid. And heat exchanger.
JP62289766A 1987-11-17 1987-11-17 Heat exchange equipment Expired - Fee Related JP2592869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289766A JP2592869B2 (en) 1987-11-17 1987-11-17 Heat exchange equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289766A JP2592869B2 (en) 1987-11-17 1987-11-17 Heat exchange equipment

Publications (2)

Publication Number Publication Date
JPH01132500A JPH01132500A (en) 1989-05-24
JP2592869B2 true JP2592869B2 (en) 1997-03-19

Family

ID=17747480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289766A Expired - Fee Related JP2592869B2 (en) 1987-11-17 1987-11-17 Heat exchange equipment

Country Status (1)

Country Link
JP (1) JP2592869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130693C1 (en) * 1991-09-14 1992-10-29 Erno Raumfahrttechnik Gmbh, 2800 Bremen, De
JP2853943B2 (en) * 1992-09-02 1999-02-03 株式会社フジクラ Control method of working fluid circulation flow rate of loop heat pipe

Also Published As

Publication number Publication date
JPH01132500A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
AU581524B2 (en) Electronic module with self-activated heat pipe
JP2859927B2 (en) Cooling device and temperature control device
US4467861A (en) Heat-transporting device
US4869313A (en) Low pressure drop condenser/evaporator pump heat exchanger
US6615872B2 (en) Flow translocator
MX2007009246A (en) Tube inset and bi-flow arrangement for a header of a heat pump.
JP2002062083A (en) Temperature control equipment
JP2592869B2 (en) Heat exchange equipment
JPH0961074A (en) Closed temperature control system
JPS61246596A (en) Heat exchanger
JP2656270B2 (en) Heat exchange equipment
JP2656268B2 (en) Heat exchanger
EP1558881B1 (en) Reversible air-water absorption heat pump
JPH0374300A (en) Heat conductive tube
CN218767284U (en) Satellite-borne synthetic aperture radar thermal control system based on loop heat pipe
JPH10141789A (en) Two-phase fluid loop type heat control system
Leimkuehler et al. Development of a contaminant insensitive sublimator
Chalmers et al. Design of a two-phase capillary pumped flight experiment
JPH11184538A (en) Temperature controller
KR19990023667A (en) Heat exchanger system for boiler with circulating fluidized bed
RU2290584C2 (en) Multipurpose cooling device for sets of high thermal power
JPS59112197A (en) Heat exchanger
JPS61110881A (en) Heat exchanger
RU1835481C (en) Shell-and-tube heat exchanger
JPS5933819B2 (en) Cooling system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees