JP2591884B2 - Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body - Google Patents

Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body

Info

Publication number
JP2591884B2
JP2591884B2 JP4208826A JP20882692A JP2591884B2 JP 2591884 B2 JP2591884 B2 JP 2591884B2 JP 4208826 A JP4208826 A JP 4208826A JP 20882692 A JP20882692 A JP 20882692A JP 2591884 B2 JP2591884 B2 JP 2591884B2
Authority
JP
Japan
Prior art keywords
powder
mold
pressure medium
female member
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4208826A
Other languages
Japanese (ja)
Other versions
JPH0647596A (en
Inventor
茂樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4208826A priority Critical patent/JP2591884B2/en
Publication of JPH0647596A publication Critical patent/JPH0647596A/en
Application granted granted Critical
Publication of JP2591884B2 publication Critical patent/JP2591884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、等方静水加圧成形型、
これを用いた成形方法、その製造方法及び装置並びに等
方静水加圧成形体に関し、更に詳細には、等方静水加圧
成形に用いる被膜保持体、その製造方法及び装置並びに
この被膜保持体を等方静水加圧処理して得られる成形体
に関する。
BACKGROUND OF THE INVENTION The present invention relates to an isotropic hydrostatic pressing mold,
A molding method using the same, a method and an apparatus for producing the same, and an isotropic isostatic pressing product, and more particularly, a coating holder used for isotropic isostatic pressing, a method and an apparatus for producing the same, and the coating holder. The present invention relates to a molded product obtained by isotropic hydrostatic pressure treatment.

【0002】[0002]

【従来の技術】従来、粉体の成形方法としては、等方静
水加圧成形、ドライバック、鋳込成形、押出成形及び射
出成形等の各種の方法が知られている。この等方静水加
圧成形においては、単純形状で形状精度の良くない成形
体しか得ることができなかった。このような状況におい
て、近年、等方静水加圧成形では、例えば、特開昭61
−202799号公報には、通気性の成形型を用いその
内面に樹脂等の被膜を形成して原料粉体を充填し冷間静
水加圧成形する方法が提案されている。また、特開昭6
3−16900号公報には、金属型内にブロー成形した
樹脂型に粉体を充填し、脱気、密封して、予め粉体充填
樹脂型を形成し、その粉体充填樹脂型を冷間静水加圧成
形する方法が提案されている。
2. Description of the Related Art Conventionally, as a method for forming a powder, various methods such as isotropic isostatic pressing, dry packing, casting, extrusion and injection molding are known. In this isotropic isostatic pressing, only a compact having a simple shape and poor shape accuracy could be obtained. In such a situation, in recent years, in isotropic hydrostatic pressing, for example,
Japanese Patent Application Laid-Open No. 202799/1999 proposes a method in which a film of resin or the like is formed on the inner surface of a mold using a gas-permeable mold, the raw material powder is filled, and cold isostatic pressing is performed. In addition, Japanese Unexamined Patent Publication
No. 3-16900 discloses that a resin mold blow-molded in a metal mold is filled with powder, degassed and sealed to form a powder-filled resin mold in advance, and the powder-filled resin mold is cooled. A method of isostatic pressing has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような等方静水加圧成形法であっても、未だ等方静水加
圧成形法としては十分に満足されるものではなく、特開
昭61−202799号公報に記載の方法においては、
通気性を有するとはいえ剛体の成形型自体が、原料粉体
の等方収縮を阻害し、形状精度の優れた成形体を得るこ
とができないという課題があった。また、特開昭63−
16900号公報に記載の方法においては、原料粉体を
充填した後の脱気を、樹脂型を開封したまま充填粉体側
から真空吸引するため、樹脂型が変形され易く形状精度
のよい成形体が得られないという課題があった。本発明
は、このような従来技術の有する課題に鑑みてなされた
ものであり、その目的とするところは、特定の樹脂被膜
を備えて成る新規な等方静水加圧成形型、その製造方法
及び製造装置を提供することにある。
However, the isotropic hydrostatic pressing method as described above is not yet fully satisfactory as an isotropic hydrostatic pressing method. In the method described in -202799,
Even though it has air permeability, there is a problem that the rigid mold itself inhibits the isotropic shrinkage of the raw material powder and cannot obtain a molded body having excellent shape accuracy. Also, JP-A-63-
In the method described in Japanese Patent No. 16900, the deaeration after filling the raw material powder is performed by vacuum suction from the filling powder side while the resin mold is opened, so that the resin mold is easily deformed and the molded body having good shape accuracy is obtained. There was a problem that was not obtained. The present invention has been made in view of such problems of the related art, and an object thereof is to provide a novel isotropic hydrostatic pressing mold having a specific resin coating, a method of manufacturing the same, and a method of manufacturing the same. It is to provide a manufacturing apparatus.

【0004】[0004]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究した結果、通気性かつ圧力媒体非透
過性の被膜を用い、減圧可能な装置内で加圧することに
より、前記課題が達成されることを見出し本発明を完成
するに至った。従って、本発明の等方静水加圧成形型
は、等方静水加圧成形に用いる成形型において、通気性
かつ圧力媒体非透過性の被膜を備えて成ることを特徴と
する。
Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, using a gas-permeable and pressure-medium-impermeable coating, pressurizing in a device capable of reducing pressure, The inventors have found that the object has been achieved, and have completed the present invention. Therefore, the isotropic hydrostatic pressing mold of the present invention is characterized in that a forming die used for isotropic hydrostatic pressing is provided with a film that is permeable to air and impermeable to a pressure medium.

【0005】また、本発明の製造方法は、所定形状を有
し、通気性かつ圧力媒体非透過性の被膜内に粉体を高密
度に充填して成る等方静水加圧成形型を製造する方法で
あって、雄型部材と通気性を有する雌型部材とから成る
粉体充填用の割型を、排気口及び圧力媒体給排口を備え
る処理室内に配置し、前記被膜を、雄型部材の凸部及び
これに隣接するランド領域と、雌型部材の所定形状を有
するキャビティ及びこれに隣接するランド領域とに被着
し、粉体を、前記被膜を被着した雌型部材のキャビティ
に充填し、前記被膜を被着した雄型部材の凸部と粉体の
表面とを当接させ、次いで、処理室内を排気口を介して
減圧排気し、粉体に含まれる空気を雌型部材及び前記被
膜を介して排気除去しながら、前記雄型部材の凸部を雌
型部材のキャビティに嵌入させて、粉体をこの凸部で加
圧して粉体の充填密度を向上させ、次いで、雄型部材及
び雌型部材の少なくとも一方のランド領域に設けた加熱
器により、前記被膜同士を加熱して接合し、しかる後、
前記圧力媒体給排口を介して、処理室内に圧力媒体を導
入し、粉体が高密度に充填された等方静水加圧成形型を
得ることを特徴とする。
Further, according to the production method of the present invention, an isotropic hydrostatic pressing mold is produced, in which a powder having a predetermined shape and a high density is filled in a gas permeable and pressure medium impervious film. A method, comprising: placing a split mold for powder filling comprising a male member and a female member having air permeability in a processing chamber provided with an exhaust port and a pressure medium supply / discharge port; The convex portion of the member and the land region adjacent thereto, and the cavity having the predetermined shape of the female member and the land region adjacent thereto are applied to the cavity, and the powder is applied to the cavity of the female member to which the coating is applied. And the surface of the powder is brought into contact with the convex portion of the male member on which the coating is applied, and then the processing chamber is evacuated to a reduced pressure through an exhaust port to remove air contained in the powder into the female mold. The convex portion of the male member is removed from the cavity of the female member while exhausting air through the member and the coating. And pressurized the powder with these convex portions to improve the packing density of the powder, and then, by using a heater provided in at least one land area of the male member and the female member, the coatings are separated from each other. After heating and joining,
A pressure medium is introduced into the processing chamber through the pressure medium supply / discharge port to obtain an isotropic hydrostatic pressing mold filled with powder at a high density.

【0006】また、本発明の製造装置は、雄型部材と雌
型部材とから成る割型を処理室内に配設して成る等方静
水加圧成形型の製造装置であって、前記処理室は、排気
口及び圧力媒体給排口を備え、前記雌型部材は、通気性
を有し、粉体を充填する所定形状のキャビティを備え、
前記雄型部材は、このキャビティと嵌合する凸部を備
え、前記雄型部材及び雌型部材の少なくとも一方が、被
膜接合用加熱器をそのランド領域に備え、この被膜は通
気性かつ圧力媒体非透過性であることを特徴とする。
Further, the manufacturing apparatus of the present invention is a manufacturing apparatus for an isotropic hydrostatic pressing mold in which a split mold comprising a male member and a female member is disposed in a processing chamber. Has an exhaust port and a pressure medium supply / discharge port, the female mold member has air permeability, and has a cavity of a predetermined shape for filling powder,
The male member includes a convex portion that fits into the cavity, at least one of the male member and the female member includes a coating bonding heater in a land area thereof, and the coating is formed of a gas-permeable and pressure medium. It is characterized by being impermeable.

【0007】更にまた、本発明の等方静水加圧成形体
は、通気性かつ圧力媒体非透過性の被膜内に粉体を高密
度に充填して成る等方静水加圧成形型を等方静水加圧し
て得られることを特徴とする。
Further, the isotropic hydrostatic pressing molded article of the present invention is an isotropic hydrostatic pressing mold formed by filling powder in a gas permeable and pressure medium impervious film at a high density. It is characterized by being obtained by hydrostatic pressing.

【0008】以下、本発明の製造装置について詳細に説
明する。本発明の製造装置は、排気口及び圧力媒体給排
口を備える処理室を有し、この処理室内に、本発明の等
方静水加圧成形型、即ち特定の被膜保持体を成形するた
めの割型を備える。この処理室の形状、材質及び寸法等
は特に限定されるものではなく、室内の気密性を確保で
きれば十分であり、例えば、ドーム型、箱型、円柱型、
金属製及び樹脂製等であってもよい。また、排気口及び
圧力媒体(以下、「圧媒」と略す。)給排口の個数も限
定されるものではない。
Hereinafter, the manufacturing apparatus of the present invention will be described in detail. The manufacturing apparatus of the present invention has a processing chamber provided with an exhaust port and a pressure medium supply / discharge port, and in this processing chamber, an isotropic hydrostatic pressing mold of the present invention, that is, for forming a specific film holding body. Equipped with split mold. The shape, material, dimensions, and the like of the processing chamber are not particularly limited, and it is sufficient to ensure airtightness in the chamber. For example, a dome shape, a box shape, a column shape,
It may be made of metal or resin. Further, the number of exhaust ports and pressure medium (hereinafter, abbreviated as “pressure medium”) supply / discharge ports is not limited.

【0009】前記割型は雄型部材及び雌型部材から成
り、この雌型部材は前記被膜保持体に所定の形状を付与
するキャビティを備える。また、この雌型部材は空気が
透過可能に形成されている。例えば、雌型部材全体が多
孔質材料で形成されている場合を挙げることができる
が、これ以外に、雌型部材を金属及び/又は樹脂等で形
成し、適数個の細孔を穿設して前記キャビティと雌型部
材外部とを連通させてもよい。この場合、細孔の大き
さ、気孔率及び個数等は、処理室に導入する圧媒に応じ
て適宜変更することができる。即ち、雌型部材の材質
は、通気性を有していればよい。
The split mold comprises a male member and a female member, and the female member has a cavity for imparting a predetermined shape to the film holder. The female member is formed so that air can pass therethrough. For example, a case where the entire female member is formed of a porous material can be mentioned. In addition, the female member is formed of metal and / or resin and an appropriate number of pores are formed. Then, the cavity and the outside of the female member may be communicated. In this case, the size, porosity, number, and the like of the pores can be appropriately changed according to the pressure medium introduced into the processing chamber. That is, the material of the female member only needs to have air permeability.

【0010】一方、前記雄型部材は、雌型部材のキャビ
ティに嵌入し粉体を加圧し得る凸部を備える。また、こ
の凸部と反対側の端部は、前記処理室を貫通して外部に
突出延在しているのが好ましい。これは、粉体の加圧を
雄型部材の自重でのみ行なってもよいが、前記突出延在
している端部を処理室外の加圧源と連結して加圧を行な
うこともできるからである。この雄型部材の材質は限定
されるものではなく、金属、セラミックス及び樹脂等の
剛性体で作製することができる。
On the other hand, the male member has a convex portion which can fit into the cavity of the female member and press the powder. Further, it is preferable that an end opposite to the convex portion protrudes and extends to the outside through the processing chamber. This is because the pressurization of the powder may be performed only by the weight of the male member, but pressurization can also be performed by connecting the protruding end to a pressurizing source outside the processing chamber. It is. The material of the male member is not limited, and can be made of a rigid body such as metal, ceramics, and resin.

【0011】また、前記雄型部材及び/又は雌型部材
は、そのランド領域、即ち雄型部材と雌型部材とが型締
めされたときに互いに緊密に接触する合せ面の部分に、
粉体充填用の被膜を接合する加熱器を備える。雄型部材
及び雌型部材双方のランド領域に加熱器を設けてもよ
い。この加熱器の設置方法は、特に限定されるものでは
ないが、付設、埋設等が挙げられる。なお、前記雄型部
材及び雌型部材は、必ずしも一体的に形成されている必
要はなく、特に、雌型部材においては、複数の分割型を
組合わせることや、複雑な形状を有するタービンロータ
等ではスライドコア式とすることも可能である。
The male member and / or the female member may have a land area, that is, a portion of a mating surface which comes into close contact with each other when the male member and the female member are clamped.
A heater for joining a coating for powder filling is provided. A heater may be provided in the land area of both the male member and the female member. The method of installing the heater is not particularly limited, but examples thereof include attachment and burying. The male member and the female member are not necessarily required to be formed integrally. Particularly, in the case of the female member, a plurality of split molds may be combined, or a turbine rotor having a complicated shape may be used. Then, it is also possible to use a slide core type.

【0012】次に、本発明の製造方法について詳細に説
明する。本発明の製造方法においては、まず、前記雄型
部材の凸部及びこれに隣接するランド領域と、雌型部材
のキャビティ及びこれに隣接するランド領域とに、通気
性を有し、かつ圧媒を透過させない被膜を被着する。こ
の被膜の例としては、シリコーン系重合体被膜を挙げる
ことができる。被着法としては、例えばブロー成形法を
挙げることができる。また、膜厚は、被膜構成物質、被
着方法、被膜保持体の形状及び粉体等により適宜選定で
きるが、通常は約0.05〜0.5mmであり、約0.
1mm〜0.3mmが好ましい。
Next, the production method of the present invention will be described in detail. In the manufacturing method of the present invention, first, the convex portion of the male member and the land region adjacent thereto, and the cavity of the female member and the land region adjacent thereto have air permeability and a hydraulic medium. Is applied. As an example of this coating, a silicone polymer coating can be mentioned. Examples of the deposition method include a blow molding method. The film thickness can be appropriately selected depending on the material constituting the film, the method of applying the film, the shape of the film holder, the powder, and the like.
1 mm to 0.3 mm is preferred.

【0013】次いで、粉体を、前記被膜を被着したキャ
ビティに充填する。この粉体としては、セラミックス粉
体、金属粉体、プラスチック等を挙げることができる。
次いで、前述のように処理した雄型部材の凸部とキャビ
ティに充填された粉体の表面とを当接させ、この状態で
前記処理室内に配置する。即ち、例えば、割型が縦型形
式の場合には、雄型部材を雌型部材の上に載置して前記
凸部と粉体表面とを当接させ、このままこれを処理室内
に配置する。この結果、粉体は前記被膜に包囲されるこ
とになる。この当接の際には、前述の如く、雄型部材に
おける前記凸部と反対側の端部(頂部)を処理室外に突
出させておくのがよい。
Next, the powder is filled into the cavity on which the coating is applied. Examples of the powder include ceramic powder, metal powder, and plastic.
Next, the convex portion of the male member processed as described above is brought into contact with the surface of the powder filled in the cavity, and is placed in the processing chamber in this state. That is, for example, when the split mold is a vertical type, the male member is placed on the female member so that the convex portion and the powder surface are in contact with each other, and this is arranged in the processing chamber as it is. . As a result, the powder is surrounded by the coating. At the time of this contact, as described above, it is preferable that the end (top) of the male member opposite to the convex portion is projected outside the processing chamber.

【0014】次いで、処理室内を密閉し、その後に排気
口を開けて真空ポンプ等により処理室内を減圧排気す
る。この排気に際して、粉体の脱気が前記通気性の被膜
及び雌型部材の壁部を介して行なわれるとともに、雄型
部材の前記凸部が自重によりキャビティに嵌入し、粉体
を押圧して粉体の充填密度を向上させる。この際、処理
室外に突出させた端部に外力を負荷して押圧力を増大さ
せてもよい。この排気・加圧処理により、粉体はキャビ
ティ及び前記凸部により所定の形状を正確に付与され
る。処理室内圧力は、粉体、被膜の性質等により適宜選
定できるが、通常は約10Torr程度が好ましい。
Next, the processing chamber is sealed, and then the exhaust port is opened, and the processing chamber is evacuated and evacuated by a vacuum pump or the like. During this exhaust, the powder is deaerated through the gas permeable coating and the wall of the female member, and the convex portion of the male member is fitted into the cavity by its own weight, and presses the powder. Improve the packing density of powder. At this time, the pressing force may be increased by applying an external force to the end protruding outside the processing chamber. By this exhaust / pressurization treatment, the powder is given a predetermined shape accurately by the cavity and the convex portion. The pressure in the processing chamber can be appropriately selected depending on the properties of the powder and the coating, but is preferably about 10 Torr.

【0015】次に、排気口を閉め、前記凸部及びこれに
隣接するランド領域とキャビティ及びこれに隣接するラ
ンド領域とに被着した被膜のうち、双方のランド領域の
被膜同士を、前記加熱器により接合して粉体を封入す
る。従って、この接合によっては、得られる被膜保持体
の形状が損なわれることはなく、形状精度に優れてい
る。なお、被膜の接合においては、接着剤等を用いても
よい。
Next, the exhaust port is closed, and among the coatings applied to the projections and the land areas adjacent thereto and the cavities and the land areas adjacent to the cavities, the coatings of both land areas are separated by the heating. The powder is sealed by joining with a vessel. Therefore, this joining does not impair the shape of the obtained film holder, and is excellent in shape accuracy. In joining the films, an adhesive or the like may be used.

【0016】次いで、圧媒給排口を開け、処理室内に圧
媒を導入して雄型部材と雌型部材を浸漬する。この圧媒
導入による浸漬により、前述の如く脱気した粉体に空気
が流入することを防止できる。また、雌型部材は圧媒透
過性を有してもよく、この場合には、圧媒は雌型部材の
壁部を通過してキャビティに到達し、前記被膜を介して
粉体を加圧する。これにより、得られる被膜保持体の充
填密度は一層高いものとなる。使用する圧媒は、特に限
定されず、水、油及び等方静水加圧に用いる圧媒を挙げ
ることができる。そして、その後に離型し、被膜保持
体、即ち等方静水加圧成形型を得る。
Next, the pressure medium supply / discharge port is opened, and the pressure medium is introduced into the processing chamber to immerse the male member and the female member. By immersion by introducing the pressure medium, it is possible to prevent air from flowing into the degassed powder as described above. Further, the female member may have a pressure medium permeability, in which case the pressure medium passes through the wall of the female member to reach the cavity and presses the powder through the coating. . Thereby, the packing density of the obtained film holding body is further increased. The pressure medium used is not particularly limited, and examples thereof include water, oil, and a pressure medium used for isotropic hydrostatic pressurization. Then, the mold is released to obtain a film holding body, that is, an isotropic hydrostatic pressing mold.

【0017】次に、本発明の等方静水加圧成形型につい
て説明する。本発明の等方静水加圧成形型は、保型性が
よく、柔軟性に優れ、形状転写性がよく、粉体が高密度
に充填されている。従って、圧媒を用いて等方静水加圧
すれば形状の追従性が良好であるため、等方的に収縮
し、形状精度が高く均一な密度を有する成形体を得るこ
とができる。このため、タービンロータの如き複雑な形
状を有する部品であっても等方静水加圧成形が可能とな
り得るのである。しかも、粉体が高密度に充填されてお
り、粉体に混入している空気は極めて少量であるため、
被膜が破れたり、圧媒漏れ等の歩留りの低下を防止する
ことができる。
Next, the isostatic pressing mold of the present invention will be described. The isotropic isostatic pressing mold of the present invention has good shape retention, excellent flexibility, good shape transferability, and is densely filled with powder. Therefore, if the isotropic hydrostatic pressure is applied using a pressure medium, since the shape following property is good, a molded body which isotropically shrinks, has high shape accuracy and uniform density can be obtained. For this reason, isotropic isostatic pressing may be possible even for parts having a complicated shape such as a turbine rotor. Moreover, since the powder is densely packed and the amount of air mixed into the powder is extremely small,
It is possible to prevent the yield from lowering due to breakage of the coating or leakage of the pressure medium.

【0018】また、被膜は、一般に、500℃以上で行
うバインダー除去等の処理によって分解除去することが
できるが、酸素雰囲気下で焼成可能な粉体であれば焼成
工程で焼却すればよい。500℃以上での熱処理ができ
ない場合や、焼成中に成形体が悪影響を及ぼされる可能
性がある場合には、予めナイフ等の適当な器具で除去す
ることができる。
The coating can be decomposed and removed by a treatment such as binder removal generally performed at 500 ° C. or higher. However, any powder that can be fired in an oxygen atmosphere may be burned in the firing step. When heat treatment at 500 ° C. or more cannot be performed, or when there is a possibility that the molded product may be adversely affected during firing, the molded product can be removed in advance with a suitable tool such as a knife.

【0019】[0019]

【実施例】以下、本発明を、図面を参照して実施例によ
り説明する。図1は、本発明の製造装置の一実施例を示
す断面図である。同図において、この製造装置1は、処
理室10内に、雄型30と多孔質の雌型40とから成る
割型20を配設して構成されている。前記処理室10は
排気弁12及び圧媒給排弁の一例である給排水弁14を
備え、この排気弁12は図示しない真空ポンプに接続さ
れており、給排水弁14は図示しない給水源及び排水管
に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the manufacturing apparatus of the present invention. In FIG. 1, the manufacturing apparatus 1 is configured by disposing a split mold 20 including a male mold 30 and a porous female mold 40 in a processing chamber 10. The processing chamber 10 includes an exhaust valve 12 and a water supply / drain valve 14 which is an example of a pressure medium supply / discharge valve. The exhaust valve 12 is connected to a vacuum pump (not shown). It is connected to the.

【0020】前記雌型40は気孔径120μmのセラミ
ックス製であり、通気性を有する。また、この雌型40
は、その頂部に環状のキャビティ42を備える。なお、
本実施例においては、雌型40は一体的に形成されてい
るが、分割された複数の型から形成されていてもよい。
一方、前記雄型30はSUS製であり、その底部に前記
キャビティ42に嵌入する環状の凸部32を備えてい
る。また、この雄型30の頂部34は、前記処理室10
の頂部に設けられている開口部16を介して外部に突出
して配置されている。この場合、前記開口部16と雄型
30との間にOリング18を装着することにより、処理
室10内の気密性が保持されている。
The female mold 40 is made of ceramics having a pore diameter of 120 μm and has air permeability. In addition, this female mold 40
Has an annular cavity 42 at the top. In addition,
In this embodiment, the female mold 40 is formed integrally, but may be formed from a plurality of divided molds.
On the other hand, the male mold 30 is made of SUS, and has an annular convex portion 32 fitted into the cavity 42 at the bottom thereof. The top part 34 of the male mold 30 is connected to the processing chamber 10.
Are arranged so as to protrude to the outside through an opening 16 provided at the top. In this case, by mounting an O-ring 18 between the opening 16 and the male mold 30, airtightness in the processing chamber 10 is maintained.

【0021】更に、雄型30のランド領域36には、通
気性かつ非透水性の被膜50及び52を接合するための
ヒータ70が埋設されている。なお、本実施例において
は、前記凸部32の外周壁部32aより外側のランド領
域にヒータ70を設置したが、これに限定されるもので
はなく、前記被膜50及び52の被着の仕方によって適
宜配置を変更することができる。
Further, a heater 70 for bonding the air-permeable and water-impermeable coatings 50 and 52 is embedded in the land area 36 of the male mold 30. In the present embodiment, the heater 70 is installed in the land area outside the outer peripheral wall 32a of the convex portion 32. However, the present invention is not limited to this. Depending on the manner in which the coatings 50 and 52 are applied, The arrangement can be changed as appropriate.

【0022】次に、本発明の製造方法の一例につき説明
する。まず、前記被膜の一例であるシリコーン系被膜5
0および52を、それぞれ前記雄型の凸部32及びラン
ド領域36と、雌型のキャビティ42及びランド領域4
4とにブロー成形法により被着した。被膜50及び52
の膜厚は約0.3mmである。次いで、窒化珪素の噴霧
乾燥粉末60(平均粒径70μm)をキャビティ42に
充填し、雄型30を雌型40上に載置して前記凸部32
と粉体たる窒化珪素粉末60の表面とを当接させた。こ
の際、前記雄型30の頂部34を前記処理室10の開口
部16を介して処理室10外に突出配置した。
Next, an example of the manufacturing method of the present invention will be described. First, a silicone-based coating 5 as an example of the coating
0 and 52, respectively, with the male projection 32 and land area 36 and the female cavity 42 and land area 4 respectively.
4 was applied by a blow molding method. Coatings 50 and 52
Has a thickness of about 0.3 mm. Next, a spray-dried powder 60 of silicon nitride (average particle size 70 μm) is filled in the cavity 42, the male mold 30 is placed on the female mold 40, and
And the surface of the silicon nitride powder 60 as the powder. At this time, the top 34 of the male mold 30 was disposed outside the processing chamber 10 via the opening 16 of the processing chamber 10.

【0023】次に、処理室10を密閉し、前記排気弁1
2を介して処理室10内を約10Torrに減圧排気し
た。この際、粉体60に混入している空気が前記被膜5
2及び雌型40の壁部を介して除去されるとともに、前
記凸部32が雄型30の自重によりキャビティ42に嵌
入して粉体60を押圧し、充填密度が向上した。その
後、排気弁12を閉じ、被膜50と52とを、前記ヒー
タ70により熱溶着し、粉体60をこれら被膜内に封入
した。
Next, the processing chamber 10 is closed and the exhaust valve 1 is closed.
The inside of the processing chamber 10 was evacuated to about 10 Torr via the vacuum pump 2. At this time, the air mixed into the powder 60 is
2 and the wall of the female mold 40, and the protrusion 32 was fitted into the cavity 42 by the weight of the male mold 30 to press the powder 60, thereby improving the packing density. Thereafter, the exhaust valve 12 was closed, and the coatings 50 and 52 were heat-welded by the heater 70, and the powder 60 was sealed in these coatings.

【0024】次いで、前記給排水弁14を介して処理室
10内に水を導入し、前記割型20を浸漬した。この処
理に際し、導入された水は、雌型40の壁部 を通過し
てキャビティ42に到達し、被膜50及び52浸漬し
た。そして、給排水弁14を介して排水し、割型20か
ら離型して、高さ10mm、内径100mmφ、外径1
50mmφの環状をなす被膜保持体(等方静水加圧成形
型)2を得た。
Next, water was introduced into the processing chamber 10 through the water supply / drain valve 14, and the split mold 20 was immersed. During this treatment, the introduced water passed through the wall of the female mold 40, reached the cavity 42, and was immersed in the coatings 50 and 52. Then, the water is drained through the water supply / drain valve 14, released from the split mold 20, and has a height of 10 mm, an inner diameter of 100 mm, an outer diameter of 1 mm.
A ring-shaped coating holder (isotropic isostatic pressing mold) 2 having an annular shape of 50 mmφ was obtained.

【0025】図2に、得られた被膜保持体2の断面図を
示す。同図において、この保持体2は、粉体60が前記
被膜50及び52に包囲されて構成されている。なお、
本実施例において、被膜50及び52は双方とも通気性
かつ非透水性の被膜から成るが、被膜50は非透水性で
あれば十分であり、通気性を有さなくともよく、例えば
塩化ビニル系被膜であってもよい。
FIG. 2 shows a sectional view of the obtained film holder 2. In this figure, the holding body 2 is configured such that a powder 60 is surrounded by the coatings 50 and 52. In addition,
In this embodiment, the coatings 50 and 52 are both air-permeable and water-impermeable coatings. However, it is sufficient that the coating 50 is water-impermeable and does not have to be air-permeable. It may be a coating.

【0026】このようにして得られた被膜保持体2は、
粉体が高密度に充填されているため、適度な弾性及び剛
性を有するとともに、所定形状を有し、通気性かつ非透
水性の被膜50及び52に包囲されて構成されている。
従って、この被膜保持体2を等方静水加圧成形型として
好適に用いることができる。
The film holder 2 thus obtained is
Since the powder is filled at a high density, it has appropriate elasticity and rigidity, has a predetermined shape, and is surrounded by air-permeable and water-impermeable coatings 50 and 52.
Therefore, the film holder 2 can be suitably used as an isotropic hydrostatic pressing mold.

【0027】次に、前記被膜保持体2を用いて得られる
等方静水加圧成形体の製造方法の一例について説明す
る。被膜保持体2を等方静水圧プレス機に配置し、7t
/cm2の静水圧で30秒間加圧成形した。次いで、被
膜50及び52を除去して高密度の環状等方静水加圧成
形体を得た。得られた環状等方静水加圧成形体を、大気
中500℃で1時間仮焼してバインダーを除去し、次い
で、窒素雰囲気とし、昇温速度1000℃/hrで昇温
して1700℃とし、この温度で1時間焼成して、高さ
7.7mm、内径77mm、外径115mmの環状焼成
体を得た。
Next, an example of a method for producing an isotropic hydrostatically molded product obtained by using the film holder 2 will be described. The coating holder 2 was placed on an isotropic hydrostatic press, and the
/ Cm 2 at a hydrostatic pressure of 30 seconds. Next, the coating films 50 and 52 were removed to obtain a high-density annular isotropic hydrostatic pressure molded product. The obtained ring-shaped isotropic isostatic pressing body was calcined in air at 500 ° C. for 1 hour to remove the binder, and then heated to 1700 ° C. at a temperature rising rate of 1000 ° C./hr in a nitrogen atmosphere. By firing at this temperature for 1 hour, an annular fired body having a height of 7.7 mm, an inner diameter of 77 mm, and an outer diameter of 115 mm was obtained.

【0028】次に、本発明の製造方法を用いて、セラミ
ックスタービンロータを製造する方法の一例について説
明する。図3は、セラミックスタービンロータを製造す
るための型部材の一例を示す断面図である。同図におい
て、雌型部材は40’は、通気性を有する上型40A、
スライド型40B及び下型40Cにより構成されてい
る。そして、これら分割型40A、40B及び40Cに
より規定されるキャビティには、前述のように窒化珪素
粉末60が充填されており、また、この粉末60は、シ
リコーン系被膜50及び52により包囲されている。ま
た、この粉末60には前述の如き雄型部材30’が載置
されている。
Next, an example of a method for manufacturing a ceramic turbine rotor using the manufacturing method of the present invention will be described. FIG. 3 is a cross-sectional view illustrating an example of a mold member for manufacturing a ceramic turbine rotor. In the figure, the female member 40 ′ is an upper mold 40A having air permeability,
It is composed of a slide mold 40B and a lower mold 40C. The cavity defined by these split molds 40A, 40B and 40C is filled with silicon nitride powder 60 as described above, and this powder 60 is surrounded by silicone-based coatings 50 and 52. . The male member 30 'as described above is placed on the powder 60.

【0029】図3に示したように粉体を充填した後、前
述の如く、粉体60を脱気し、シリコーン系被膜50と
52とを接合し、圧媒を導入して粉体60を所定形状に
成形した。次いで、スライド型40Bをスライドさせて
離型し、所定形状を有する被膜保持タービンロータを得
た(図4参照)。この被膜保持タービンロータの外径
は、150mmφであった。この被膜保持タービンロー
タを前述の如く、等方静水加圧し、焼成して外径115
mmφのセラミックスタービンロータを得た。このセラ
ミックスタービンロータは、複雑な形状を有し、形状欠
陥はなかった。
After the powder is filled as shown in FIG. 3, the powder 60 is degassed as described above, the silicone coatings 50 and 52 are joined, and a pressure medium is introduced to remove the powder 60. It was formed into a predetermined shape. Next, the slide mold 40B was slid and released from the mold to obtain a coating-holding turbine rotor having a predetermined shape (see FIG. 4). The outer diameter of the turbine rotor having the coating was 150 mmφ. As described above, this coating-bearing turbine rotor is isotropically hydrostatically pressed and fired to produce an outer diameter of 115 mm.
A ceramic turbine rotor of mmφ was obtained. This ceramic turbine rotor had a complicated shape and had no shape defects.

【0030】以上、本発明を実施例により説明したが、
本発明はこれに限定されるものではなく本発明の要旨の
範囲内で種々の変形が可能である。例えば、割型20は
縦型形式のみならずで横型形式であってもよい。また、
キャビティ42の形状は意図する物品に応じて適宜変更
することができる。更に、本実施例においては、窒化珪
素の粉末を充填したが、これのみならず種々の粉状体、
粒状体を用いることもできる。また、これら充填物は通
気性を有すればよいので、多孔質体、例えば発泡性樹脂
等を用いることも可能である。
The present invention has been described with reference to the embodiments.
The present invention is not limited to this, and various modifications can be made within the scope of the present invention. For example, the split mold 20 may be not only a vertical type but also a horizontal type. Also,
The shape of the cavity 42 can be appropriately changed according to the intended article. Further, in the present embodiment, the silicon nitride powder was filled, but not only this, but also various powders,
Granules can also be used. Further, since these fillers only need to have air permeability, it is possible to use a porous body, for example, a foamable resin.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
通気性かつ圧力媒体非透過性の被膜を用い、減圧可能な
装置内で加圧することとしたため、樹脂被膜を備えて成
る新規な等方静水加圧成形型、その製造方法及び製造装
置を提供することができる。また、従来、タービンロー
タの如き複雑形状部品は、射出成形、鋳込み成形により
製造されていたが、本発明によれば、等方静水加圧によ
り、安価且つ形状精度に優れ、品質の良い大型のタービ
ンロータが製造可能となる。
As described above, according to the present invention,
A novel isotropic hydrostatic pressing mold having a resin coating, a method for manufacturing the same, and a manufacturing apparatus therefor are provided, since a pressurization is performed in a device capable of reducing pressure using a film having air permeability and impermeability to a pressure medium. be able to. Further, conventionally, complicated-shaped components such as turbine rotors have been manufactured by injection molding and casting. However, according to the present invention, isotropic, isostatic pressing provides low cost, excellent shape accuracy, and high quality large-sized components. A turbine rotor can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造装置の一実施例を示す断面図であ
る。
FIG. 1 is a sectional view showing one embodiment of a manufacturing apparatus of the present invention.

【図2】本発明の被膜保持体(等方静水加圧成形型)の
一実施例を示す断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of a film holding body (isotropic isostatic pressing mold) of the present invention.

【図3】セラミックスタービンロータ製造用の型部材の
一例を示す断面図である。
FIG. 3 is a sectional view showing an example of a mold member for manufacturing a ceramic turbine rotor.

【図4】被膜保持セラミックタービンロータの平面図で
ある。
FIG. 4 is a plan view of a coating-holding ceramic turbine rotor.

【符号の説明】[Explanation of symbols]

1 製造装置 2 被膜保持体(等方静水加圧成形型) 10 処理室 12 排気弁 14 給排水弁 20 割型 30、30’ 雄型 32 凸部 36 ランド領域 40 雌型 40A 上型 40B スライド型 40C 下型 42 キャビティ 44 ランド領域 50 被膜 52 被膜 60 粉体 70 ヒータ DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Coating holding body (isotropic isostatic pressing mold) 10 Processing chamber 12 Exhaust valve 14 Water supply / drain valve 20 Split mold 30, 30 'Male mold 32 Convex part 36 Land area 40 Female mold 40A Upper mold 40B Slide mold 40C Lower mold 42 Cavity 44 Land area 50 Coating 52 Coating 60 Powder 70 Heater

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 等方静水加圧成形に用いる成形型におい
て、通気性かつ圧力媒体非透過性の被膜を備えて成るこ
とを特徴とする等方静水加圧成形型。
1. A mold for use in isostatic pressing under pressure, which comprises a coating film that is permeable to air and impermeable to a pressure medium.
【請求項2】 通気性かつ圧力媒体非透過性の被膜内に
粉体を高密度に充填して成ることを特徴とする請求項1
記載の等方静水加圧成形型。
2. The method according to claim 1, wherein a powder is densely packed in a film that is permeable to air and impermeable to a pressure medium.
The isostatic pressing mold described.
【請求項3】 請求項1記載の成形型を用い、この成形
型の形状付与部に粉体を充填して等方静水加圧すること
を特徴とする等方静水加圧成形法。
3. An isotropic hydrostatic pressing method using the forming die according to claim 1 and filling the shape imparting portion of the forming die with powder and isostatic pressing.
【請求項4】 所定形状を有し、通気性かつ圧力媒体非
透過性の被膜内に粉体を高密度に充填して成る等方静水
加圧成形型を製造する方法であって、 雄型部材と通気性を有する雌型部材とから成る粉体充填
用の割型を、排気口及び圧力媒体給排口を備える処理室
内に配置し、 前記被膜を、雄型部材の凸部及びこれに隣接するランド
領域と、雌型部材の所定形状を有するキャビティ及びこ
れに隣接するランド領域とに被着し、 粉体を、前記被膜を被着した雌型部材のキャビティに充
填し、 前記被膜を被着した雄型部材の凸部と粉体の表面とを当
接させ、 次いで、処理室内を排気口を介して減圧排気し、粉体に
含まれる空気を雌型部材及び前記被膜を介して排気除去
しながら、前記雄型部材の凸部を雌型部材のキャビティ
に嵌入させて、粉体をこの凸部で加圧して粉体の充填密
度を向上させ、 次いで、雄型部材及び雌型部材の少なくとも一方のラン
ド領域に設けた加熱器により、前記被膜同士を加熱して
接合し、 しかる後、前記圧力媒体給排口を介して、処理室内に圧
力媒体を導入し、粉体が高密度に充填された等方静水加
圧成形型を得ることを特徴とする等方静水加圧成形型の
製造方法。
4. A method for producing an isotropic hydrostatic pressing mold, wherein a powder having a predetermined shape and a high density is filled in a film permeable to a pressure medium and impermeable to a pressure medium. A mold for powder filling comprising a member and a female member having air permeability is arranged in a processing chamber having an exhaust port and a pressure medium supply / discharge port, and the coating is formed on the convex portion of the male member and Adhering to the adjacent land area, the cavity having a predetermined shape of the female member and the land area adjacent thereto, filling powder into the cavity of the female member to which the coating is applied, The convex part of the attached male member is brought into contact with the surface of the powder, and then the processing chamber is evacuated to a reduced pressure through an exhaust port, and the air contained in the powder is discharged through the female member and the coating. While removing the exhaust gas, the convex portion of the male member is fitted into the cavity of the female member, and the powder is removed. And pressurized with the convex portions of the above to improve the packing density of the powder. Then, the coatings are heated and joined by a heater provided in at least one land area of the male member and the female member. A pressure medium is introduced into the processing chamber through the pressure medium supply / discharge port to obtain an isotropic hydrostatic pressing mold filled with powder at a high density. Manufacturing method.
【請求項5】 雄型部材と雌型部材とから成る割型を処
理室内に配設して成る等方静水加圧成形型の製造装置で
あって、 前記処理室は、排気口及び圧力媒体給排口を備え、 前記雌型部材は、通気性を有し、粉体を充填する所定形
状のキャビティを備え、 前記雄型部材は、このキャビティと嵌合する凸部を備
え、 前記雄型部材及び雌型部材の少なくとも一方が、被膜接
合用加熱器をそのランド領域に備え、この被膜は通気性
かつ圧力媒体非透過性であることを特徴とする等方静水
加圧成形型の製造装置。
5. A manufacturing apparatus for an isotropic hydrostatic pressing mold, wherein a split mold comprising a male member and a female member is disposed in a processing chamber, wherein the processing chamber has an exhaust port and a pressure medium. The female member has air supply and discharge ports, the female member has a cavity having a predetermined shape filled with powder, and the male member has a convex portion fitted with the cavity. At least one of the member and the female member is provided with a coating bonding heater in a land area thereof, and the coating is air-permeable and non-permeable to a pressure medium. .
【請求項6】 請求項4記載の製造方法により得られた
等方静水加圧成形型を等方静水加圧して得られることを
特徴とする等方静水加圧成形体。
6. An isotropically isostatically pressed body obtained by isostatically pressing a mold obtained by the production method according to claim 4.
JP4208826A 1992-08-05 1992-08-05 Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body Expired - Lifetime JP2591884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208826A JP2591884B2 (en) 1992-08-05 1992-08-05 Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208826A JP2591884B2 (en) 1992-08-05 1992-08-05 Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body

Publications (2)

Publication Number Publication Date
JPH0647596A JPH0647596A (en) 1994-02-22
JP2591884B2 true JP2591884B2 (en) 1997-03-19

Family

ID=16562756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208826A Expired - Lifetime JP2591884B2 (en) 1992-08-05 1992-08-05 Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body

Country Status (1)

Country Link
JP (1) JP2591884B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273298A (en) * 1985-05-28 1986-12-03 Nippon Kokan Kk <Nkk> Molding method for powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273298A (en) * 1985-05-28 1986-12-03 Nippon Kokan Kk <Nkk> Molding method for powder

Also Published As

Publication number Publication date
JPH0647596A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
US4582682A (en) Method of producing molded parts by cold isostatic compression
JP2004504718A5 (en)
EP0474078B1 (en) Countergravity casting using particulate supported thin walled investment shell mold
JPH05131419A (en) Method for producing ceramic molding and device for pressing said ceramic molding
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
US4999157A (en) Method for molding powders
JP2591884B2 (en) Isotropic hydrostatic pressing mold, molding method using the same, method and apparatus for manufacturing isotropic hydrostatic pressing mold, and isotropic hydrostatic pressing molded body
JPS62216703A (en) Method and device for manufacturing compressed body with path from powdered mold material
JPS62297402A (en) Molding method for powder
US6422293B1 (en) Method and installation for low pressure die casting in a mould ceramic casting die
JPH02104461A (en) Vacuum anti-gravity type casting device and method for casting thin part
KR20110072665A (en) High purity tube type ceramic-molding apparatus high purity tube type ceramic-molding method using same
SE7804990L (en) SET TO MAKE A FOREMAL OF SILICON NITRID
JPS61202799A (en) Cold hydrostatic pressurizing method
JPH04129713A (en) Vacuum forming metal die device
JPH04339597A (en) Isotropic pressurization forming mold for powder and molding method using this mold
GB2372958A (en) Mould assemblies
JPH07164195A (en) Mold for hydrostatic pressure molding for producing powder molding having hollow part and molding method of powder molding
JPS5836413Y2 (en) Thin plate forming equipment
JPH03162503A (en) Method and apparatus for cast-compacting slurry
JPS62180001A (en) Production of sintered body
JPH0349788Y2 (en)
JPS62202003A (en) Molding method for powder
CA2328099A1 (en) Method for preparation of test bodies
CN115195189A (en) Powder forming process and powder forming device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961105